
 

Universidade de Aveiro 
Ano 2017  

Departamento de Química 

Carolina Lobão de 
Jesus Figueira 
 
 

Isolamento e caracterização de rizobactérias 
associadas à halófita Salicornia ramosissima com 
efeito de biocontrolo  
 

Isolation and characterization of rhizobacteria 
associated with the halophyte Salicornia 

ramosissima with biocontrol effect 
 
 

 

 

 

 

 

 

 

 

  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Institucional da Universidade de Aveiro

https://core.ac.uk/display/155248345?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

i 

 

Universidade de Aveiro 
Ano 2017  

Departamento de Química 

Carolina Lobão de 
Jesus Figueira 
 
 

Isolamento e caracterização de rizobactérias 
associadas à halófita Salicornia ramosissima com 
efeito de biocontrolo  
 

Isolation and characterization of rhizobacteria 
associated with the halophyte Salicornia 

ramosissima with biocontrol effect 
 

 Dissertação apresentada à Universidade de Aveiro para cumprimento dos 
requisitos necessários à obtenção do grau de Mestre em Biotecnologia, ramo 
alimentar, realizada sob a orientação científica da Professora Doutora Maria 
Ângela Sousa Dias Alves Cunha, Professora Auxiliar do Departamento de 
Biologia da Universidade de Aveiro e co-orientação científica da Professora 
Doutora Maria Helena Abreu Silva, Professora Auxiliar do Departamento de 
Biologia da Universidade de Aveiro 
 

 

 

 

 

  



 

ii 

 

 

   

 “Knowledge is a big subject. Ignorance is bigger. And it is more interesting.” 
                                   Stuart Firestein, Ignorance: How it drives science    

 



 

iii 

 

  

 

 
 
 

 
 

o júri   
 

presidente Professor Doutor João Filipe Colardelle da Luz Mano 
Professor catedrático da Universidade de Aveiro 

  

 

vogal Doutora Joana Isabel do Vale Lourenço 
Bolseira de pós-doutoramento da Universidade de Aveiro 

  

 

vogal Professora Doutora Maria Ângela Sousa Dias Alves Cunha 
Professora auxiliar da Universidade de Aveiro 

  

 

 

  



 

iv 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
agradecimentos 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Às professoras Ângela Cunha e Helena Silva, pela orientação científica, 
acompanhamento e inúmeras sugestões, bem como pela autonomia e 
confiança que em mim depositaram. 
À Maria João, pelo incansável apoio, motivação e momentos que partilhámos, 
no laboratório e fora dele. 
À Sofia, pelos momentos de verdadeira cumplicidade e amizade, pelos 
almoços, jantares e idas às salinas. 
A todos os elementos do LMAA (Laboratório de Microbiologia Aplicada e 
Ambiental), em especial à Patrícia Domingues, pela troca de ideias e 
conhecimento indispensável à realização deste trabalho. 
À Vanessa Oliveira e ao Daniel Bonifácio pela paciência e ajuda na 
sequenciação e identificação dos isolados. 
Ao CESAM (Pest-C/MAR/LA0017/2013), pelo suporte financeiro que permitiu o 
desenvolvimento deste trabalho. 
Aos meus amigos pela enorme paciência e por dizerem a coisa certa, no 
momento certo. 
À minha família e namorado, pelo constante apoio e compreensão não só 
nesta, como em todas as outras fases da minha vida.  
 
 

 

 



 

v 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
palavras-chave 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Halófitas; Salicornia ramosissima; rizosfera; bactérias promotoras do 
crescimento; efeito de biocontrolo; Bacillus aryabhattai  
 

 
 
 
resumo 
 
 

 
 
 
O cultivo da halófita Salicornia ramosissima representa uma atividade 
económica emergente em zonas costeiras e estuarinas. No entanto, o 
crescimento da planta é negativamente afetado pela salinidade elevada e 
por agentes fitopatogénicos. As bactérias promotoras do crescimento de 
plantas (plant-growth promoting bacteria, PGPB) com efeito de biocontrolo 
são consideradas uma alternativa promissora aos fungicidas comerciais, 
bem como um fator de melhoramento da produtividade de culturas 
melhorando a sua resistência a diversos fatores de stresse. O objetivo 
deste trabalho foi o isolamento e caracterização de rizobactérias 
associadas à halófita Salicornia ramosissima que demonstrassem efeito 
de biocontrolo e potencial de melhoria do cultivo desta planta.  
De uma fase inicial de isolamento a partir de plantas colhidas em sapais 
da Ria de Aveiro, obteve-se um total de 54 isolados. Destes, 23 foram 
estudados quanto a diversas características de biocontrolo como a 
inibição do crescimento do fungo fitopatogénico Alternaria sp., a produção 
de cianeto de hidrogénio (HCN), a produção de hidrolases extracelulares 
(proteases e lipases) e outras características (mobilidade e tolerância ao 
sal) potencialmente vantajosas na interação com a planta.  
Todos os isolados apresentaram pelo menos uma característica de 
biocontrolo, embora apenas 2 isolados tenham produzido resultado 
positivo para todas as características testadas. O isolado SP1016-20, 
identificado como Bacillus aryabhattai, foi selecionado para ser testado 
como inóculo por apresentar também mobilidade. Os testes de 
germinação de sementes de S. ramosissima mostraram que as sementes 
inoculadas com B. aryabhattai SP1016-20 apresentaram melhor eficiência 
de germinação sob stresse salino (30 ‰ de NaCl). B. aryabhattai SP1016-
20 pode assim ser perspetivada como uma estirpe promissora para 
aplicação como PGPB no cultivo de S. ramosissima em sedimentos 
salinos como os da Ria de Aveiro. 
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abstract 
 
 

 
 
 
The crop cultivation of the halophyte Salicornia ramosissima is an 
emergent activity in coastal and marine regions. However, plant growth is 
negatively affected by high salinity and by phytopathogenic agents . Plant-
growth promoting bacteria (PGPB) with biocontrol effect are regarded as a 
promising alternative to commercial fungicides, as well as a factor of 
improvement of crop productivity, enhancing plant resistance to stress 
factors. The objective of this work was the isolation and characterization of 
rhizobacteria associated to the halophyte Salicornia ramosissima that 
demonstrated biocontrol effect and potential to improve the crop 
productivity. 
From an initial phase of isolation from plants harvested in salt marshes of 
Ria de Aveiro, a total of 54 isolates were obtained. Of these, 23 were 
studied for various biocontrol characteristics such as inhibition of the 
phytopathogenic fungus Alternaria sp., production of hydrogen cyanide 
(HCN), production of extracellular hydrolases (proteases and lipases) and 
other characteristics (motility and salt tolerance) potentially associated with 
mutually beneficial interactions with the plant. 
All isolates showed at least one biocontrol characteristic, although only 2 
isolates produced a positive result for all the characteristics tested. Isolate 
SP1016-20, identified as Bacillus aryabhattai, was selected to be tested as 
inoculum because it also showed motility. Seed germination tests showed 
that the seeds of S. ramosissima inoculated with B. aryabhattai SP1016-20 
presented better germination efficiency under salt stress (30 ‰ NaCl). B. 
aryabhattai SP1016-20 can thus be considered as a promising strain for 
application as PGPB in the cultivation of S. ramosissima in saline 
sediments such as those in the Ria de Aveiro. 
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1. Introduction 

 

1.1. Soil salinity, a global issue 

 By the year 2050, the world population is expected to stabilize at around 9.5 billion people 

and global production will need to increase by up to 70 % (relative to 2009 levels) in order to feed 

this population appropriately (FAO, 2011). Therefore, there is a strong economic and demographic 

pressure to raise crop productivity in a sustainable manner to fulfil global food demand. The 

severity of this problem is enhanced by factors related to global climate change, such as soil 

salinization, that threatens soil quality and negatively impacts crop production (Howden et al., 

2007). Soil salinization is the process of increasing the concentration of total dissolved salts in soil 

due to natural (primary salinization) or anthropogenic (secondary salinization) processes (Ghassemi 

et al., 1995). Primary salinization affects about a billion hectares in areas that are largely coastal 

salt marshes or inland deserts, but it is the secondary salinization that poses the major threat to crop 

production since it affects about 20 % of all irrigated land in the most active agricultural areas of 

the world (FAO, n.d.; Royal Society, 2009). Recent data from the FAO report on soil resources 

indicate that the increase of soil salinity problems is taking an estimated 0.3 to 1.5 million hectares 

of farmland out of production each year. In Europe, significant parts of Spain and areas in Italy, 

Hungary, Greece, Portugal, France and Slovakia are affected by soil salinization (FAO, 2015). 

 Most crop species employed in modern agriculture are salt sensitive (glycophytes) and can 

only tolerate a very limited concentration of salt in their growth media, which is not compatible 

with the salt levels observed on salt-affected soils (Shannon et al., 1994). Once salinity in the soil 

surpasses a critical level, the productivity is reduced making the crops commercially unviable 

(Ventura et al., 2015). Maas (1990) reviewed several studies that show that salinity higher than 1.3 

g/L resulted in yield reduction of vegetable crops such as beans (yield decline of 19 %), peppers 

(yield decline of 14 %), corn (yield decline of 12 %) and potatoes (yield decline of 12 %). Note that 

1 g/L (weight of total dissolved solids to volume of water) is approximately equal to 1.6 dS m−1 of 

electrical conductivity. The limits of electrical conductivity of irrigation water may reach 3.0 dS 

m−1 (equivalent to approximately 1.9 g/L), a significantly higher value than those observed in 

drinkable water (maximum value of 0.7 dS m−1) (Fipps, n.d; Rhoades et al., 1992). 

1.2. Biosaline agriculture 

To efficiently manage irrigation water and farm soil, the use of brackish water and 

salinized soils, in a strategy designated as biosaline agriculture, is a promising strategy. Biosaline 

agriculture is defined as ‘agriculture under a range of salinity levels in groundwater, soils, or a 

combination of both’ (Masters et al., 2007). Biosaline agriculture is not a novel strategy since the 

first studies using seawater for crop production date back to 1959, when two Israeli scientists 
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attempted to develop high salinity agriculture and demonstrated that some crops could be grown in 

highly saline water on sand-dunes or similar soils with high permeability (Boyko & Boyko, 1959). 

The aim of biosaline agriculture is to increase the number of crop species that could produce viable 

economic yields while growing under saline conditions. To attain this, two main research directions 

are being followed: (1) improving the salt tolerance of salt-sensitive crops through conventional 

breeding methods or genetic engineering (Epstein et al., 1980; Flowers & Yeo, 1995); and (2) 

domestication of naturally salt-tolerant plants (halophytes) as alternative crops (Gallagher, 1985). 

 Attempts to enhance the salt tolerance of salt-sensitive crops through conventional 

breeding have been largely unsuccessful (Flowers, 2004; Rozema & Schat, 2013). In 1980, Epstein 

et al. proposed a new strategy to genetically modify plants to tolerate saline conditions involving 

the use of salt-tolerant germplasm, however this approach was also unsuccessful since only a few 

salt-tolerant lines emerged (Flowers & Yeo, 1995). Furthermore, although many studies have been 

published regarding production of transgenic plants for salt tolerance enhancement, few of these 

products were tested in the field (Yu et al., 2012; Panta et al., 2014). The difficulty of improving 

salt tolerance of crop species by conventional breeding or genetic engineering is probably related to 

the high complexity of salinity tolerance as a trait, both physiologically and genetically, since it is a 

multigenic trait (Flowers et al., 2010; Ventura et al., 2015). Due to lack of success of this approach, 

researchers have considered other options such as finding alternative crops like halophytes for 

farming in these saline conditions. The use of crop halophytes opens perspective of regaining, for 

farming activities, soils suffering from secondary salinization as well as exploring natural salty 

soils (such as salt marshes) that are currently unexploited.  

1.3. Halophytes 

1.3.1.  Definition of halophytes 

In terms of plant-salt relationships, higher plants are divided into two main groups: 

glycophytes (salt-sensitive plants) and halophytes (salt-tolerant plants). In reality, the two groups 

merge with each other, since there is a continuum in the relative salt tolerance of plants from very 

sensitive species like chickpea (Cicer arietinum) and rice (Oryza sativa), to the most tolerant 

halophytes, as demonstrated by Yadav et al. (2011). Throughout the years, several definitions of 

halophytes have been proposed (Flowers & Colmer, 2008; Aslam et al., 2011). Nevertheless, the 

definition proposed by Flowers et al. (1986) is one of the most widely accepted by the scientific 

community and states that a halophyte has the ability to ‘complete the life cycle in a salt 

concentration of at least 200 mM of sodium chloride under conditions similar to those that might be 

encountered in the natural environment’. Halophytes are thus naturally-evolved salt-tolerant plants, 

in opposition to plants that tolerate salt but do not normally live in saline environments. Halophytes 

represent only about 2 % of terrestrial plant species (Glenn et al., 1999) although they are present 
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in a wide diversity of plant forms. The largest group of halophytes is the Chenopodiaceae family 

with over 380 halophytic species. This family provides some of the most used halophyte models 

through which the physiology and genetics of salt tolerance can be studied and understood 

(Flowers & Colmer, 2008; Hamed et al., 2015).  

1.3.2. Salinity tolerance in halophytes 

Salinity tolerance in halophytes has been extensively studied (Flowers et al., 1977; Glenn 

et al., 1999; Shabala, 2013), and it appears to be an integration of many adaptive physiological 

mechanisms, allowing the plant to cope with salinity levels that are damaging or lethal to non-

halophytes (Shabala, 2011; Flowers et al., 2014). The common characteristic of all halophytes is 

their ability to sequester inorganic ions such as sodium (Na+) and chloride (Cl-), the predominant 

ions in saline environments, in their cell vacuoles for osmotic adjustment (Glenn et al., 1999). 

Although in high concentrations in vacuoles, the concentration of Na+ in the cytoplasm must be 

maintained within tolerable limits, since ions associated with high salinity may damage metabolic 

processes directly (Wyn & Gorham, 2002; Flowers et al., 2008). For instance, high Na+ 

concentrations in relation to other salts can disrupt root permeability to ions, by displacing calcium 

in the plasma membrane (Shannon et al., 1994). Thus, vacuoles have a set of transport channels 

that prevent efflux of sodium back to the cytoplasm, where salt-sensitive metabolic processes take 

place (Shabala, 2013). In the cytoplasm, low molecular weight organic solutes are accumulated to 

adjust the osmotic potential and prevent adverse effects on metabolism, by stabilizing membrane 

and enzyme structures and scavenging free radicals (Bohnert et al., 1995; Rhodes et al., 2002). 

Among these, there are a variety of molecules such as sugar alcohols (e.g. sorbitol), free amino 

acids (e.g. proline) and betaines (e.g. glycine betaine) (Flowers & Colmer, 2008).  

In addition to the ability to sequester ions in vacuoles and produce compatible osmolytes in 

the cytoplasm, some halophytes have developed a range of secondary mechanisms to handle the 

excess of salt. These mechanisms are mainly associated with transpiration inhibition and involve 

reduced or inexistent leaves (Ungar, 1991), salt bladders (Shabala et al., 2014) and salt glands, 

modified cells in the leaf epidermis that secrete excess salt from the leaves (Thomson et al., 1988). 

Other typical morphological response to salinity is succulence, defined as ‘water content per unit 

area of leaf’ (Flowers et al., 1986). Succulence is a typical characteristic of dicotyledonous species 

but is seldom observed in monocotyledonous (Shannon et al., 1994). This characteristic allows 

plants to have large cells with greater water content and larger vacuoles, thus reducing salt 

concentration in the cytoplasm (Aslam et al., 2011). Increased succulence may also be beneficial to 

CO2 exchange and therefore photosynthetic activity, by increasing the internal surface area where 

CO2 diffusion can occur (Longstreth & Nobel, 1979).  
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1.3.3. Applications of halophytes 

Mainly because of their preadaptation to salt through the mechanisms described above and 

because of their diversity (Glenn et al., 1999), halophytes are not only valuable as scientific 

models, but also have potential for diverse industrial applications, with acknowledged economic 

importance. The study of halophytes in an economic perspective goes back to 1989, when Aronson 

developed a database of halophytes and their economic uses, motivated by the results of research 

on saline agriculture in Israel during the 1960s. More recently, an interactive version, the 

eHALOPH database, was compiled and can be found at 

http://www.sussex.ac.uk/affiliates/halophytes. So far, halophytes have been tested for potential use 

as ornamentals (Cassaniti et al., 2013), for revegetation and remediation of industrially polluted or 

salty soils (Cambrolle et al., 2008) or even as biofilters in aquaculture effluents (Buhmann & 

Papenbrock, 2013). Although there is a wide range of opportunities for the use of halophytes, the 

most promising applications are their direct use as crops for forage (El Shaer, 2010), oilseed crops 

(Glenn et al., 1991) and as food for human consumption (Ventura et al., 2011; Rozema & Schat, 

2013).  

While halophytes have long had a place in the diet of people across the world, most of the 

research has been focused on the value of halophytes as forage in animal feeding systems (Rozema 

& Schat, 2013). These studies demonstrate that despite the high protein content (ranging from 10 to 

20 % of dry matter) of these plants, their high mineral content (15 to 50 % salts of dry matter) and 

the fact that they are a poor energy source lowers its value as forage, since increased amount of salt 

in the animal diet results in increased water consumption which might affect animal weight or have 

implications in the long term, as noted by Panta et al. (2014). Nevertheless, it is possible to 

equilibrate the amount of salt present in animal food, by using halophytes as a replacement to a 

percentage of the conventional feed in animal diets (ICBA, 2007). Unlike leaves that accumulate a 

large quantity of salt, the seeds of halophytes have a very low salt content, even when growing 

under saline conditions, a great advantage for the use of halophytes as seed crops (Glenn et al., 

1999). In the context of the food industry, at least 50 species of seed-bearing halophytic plants are 

potential sources of edible oils. The halophytes Salicornia bigelovii and Suaeda fruticosa are 

commonly used for seed oil extraction due to the high amount of oil present in their seeds, that 

varies between 25 and 30 % (Glenn et al., 1991; Weber et al., 2007). Halophytes are also a source 

of bioactive compounds such as antioxidants that are produced within the powerful antioxidant 

system of halophytes, promoted by the unfavourable conditions in the environment where 

halophytes grow, such as salt constraints. Ksouri et al. (2012) reviewed the most common bioactive 

compounds present in halophytes and their potential. Furthermore, Boestfleisch et al. (2014) 

demonstrated that by altering the conditions of the growing environment of the halophytes from 
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different families it is possible to alter the concentration of various bioactive compounds such as 

phenols and flavonoids in seedlings and plants. Being possible, the manipulation of the type and 

number of bioactive compounds present in halophytes, will allow the commercialization of 

halophytes with improved characteristics for food industries. Cultivation of certain halophytes for 

human food can contribute to mitigate the problem of food loss due to increasing salinization. For 

example, halophytes such as Salicornia spp. (glasswort), Aster tripolium (sea aster) and Atriplex 

triangularis (salt bush) have been consumed by humans for centuries, mainly because of their salty 

taste. The market for products of biosaline agriculture is only starting and is still limited compared 

with ‘conventional agriculture’, but it is growing exponentially (Ventura et al., 2015). For instance, 

the halophyte quinoa (Chenopodium quinoa) has been consumed for years but only recently it 

began being sold as a premium product, especially in Europe. According to FAO (2013), the global 

export value of quinoa has been growing since 2000 (Panta et al., 2014).  

1.3.4. Halophytes as crops 

Several studies were made regarding cultivation of various halophytes with the objective of 

studying their growth behaviour, properties and yield obtained under different growing conditions, 

such as temperature, amount of water, soil type and above all, soil salt levels since this is one of the 

main limiting factors (O’Leary et al., 1985). However, despite many laboratory studies carried out, 

there have been few field trials that replicate agronomic conditions (Glenn et al., 1999). One of the 

first field trials was made by O’Leary et al. in Mexico (O’Leary et al., 1985). The researchers 

found that, under irrigation with seawater, the most productive halophytes yielded the equivalent of 

8 to 17 tons of dry matter per hectare (t DM ha-1) per year, comparable with the yield obtained 

annually with a conventional forage crop, such as alfalfa, grown on fresh water (5 to 20 t DM ha-1) 

(O’Leary et al., 1985). In the same year, Pasternak et al. (1985) evaluated the behaviour of the 

halophyte Atriplex nummularia, which was irrigated with 100 %, 75 % and 15 % seawater. The 

corresponding annual yields of dry matter were 15.3, 21.2 and 28.9 t DM ha-1, making them one of 

the most promising halophytes regarding yield of dry matter. These reports demonstrate that 

halophytes can be cultivated and irrigated even under full seawater and have productivities within 

the range of conventional crops (Glenn et al., 1999; Ventura et al., 2011). However, many studies 

note that the optimal salinity for growth of halophytes vary between 200 to 340 mM NaCl 

(approximately 11.4 to 19.4 g/L) (Glenn & O’Leary, 1985; Flowers & Colmer, 2008). Thus, under 

high-salinity irrigation, halophytes are beyond their growth optimum.  

 Although a wide range of halophytes can be cultivated in salt affected areas, to succeed as 

crops, according to Glenn et al. (1999), four conditions must be met: 1) they must have high yield 

potential; (2) the irrigation of halophytes should be similar to that of conventional crops, and must 

not damage the soil; (3) halophyte products must be able to substitute conventional crop products; 
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and (4) high-salinity agriculture must be able to be integrated in the existing agricultural 

infrastructure. Whether halophytes can meet these conditions depends on their performance as 

agronomic crops, which is associated to their physiology and biochemistry regarding different 

conditions such as salt stress (Glenn et al., 1999). As a way of choosing the halophytes with the 

greatest potentials to be domesticated as vegetable crops, it is necessary to compile existing 

knowledge about traditional uses and applications, which frequently can be found at ethnobotanic 

literature (Tardío et al., 2006). Furthermore, it is important to note that the successful incorporation 

of halophytes into future farming systems will also depend on the farmer’s acceptance of new 

practices, crop nutritional quality, overall cost-benefit of production, market development and price 

and government policies (Panta et al., 2014). Ventura & Sagi (2013) concluded that Salicornia 

probably is one of the most successful examples of halophyte cultivation (Ventura & Sagi, 2013).  

1.3.5. Salicornia 

Salicornia (Chenopodiaceae) is a genus of annual, apparently leafless halophytic plants that 

is widely distributed worldwide, in temperate boreal and subtropical habitats of the northern 

hemisphere and in South Africa, although absent from South America and Australia (Kadereit et 

al., 2007). Salicornia grows in periodically wet saline coastal and inland habitats such as salt 

marshes, mud flats and salt pans, usually occupying the zone of highest salinity (Chapman, 1960; 

Ungar, 1979). In their habitat, they protect against erosion caused by wave force on the coast, and 

are involved in the biofiltration of pollutants from the sediment (Silva et al., 2007; Han et al., 

2010). Furthermore, two species of Salicornia (S. europaea and S. bigelovii) are able to inhibit the 

growth of Skeletonema costatum, a marine diatom responsible for water eutrophication (Jiang et 

al., 2010; Jiang et al., 2012). The involvement in these important processes makes Salicornia 

species crucial for the tidal ecology. 

1.3.6. Taxonomy of Salicornia 

The genus Salicornia currently includes about 80 species being S. bigelovii, S. europaea, S. 

prostata and S. ramosissima those of wider occurrence (GBIF, 2016). This number is just an 

estimate, since albeit numerous species have been described over the last 250 years (Davy et al., 

2001), there is still unsatisfactory taxonomic classification and it is frequently impossible to assign 

published information to specific taxa within Salicornia (Kadereit et al., 2007). For example, the 

same specimen (P. Teege chen 968, MJG) collected in Normandie (France) was identified as S. 

europaea (Stace, 1997), S. brachystachya (Lahondère, 2004) and S. ramosissima (Ball & Akeroyd, 

1993). The species considered in this investigation is the annual halophyte Salicornia ramosissima 

J. Woods. Analysis of morphological variation in the field failed to support a distinction between 

the species S. europaea and S. ramosissima (Ingrouille & Pearson, 1987), although Jefferies & 
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Gottlieb (1982) had found consistent differences at loci coding for six enzymes. Commonly, they 

are classified as species included in the species aggregate S. europaea agg. since it is extremely 

difficult to differentiate them due to their morphological similarity, phenotypic plasticity and local 

differentiation of populations at different sites (Kadereit et al., 2012). The two species occur in the 

same habitat, however there are preferential distributions. The upper-marsh plants most closely 

resembled the description of S. ramosissima, whereas plants from the lower marsh appeared to be 

S. europaea (sensu stricto), although this restriction to different habitats is not exclusive and at 

most sites both species are present (Jefferies & Gottlieb, 1982).  

1.3.7. Salicornia ramosissima 

S. ramosissima, included in the species aggregate S. europaea agg. (Stace, 1997), is widely 

distributed in northwest Europe and can be found in many salt marshes of the Iberian Peninsula 

(Castroviejo et al., 1990). The distribution of S. ramosissima in the Iberian Peninsula is represented 

in Figure 1. In Portugal, it is frequent in the salt marshes of ‘Ria de Aveiro’ and less frequent in the 

Minho estuary, in Ria Formosa (Algarve), in Mondego estuary and in Sado estuary (Castroviejo et 

al., 1990; AMBIECO, 2011). It preferentially occupies small areas not invaded by other halophytes 

such as Halimione portulacoides (Silva et al., 2007).  

 

 

 

 

 

 

 

 

 

Figure 1 - Distribution map of Salicornia ramosissima from the Iberian Peninsula. Adapted from 

Woods (1987) and Castroviejo et al. (1990). 

As other coastal systems in the world, agriculture fields surrounding the Aveiro coastal 

region have been experiencing severe saltwater intrusion because of the interaction of the Atlantic 

Ocean, the estuarine system ‘Ria de Aveiro’ and local freshwater aquifers (Martinho et al., 2004). 

As S. ramosissima occurs naturally in ‘Ria de Aveiro’ and is frequently the first higher plant to 

colonize the tidal zones, it is important to study its behaviour since S. ramosissima can potentially 

be used to mitigate the losses associated with arable land salinization or to aid in preservation and 

conservation of these type of ecosystems (Davy et al., 2001; Silva et al., 2007).  
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Morphologically, S. ramosissima is a small herb, usually less than 40 cm high (Figure 2). 

The root system of this halophyte tends to be superficial, often penetrating less than 10–20 cm into 

the sediment. S. ramosissima has articulated and succulent stems (Figure 2b) composed of 

cylindrical photosynthetic internodes with two opposite three-flowered cymules each (Figure 2c). 

Each cymule holds one large central flower, responsible to produce a large seed, and two smaller 

lateral flowers, responsible for the production of two smaller seeds (Castroviejo et al., 1990; Davy 

et al., 2001). The larger seed (Figure 2d) has a length of about 1.0 to 1.4 mm, while smaller seeds 

have a medium length of about 0.8 to 1.3 mm (Ungar, 1979). Many species of the genus Salicornia 

have green stems that usually become reddish in the fall. This fact is particularly noticeable in S. 

ramosissima, sometimes becoming purple-red. This distinctive purple-red colouration of many 

forms of Salicornia is mainly due to the presence of a betacyanin pigment (Chiji, 1976). The life 

cycle of Salicornia is typically annual, although in subtropical environments plants can persist for 

more than a year (Davy et al., 2001). Especially for annuals, such as S. ramosissima, which have 

only one opportunity in their life to reproduce, the success of reproduction is highly dependent on 

the germination responses of their seeds (Ungar, 1991).  

Seeds reach maturity from late-September onwards, and fall from the dead or dying parent 

plant. Although seeds can be dispersed by salt water, water birds or the wind (Wilson, 1980; Ungar, 

1987), most of the seeds produced remain in the proximity of parent plant (Jefferies, 1981) and 

almost all germinate after few months. Some studies report that the seeds of S. ramosissima exhibit 

different germination success, with small seeds (lateral flowers) more dormant and less salt-tolerant 

than large seeds (central flowers) (Ungar, 1979; Philipupillai & Ungar, 1984). For successful 

germination, a combination of environmental conditions that may include abiotic factors, such as 

soil characteristics, and biotic factors, such as the absence of competition or predation, is required 

(Ungar, 1991). As previously mentioned, S. ramosissima grows mostly in the upper-marsh region. 

Characteristically, lower marsh populations, such as S. dolichostachya and S. europaea, tend to 

germinate earlier than upper marsh ones, e.g. S. ramosissima and S. pusilla (Smith, 1985). The 

upper marsh, unlike the lower marsh, is not tidal during most of the summer, and, because of 

evaporation, hypersaline conditions develop in the summer in most years. Thus, S. ramosissima 

shows delayed growth, a genetically determined response to adverse conditions (Jefferies, 1981). In 

spring, with greater rainfall and lower salinity, there is an interruption of dormancy and 

germination takes place (Vleeshouwers et al., 1995). These observations agree with those of Ungar 

(1991) which proposed that, even within halophytes, high concentrations of salt may delay growth 

(Ungar, 1991). 
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Figure 2 - Salicornia ramosissima: a) plant; b) fertile stem; c) cymule; d) seed. Adapted from 

Castroviejo et al. (1990). 

1.3.8. Potential applications of Salicornia 

 Salicornia species have a long history of applications namely as food for human, forage for 

animals and in traditional medicine, mainly due to their medicinal properties and high salt contents 

(Davy et al., 2001). The use of Salicornia by ancient communities is well documented in a review 

by Chevalier (Chevalier, 1922). Ancient Native Americans (Indian tribes) boiled S. rubra in water 

and let the solution evaporate to obtain salt. The Native American tribe Gosiute grinded the seeds 

to powder and used it to bake salty bread. In the present, Salicornia species are used as a seasonal 

vegetable and fermented food in Korea. In Nova Scotia, Canada, the annual glasswort S. europaea 

has been used freshly in salad or boiled for jarring as pickles (Isca et al., 2014). 

Scientists have reported several uses of Salicornia as food for animals and demonstrated 

that despite its high salt content, animals fed with moderate amounts of Salicornia gained as much 

weight as those whose diet included other terrestrial weeds (Swingle et al., 1996). Salicornia is 

acceptable as a forage component of the diet fed to goats and fish (Glenn et al., 1992; Belal & Al-

Dosari, 1999). Salicornia species have also been used as oilseed crop, with S. bigelovii being one 

of the most frequently used halophytes for seed oil extraction due to the high amount of oil present 

in the seeds (about 30 %) and its good oil properties (Glenn et al., 1991; Ho & Cummins, 2009; 

Glenn et al., 2012). Also, S. europaea seems to be a suitable candidate for oilseed crop, since under 

seawater irrigation the seeds of S. europaea have an oil content of 28 %, with a large percentage of 

unsaturated fatty acids (Ơ Leary et al., 1985; Zhao & Feng, 2001). However, to use Salicornia as 

an oilseed crop can be a waste of the nutritional proprieties of the stems and other constituents of 
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the plant, since the chemical profile in halophytic plants can be unique due to the environmental 

stress of their habitat (Isca et al., 2014).  

In plants growing in habitats that impose significant environmental stress such as saline 

environments, the increased production and accumulation of reactive oxygen species (ROS) leads 

to cellular damage, metabolic disorders, and senescence processes (Menezes-Benavente et al., 

2004). Halophytes are known for their ability to withstand these toxic ROS, since they are 

equipped with powerful antioxidant systems. The production of antioxidants can delay the 

oxidation of lipids or other molecules by inhibiting the initiation or propagation of the oxidative 

chain reaction (Ksouri et al., 2012). In addition to antioxidant activity, Salicornia has omega-3 

fatty acids, which are a major constituent of plant lipids located in the chloroplast membrane. 

These lipids are known for their beneficial properties for human health (Simopoulos, 2004). 

O’Leary et al. (1985) made a nutritional analysis of three halophyte species and concluded that, 

under seawater irrigation, S. europaea has a high content of fibre (17 % of dry weight) and high 

nutritional value in terms of minerals (Lu et al., 2001). Halophytes are also known for their ability 

to synthesize secondary metabolites that perform a variety of functions inside the plant. Detailed 

reviews on the bioactive compounds of Salicornia and similar species were stated by Ksouri et al. 

(2012) and Isca et al. (2014).  

Although the primary reason to produce secondary metabolites is the mitigation of salt 

stress, those changes are also responsible for the enhancement of their nutritional value and 

sensorial properties (Maggio et al., 2011). Interest in ‘functional foods’ (foods that scientifically 

proved health benefits beyond basic nutrition) is increasing and halophytes present a level of 

nutritionally valuable metabolites, meeting these special nutritional demands (IFIC, 2013; Ksouri et 

al., 2012). Because of their salty taste and nutritional value, Salicornia species have been 

commercialized as a singular vegetable for United States and European markets at comparatively 

high prices (Ventura et al., 2011). Despite the lack of reports publicly available (most consumer 

studies are market surveys made by commercializing companies), it is known that Salicornia 

species are well accepted by the consumer, who is mostly interested in the young green plant stems 

that are sold in the markets as “samphire”, “sea asparagus”, “glasswort” or in Portugal, “erva-

salada” (Ventura & Sagi, 2013; Isca et al., 2014). In opposition to the use of Salicornia as forage 

crop or as oilseed crop, if used for human consumption as a gourmet product, the high NaCl 

content in the shoot of Salicornia has only a minor impact on the nutritional value of the plant and 

provides different sensorial experiences since as a gourmet product it is consumed in small 

quantities (Ventura et al., 2015). 

The market for gourmet vegetables requires products of the highest quality. In addition to 

be visually appealing in terms of freshness, colour and packaging, the product should also reach the 
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market at the same maturity level, have a particular taste recognized by its consumers, and be of 

sufficient nutritional value to certificate its gourmet status (Van der Voort et al., 2007). Since non-

cultivated plant material presents low uniformity and unpredictable quality, it is necessary to select 

superior genotypes of the plant and define growing conditions (Ventura et al., 2015). Thus, Ventura 

& Sagi (2013) reviewed several agrotechnical practices for Salicornia cultivation, reaching the 

conclusion that practices such as daylight manipulation and multiple harvesting enhance the 

characteristics of Salicornia ensuring a higher market value. The same authors reported that 

currently, the easiest and most straightforward way to produce Salicornia is to cultivate it in native 

soils watered with drip irrigation. More recently, Gunning (2016) extensively reviewed several 

techniques for the successful S. europaea cultivation, as well as some of the companies that are 

commercializing this halophyte worldwide. 

1.3.9. Salicornia as a crop – perspectives and limitations 

Despite most scientific records of Salicornia biomass production and yields refer to 

laboratory experiments, which fail to fully represent plant densities under field conditions, there are 

some field studies that report a good yield of biomass for several species of Salicornia. Glenn et al. 

(1998) reported a yield of 17 t DM ha-1 per year for S. bigelovii when grown with seawater. 

Generally, coastal halophyte communities exhibit relatively high annual biomass productivity 

comparable of that of glycophytes in contrast with that presented by plant communities from dry or 

cold environments (Flowers & Colmer, 2008). As a salt marsh pioneer plant, Salicornia possesses 

extreme salt tolerance and can be grown with saline irrigation water with salinities as high as that 

of seawater (Ventura et al., 2010). However, Ungar (1991) reported that the initial establishment of 

halophyte seed is delayed under conditions of high salt stress. Aghaleh et al. (2009) concluded that 

the shoot growth of S. europaea increased under low NaCl concentration (100 mM) and then 

decreased with increasing NaCl concentrations. Ventura et al. (2011) also reported that the best 

germination conditions for Salicornia were either freshwater or low-salinity water. Rubio-Casal et 

al. (2003) studied the germination responses of S. ramosissima and demonstrated that Salicornia 

seeds germinate better under low salinities, and with a salinity of 3 % the germination was 

significantly delayed. The inhibition of growth of halophytes under high salinity could be attributed 

to imbalances in phytohormone levels and the toxicity of Na+ that cause decrease in cell 

metabolism (Shannon et al., 1994; Khan & Ungar, 1997). On the other hand, excess Na+ and Cl− 

ions may interfere with the absorption of potassium and calcium and this can result in deficiencies 

of nutritional elements, affecting plant growth and development (Borsani et al., 2001). 

Consequently, although Salicornia can be grown with saline irrigation water with salinities as high 

as that of seawater, for this halophyte to become a commercial halophyte crop it must also be 

capable of high-yield production under saline conditions (O’Leary, 1998), which includes 
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achieving an adequate rate of seed germination and a sufficient quantity of plant biomass in high 

salt concentrations.  

Furthermore, several studies conducted in distinct locations worldwide report the high 

prevalence of different genus of fungi associated with this halophyte, especially the genus 

Alternaria, that accounts for 9 species found associated with Salicornia europaea (Davy et al., 

2001), probably attributed to the succulent nature of this plant (Muhsin, 1996). The occurrence of 

fungi can be a stress factor for Salicornia growth and development, and can significantly decrease 

their market value, since foliar pathogens such as Alternaria create necrotic lesions in the stems of 

the plant that severely reduces their photosynthetic ability, accelerating plant senescence. The 

fungus is in the centre of the lesion, which is surrounded by an un-invaded chlorotic halo created 

by the diffusion of fungal metabolites like toxins (Tewari, 1983). Alternaria frequently causes 

quiescent infections in which the fungus enters the tissue where it remains dormant until conditions 

favour the progression of the infection. The fungus can survive for a considerable time as 

mycelium or spores on decaying plant debris, or as a latent infection in seeds (Rotem, 1994). If 

seed-borne, the fungus can attack the seedling once the seed has germinated. In other cases, once 

the spores are produced, they are mainly spread by wind on to plant surfaces where infection can 

occur (Thomma, 2003). In Portugal, a rust-like fungus in stems of S. ramosissima was observed, 

probably Uromyces salicorniae de Bary that was previously observed in Britain (Davy et al., 

2001). Chemical pesticides have been used since many decades in agriculture to successfully 

control fungi diseases and thus increasing the crop production. However, this strategy has led to 

increased concerns over environmental contamination and has resulted in pathogens developing 

resistance to individual chemicals over time, needing a constant development of new pesticides 

(Tariq et al., 2017). Furthermore, the growing cost of pesticides, and consumer demand for 

pesticide-free food has led to a search for substitutes for these products (Compant et al., 2005). 

Biological control is thus being considered as a promising alternative or a supplement to reduce the 

use of synthetic chemicals in agriculture, since biopesticides are safe to use as compared to 

synthetic pesticides and have targeted activity against specific pathogens, being most easily 

decomposed than conventional pesticides (Tariq et al., 2017). In 2015, biofungicides compounded 

only 5% of the worldwide crop protection market (approx. $3 billion year−1), but this segment of 

the industry is growing, and it is projected to increase by 8.84 % annually, reaching more than 7 % 

of the total crop protection market by 2025 (more than $4.5 billion year−1) (Olson, 2015).  

One of the most promising solutions to improve crop yields in adverse conditions is the 

inoculation of crop plants with plant-growth-promoting bacteria (PGPB), bacteria associated with 

plants that stimulate their growth and aid in the control of pathogenic fungi affecting seeds, soil or 
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stems of the plant, through their biocontrol traits (Gunning, 2016). When these bacteria are 

associated with the rhizosphere of plants, are called plant-growth-promoting rhizobacteria (PGPR).  

1.4. Plant-growth-promoting rhizobacteria (PGPR) 

1.4.1. The rhizosphere as a microbial microniche 

The rhizosphere is defined as a region or volume of soil that is influenced by the plant root 

system activity and generally extends out 1-2 mm from the surface of roots (Gregory, 2006). Due 

to the microenvironment that the plant root creates, the rhizosphere has a range of different 

physical, biological and chemical characteristics different to those of the bulk soil such as larger 

microbial biomass (Gregory, 2006). Bacteria are generally not evenly distributed in soil, being 

present at high densities on plant root surfaces (Campbell & Greaves, 1990). This is due to the 

greater availability of oxygen as well as nutrients including sugars, amino acids, organic acids and 

other small molecules released from plant root (Glick, 2012). 

1.4.2. PGPR definition and biochemical traits 

All plants have local bacterial communities (rhizobacteria) associated with their 

rhizospheres. These microorganisms can establish relations with their host plants (Schmid et al., 

2009; Martínez-Viveros et al., 2010). Interaction of rhizobacteria and growing plants can be 

neutral, negative or positive. Neutral interactions are related to commensals bacteria exhibiting no 

visible effect on growth or physiology of the host. Negative interactions are related to 

phytopathogenic rhizobacteria and their metabolic products, while positive interactions enhance 

plant growth (Beattie, 2006). Rhizobacteria that are beneficial to plant growth have been widely 

studied and have been termed by Kloepper and Schroth (1978) plant growth-promoting 

rhizobacteria (PGPR). PGPR may promote plant growth and development through direct 

mechanisms, usually by either promoting nutrient acquisition or balancing plant hormone levels, or 

through indirect mechanisms by decreasing or preventing the inhibitory effects of pathogenic 

agents on plant development, thus acting as biocontrol bacteria (Glick, 1995; Compant et al., 

2005). Direct mechanisms may be especially beneficial when attempting to cultivate plants under 

nutrient-limiting conditions and include (1) nitrogen fixation to improve nutrient availability, (2) 

phosphate solubilisation, (3) production of siderophores and (4) production of phytohormones such 

as auxins (especially indole-3-acetic acid (IAA)) and gibberellins (Hong et al., 1991; Glick, 1995; 

Patten & Glick, 1996). In addition to promote plant development, these mechanisms may improve 

the plant tolerance to abiotic stresses such as high salinity, drought, metal toxicity and pesticide 

load without causing disease (Bashan et al., 2008). Indirect mechanisms are associated with the 

effect of biocontrol and indirectly promote plant growth by preventing negative effects of viruses, 

phytopathogenic bacteria, fungi, and invertebrates (Compant et al., 2005). The same strain of 
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PGPR may cause both growth promotion and biological control (Kloeppe et al., 1999). In this 

study, some of the biological control mechanisms associated with PGPR isolated from S. 

ramosissima are evaluated. 

1.4.3. Biological control mechanisms 

Several species of bacteria are known to increase plant growth and productivity by 

preventing or controlling the harmful effects of phytopathogens (Lam & Gaffney, 1993; Whipps, 

2001; Tariq et al., 2017). Pathogen prevention can involve competition for niches within the 

rhizosphere, production of siderophores, induced resistance, production of specific biocontrol 

molecules such as hydrogen cyanide (HCN) and antibiotics, or hydrolytic enzymes (Fridlender et 

al., 1993; Lo, 1998; Tariq et al., 2017). These mechanisms are not mutually exclusive (Lo, 1998) 

and competition may result from several different mechanisms that confer competitive advantages 

to the bacteria, for example, production of siderophores or motility for better colonisation of roots 

(Martínez-Viveros et al., 2010). 

Production of bioactive metabolites (antibiotics and hydrogen cyanide) 

The production of antibiotics is considered the most effective antagonistic mechanism, 

showing positive results against phytopathogenic agents under laboratory conditions (Martínez-

Viveros et al., 2010; Tariq et al., 2017). Antibiotics are organic compounds of low molecular 

weight such as 4-diacyetyl phloroglucinol (DAPG), phenazine-1-carboxylic acid and viscosinamide 

that are involved in the inhibition of growth and metabolic activities of various microbes (Tariq et 

al., 2017). However, the increased use of antibiotics may develop resistance by some 

phytopathogens to specific antibiotics. To prevent this from happening, some researchers have 

utilized biocontrol strains that synthesize hydrogen cyanide (HCN) as well as one or more 

antibiotics. While HCN may not have much biocontrol activity by itself, it appears to act 

synergistically with bacterially encoded antibiotics (Glick, 2012). HCN is a volatile, secondary 

metabolite that prevents the development of microorganisms, by inhibition of several 

metalloenzymes such as catalase, peroxidase and superoxide dismutase and especially copper 

containing cytochrome C oxidases, the final component of the aerobic respiratory chain in many 

organisms (Solomonson, 1981). Furthermore, in the soil, HCN can regulate micronutrient 

availability by producing stable complexes with transient metals like Fe, Zn and Cu (Rennert & 

Mansfeldt, 2002). The HCN cluster is formed by three contiguous structural genes, hcnABC, which 

encode a membrane-bound HCN synthase complex. This synthase complex is responsible for 

catalysis of glycine, the immediate metabolic precursor of cyanide in bacteria, into HCN and 

carbon dioxide (Castric, 1997; Martínez-Viveros et al., 2010). Many different bacterial genera have 

shown to produce HCN such as Aeromonas, Bacillus, Pseudomonas and Rhizobium (Martínez-

Viveros et al., 2010).  
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Production of extracellular hydrolytic enzymes 

The degradation of fungal cell walls and membranes caused by extracellular hydrolytic 

enzymes (such as chitinases, β-glucanases, lipases and proteases) is one of the most important 

mechanisms for biocontrol of phytopathogenic fungi (Weller, 2007; Elshafie et al., 2012; 

Bouizgarne, 2013). One of the most important microbial hydrolytic enzymes are proteases [E.C. 

3.4.24], that play a significant role in cell wall lysis of phytopathogenic fungi, since chitin and the 

fibrils of β-glucan (the major constituents of fungal cell walls) are embedded into a protein matrix. 

Cell walls contain proteins involved in iron transfer and those promoting survival under stress. The 

protein composition of the fungal cell wall varies depending on the environmental conditions and 

the development stage and these proteins are covalently bound to polysaccharides (Feofilova, 

2010). Thus, proteolytic activity is a prerequisite to lyse whole fungal cells, and thereby destroy 

their capacity to act on plant cells. In addition to fungal cell walls, hydrolytic enzymes affect 

hyphal tips and germ tubes leading to hyphal curling or hyphal tip bursting (Jadhav et al., 2017). 

Production of siderophores 

Siderophores are low molecular weight molecules involved in the solubilization and 

sequestration of iron (III) from the soil which are synthesized by some species of bacteria such as 

Bradyrhizobium (Neilands, 1995; Antoun et al., 1998). Siderophore producing PGPR can prevent 

the proliferation of pathogenic microorganisms by sequestering Fe3+ in the area around the root, 

essential for fungal growth (Siddiqui, 2006). Iron deficiency in fungus causes growth inhibition, 

decrease in nucleic acid synthesis, inhibition of sporulation, and causes changes in cell morphology 

(Mathiyazhagan et al., 2004).  

Induction of systemic resistance (ISR) 

 Some rhizobacteria can trigger induced systemic resistance (ISR) (Van Peer et al., 1991; 

Pieterse et al., 2014), a mechanism that does not target specific pathogens and is responsible to 

control diseases caused by a range of different pathogens by activating chemical or physical 

defence mechanisms in the host plant. ISR-positive plants are said to be ‘primed’ so that they react 

faster and more strongly to attack from several pathogens (Glick, 2012). ISR does not require direct 

interaction between the resistance-inducing PGPR and the pathogen. Thus, this mechanism enables 

that the control of soilborne pathogens can also be used to target, for example, seed-borne and 

foliar pathogens (Glick, 2012). Several bacterial traits (i.e., flagellation, production of siderophores 

and volatile organic compounds) have been proposed to trigger ISR, but there is no compelling 

evidence for an overall ISR signal produced by bacteria (Compant et al., 2005).  

1.4.4. Halotolerant bacteria as PGPR 

 In relation to salt requirements, bacteria can be either extreme (halophilic) or facultative 

(halotolerant). Halophilic microbes can be defined as microorganisms which require at least 1.5 M 
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(9 % w/v) NaCl for growth and optimum growth occurs at 3.0 M (18 % w/v) NaCl or higher 

concentrations. Halotolerant bacteria can grow under a wide range of salt concentrations, with 

optimum growth in the absence of salt. Therefore, halotolerance describes the ability that bacteria 

have to grow in sub-optimal conditions (Ollivier et al., 1994; Bowers et al., 2009). Most bacteria 

found in saline ecosystems are Gram-negative, such as Halomonas, Pseudomonas and Vibrio 

(Proteobacteria) (Quesada et al., 1982; Trüper et al., 1991). Gram-positive rods and cocci, namely 

Bacillus and Salinicoccus (Firmicutes) as well as Micrococcus also occur (Trüper et al. 1991). 

Although bacteria are present, the dominant microorganisms in hypersaline environments 

worldwide are halophilic archaea (Oren, 2006). In general, halotolerant or halophilic prokaryotes 

have two different strategies to grow under high concentrations of NaCl (Lowe et al., 1993). One is 

the maintenance of the internal salt concentration at a level comparable to that of the environment 

and the exclusion of NaCl or the production of organic osmoregulants such as betaine (Burg & 

Ferraris, 2008). When microorganisms are exposed to high-osmolarity environments, there is a 

tendency for water to flow out of the cell, thus causing a reduction in turgor. Tolerant microbes 

have developed several adaptations to counteract this efflux of water. For maintaining the 

cytoplasmic salt concentration like that of the surrounding medium, the uptake of potassium (K+) 

occurs and cells start to accumulate compatible solutes. K+ serves as a messenger activating 

subsequent osmotic responses (Miller & Wood, 1996; Shabala, 2009). Compatible solutes, such as 

sugars and derivatives, amino acids and their derivatives and betaines work as osmoregulants and 

assure protein stability, folding and function in vitro and in vivo. These compatible solutes could be 

synthesised de novo or, if present in the medium, can be taken up by the microorganisms (Burg & 

Ferraris, 2008; Street et al., 2006). Another mechanism to improve salt tolerance is by modification 

of the composition of the bacterial cell membrane and cell wall resulting in changes in proteins and 

exo and lipopolysaccharides. The production of exopolysaccharides is the main mechanism used by 

Pseudomonas to survive under high salinities, since these compounds protects them from hydric 

stress and fluctuations in water potential by enhancing water retention (Sandhya et al. 2009). Salt-

tolerant rhizobacteria associated with halophytic plants and their halophilic or halotolerant 

proprieties were reviewed by Egamberdiyeva and Islam (2008). Mainly because their ability to 

adapt to different environmental pressures, rhizobacteria from halophytes are interesting for 

inoculation in agricultural crops, for the enhancement of crop survival and productivity, especially 

under saline stress (Cunha et al., 2005; Egamberdiyeva & Islam, 2008; Nabti et al., 2015). For 

example, bacteria associated with roots of halophytes are also known by producing 

exopolysaccharides as a root protective mechanism against high salt concentrations. They produce 

these exopolysaccharides not only during biofilm formation but also during the establishment of 

symbiotic interactions (Danese et al., 2000; Jones et al., 2007; Ruppel et al., 2013). 
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The importance of plant growth promoting bacteria in improving salt tolerance in crop 

vegetables, such as tomatoes (Mayak et al., 2004) and wheat (Ramadoss et al., 2013) has been 

highlighted in several studies. The application of halotolerant bacteria isolated from halophytes to 

cultivated glycophytes to enhance growth and improve productivity was reviewed by Paul & Lade 

(2014). Application of halotolerant PGPB to crops may also benefit farming practices by reducing 

the need for fertilizers as many of these bacteria are known for their abilities to supply plants with 

critical nutrients such as phosphorous and nitrogen (Nabti et al., 2015). There are some reports of 

the use of PGPR in Salicornia either with bacteria isolated from the plant or with bacteria isolated 

from other halophytes. A recent study by Szymanska et al. (2016) evaluated the density and 

diversity of the rhizosphere communities associated with S. europaea and a study by Jha et al. 

(2012) suggests that S. brachiata may be a useful source of new halotolerant bacteria with plant 

growth-promoting potential. Rueda-Puente et al. (2003) evaluated the effects of a strain of 

Klebsiella pneumoniae on the germination and early seedling growth of Salicornia bigelovii and 

concluded that this bacterium has nitrogen-fixing abilities, advantageous to the halophyte. A study 

by Bashan et al. (2000) found that inoculation of S. bigelovii with pure cultures or cocktails of 

PGPB significantly increased plant height and dry weight. More recently, Mapelli et al. (2013) 

studied the rhizosphere of Salicornia plants in hypersaline ecosystems and the bacteria were 

characterized for the resistance of temperature, salt and plant-growth promoting features, in vitro. 

Results show that some species of Halomonas are capable of successfully colonising Salicornia 

roots in laboratory conditions and have plant-growth promoting characteristics. However, to the 

best of my knowledge, there are no reports on biocontrol effects of PGPR inoculated on Salicornia.  

1.4.5. Application of PGPR as biocontrol agents 

Implementation of PGPR as biological control agents (BCAs) has been prevented by the 

lack of consistency and variation in responses that are obtained in field trials from site to site, for 

different crops and poor rhizosphere competence (Benizri et al., 2001; Martínez-Viveros et al., 

2010). Rhizosphere competence of BCAs comprises effective root colonization combined with the 

ability to survive and proliferate along growing plant roots over a considerable period, in the 

presence of the indigenous microflora (Compant et al., 2005). Thus, it is advantageous to study 

each case and use microorganisms from wild-type plants in the native location (Requena et al., 

2001), since the introduction of a large quantity of ‘exotic’ microorganisms may disrupt a local 

ecosystem and produce ecological impacts on the rhizosphere microbiota (Jackman et al., 1992). In 

addition to rhizosphere competence, difficulties in production, formulation and delivery of BCAs 

can also affect biocontrol efficacy in the field. Suggested solutions to overcome these constraints 

include combination of BCAs with chemical fungicides and modification of the bioformulation of 

BCA mixtures.  
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Methods for inoculation with either gram negative or gram positive PGPR bacteria require 

an easy to use carrier to deliver the inoculum into the soil, that maintain cell viability under adverse 

environmental conditions and ensure the maintenance of available bacteria population sufficient to 

exert the effects on the plant. This can involve low cost carriers such as calcined clay that is mixed 

with the bacterial suspensions and dried. Powder formulations (microorganisms concentrated into 

dry powders) are also frequently used by direct application to the soil, or dusting onto seeds. 

Alginate microbeads can also be used and provide many advantages by incorporating the cells into 

a protected matrix that undergoes decomposition in the soil and slowly releases the bacteria. 

Bacteria can also be introduced into the irrigation water via fermentation equipment that cultures 

the bacteria and pumps them into the irrigation water at desired intervals (Martínez-Viveros et al., 

2010; Gupta et al., 2015). So far, the most commercially successful inoculants have been Gram 

positive spore forming bacteria, which can persist in storage from months to years, and can 

withstand temperature, moisture and other environmental stresses better than non-spore forming 

bacteria (Martínez-Viveros et al., 2010).  

 

1.5. Scope and objectives 

The general aim of this work is to obtain autochtonous PGPR strains to support a high-

productivity strategy of crop cultivation of the halophyte Salicornia ramosissima in Ria de Aveiro. 

For that, PGPB from the rhizosphere of wild S. ramosissima plants collected in salt marshes of Ria 

de Aveiro, were isolated, tested for salt tolerance, characterized as to plant-growth promoting traits 

especially biocontrol activity and tested as inoculants on germination of S. ramosissima seeds. The 

results are expected to contribute for the strengthening of scientific basis of biosaline agriculture 

and for the development of PGPR-assisted crop cultivation protocols of halophytes in saline soils 

or estuarine sediments. 
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2. Methods 

 

2.1. Study sites and sampling 

Seeds and Salicornia ramosissima specimens were collected at salt marshes (Figure 3) in 

the Ria de Aveiro estuarine system (Aveiro, Portugal). The Ria de Aveiro is a shallow coastal 

lagoon on the north-west coast of Portugal (40.7°N, 8.7°W) formed by a complex network of 

channels and extensive intertidal zones (Dias et al., 1999). The sampling sites were chosen to 

represent different conditions in terms of salinity (Table 1). Sediments from sampling site no. 1 

(Boco river, Vagos) represent the lowest salinity range, since this site suffers little influence from 

Atlantic Ocean, and it is a permanent source of freshwater input to the Ílhavo Channel. Salt 

marshes of Santiago da Fonte (sampling site no. 2) and Pontinha (sampling site no. 3) are closer to 

the city of Aveiro and are exposed to higher salinity (Dias et al., 1999).  

S. ramosissima healthy specimens (20 cm average height) were harvested in October 2016 

with a shovel, stored in individual sterile plastic bags and transported to the laboratory at the 

University of Aveiro. Seeds were collected in December 2016 from stems of dried plants and 

stored in the dark at room temperature until used. Bulk sediment was collected in January and June 

2017 at the same tidal phase (one hour before lowest tide) from Pontinha (Table 1) at three 

monospecific banks of S. ramosissima. To avoid potential sampling bias caused by soil 

heterogeneity, five subsampling points were selected (around 3–5 m apart) in each site. Samples 

were transported to the laboratory for processing within one hour after collection in separate 

labelled bags to avoid contamination.  

 

Table 1 - Location of the sampling sites and material collected in each site. 

 

 

 

Sampling site GPS information Material collected 

Boco (1) 40°33'35.9"N, 8°40'19.3"W Seeds, plants (S. ramosissima) 

Santiago da Fonte (2) 40°37'43.5"N, 8°39'38.8"W Seeds, plants (S. ramosissima) 

Pontinha (3) 40º38'57''N, 8º38'59.9''W Seeds, plants (S. ramosissima), sediment 
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Figure 3 – Sampling sites represented with a circle and the correspondent number. Map created 

with Google tool ‘My Maps’. 

 

2.2. Sediment temperature and salinity 

The salinity and temperature of the sediment were determined in situ in the interstitial 

water from the sampling soil with a handheld multi-parameter system (TetraCon® 325, WTW 

GmbH). 

2.3. Isolation of rhizobacteria 

Bacterial isolation from the rhizosphere of S. ramosissima was performed according to 

Domingues et al. (2011). Loose soil was carefully separated from the root of plants by manual 

shaking. Roots (10 g fresh weight) were washed thoroughly, cut in 2-3 cm fragments and 

transferred to sterile glass flasks with 200 mL Ringer solution (Merck, pH = 7.0 ± 0.2) and 20 g of 

glass beads (4 mm diameter) and shaken at 100 rpm for 5 min in an orbital incubator to detach 

bacteria and soil from root material. The suspension was serially diluted with Ringer solution and 

aliquots (100 µL) of each dilution were spread-plated on Tryptic Soy Agar (TSA, Liofilchem, pH = 

7.2 ± 0.2). The cultures were incubated for 72 h at 37 ºC. 

After visible growth, 54 representative bacterial strains were selected based on the 

morphological features of the colonies. Purification was conducted by standard streaking technique 

on TSA. The resulting cultures on solid medium were incubated for 24 h at 37 °C. Twenty-three 

isolates were then selected for further testing based on their efficiency of growth (colonies forming 

in 24 h) and the purity of the culture was checked by visual inspection of the colonies and by 

observation under optical microscope after Gram staining. For long-term storage, isolates were 

grown in Tryptic Soy Broth (TSB, Liofilchem, pH = 7.3 ± 0.2), and the resultant suspensions were 
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supplemented with 20 % glycerol and deep-frozen (-80 ºC) until further use. Whenever necessary, 

the isolates were reactivated by cultivation in 30 mL sterile TSB for 24 h at 37 ºC. Plate streaking 

was performed in TSA between every liquid reinoculation to confirm the purity of the cultures. 

Working cultures for routine tests were conserved in solid medium (TSA), stored in the refrigerator 

(4 °C) and renewed weekly.  

2.4. Biochemical, physiological and biocontrol traits of rhizobacterial isolates 

2.4.1. Gram staining and cell motility  

Gram staining was performed according to the standard protocol. Cell motility was tested 

by using the wet-mount slide technique. Aliquots of 15 µL of fresh bacterial culture diluted in 

physiological saline solution were placed on a clean microscope slide and covered with a cover 

glass. The preparation was observed with an optical microscope (Leitz Laborlux K) with a total 

magnification of 1500 x. 

2.4.2. Salt tolerance 

Salt tolerance of the isolates was tested by inoculation of fresh bacterial cultures (50 µL) in 

5 mL TSB medium supplemented with 0, 10, 20 and 30 ‰ NaCl, using non-inoculated medium as 

control. The cultures were incubated at 37 °C for 24 h and bacterial growth was determined by 

visual inspection of turbidity. Three independent tests were conducted.  

2.4.3. Biocontrol effect against Alternaria sp.  

Bacterial isolates were screened for in vitro antagonistic activity against the 

phytopathogenic fungus Alternaria sp. adapting the method described by Sgroy et al. (2009). One 

disc (5 mm) of mycelium of a young fungal culture in solid medium was placed on the centre of a 

plate of Potato Dextrose Agar (PDA, Liofilchem, pH = 5.6 ± 0.2). Two blank antibiogram disks 

were placed equidistantly on the edge of the plate, one soaked with 25 µL of fresh bacterial culture 

(T) and the other (control) soaked with 25 µL of sterilized dH2O (C). Fluconazole disks were used 

as positive controls (Kowalsky & Dixon, 1991). The plates were incubated for 10 days at room 

temperature (approx. 25 ºC). Mycelium growth inhibition was calculated according to the equation 

(1), where I = mycelium growth inhibition in percentage, C = radius of mycelium growing towards 

the control, and T = radius of mycelium growing towards the test bacterium. The experiment was 

repeated three times and the results were averaged. 

 

� =  ��� − �	/�� ×  100 

 

(1) 
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2.4.4. Production of hydrogen cyanide 

Hydrogen cyanide (HCN) production was examined by the method proposed by Lorck 

(1948). Bacterial isolates were inoculated in TSB medium supplemented with 4.4 g/L of glycine 

and incubated at 37 ºC for 24 h. After growth, bacteria were streaked on solid medium with the 

same concentration of glycine and a sterile filter paper (Whatman no. 1) soaked in a 2 % sodium 

carbonate in 0.5 % picric acid solution was placed on top of the medium. The test plates were 

sealed with Parafilm® and incubated at 37 ºC for 24 h. HCN production was detected by a change 

of colour of the filter paper (light-yellow to dark-brown). Pseudomonas aeruginosa, an isolate 

which was previously characterized as HCN-producing (Castric, 1977) was applied as positive 

control, while uninoculated medium was used as negative control. The assay was repeated 3 times 

for each isolate. 

2.4.5. Proteolytic and lipolytic activity 

The production of extracellular proteases was accessed by streaking fresh cultures of each 

bacterial isolate in skim milk agar 3 % (Sgroy et al., 2009). Plates were sealed with Parafilm®, 

incubated at 37 °C for 24 h and observed for development of a clear zone around bacterial growth. 

Lipase production was tested by streaking fresh cultures of each bacterial isolate on 1/20 TSA 

medium amended with 2 % of Tween 80 (Merck), according to Howe and Ward (1976). Test plates 

were sealed with Parafilm® and incubated at 37 ºC for 24 h. Positive results show a calcium 

complex, visible as insoluble crystals around the inoculation site. P. aeruginosa was applied as 

positive control for assessment of both proteolytic (Oldak & Trafny, 2005) and lipolytic activity 

(Stuer et al., 1986). In both tests, three independent assays were conducted for each isolate. 

2.5. Molecular identification of a selected rhizobacterial isolate 

Based on biocontrol activities exhibited by the isolates, one isolate designated as SP1016-

20 which showed positive results in all tests, was selected for identification and further studies. 

2.5.1. DNA extraction 

A volume of 2 mL of liquid culture (TSB) was centrifuged at 16 000 g for 5 min. The pellet 

was resuspended in 800 µL of ethanol and transferred to a tube containing 500 mg of glass beads. 

The tubes with the samples and glass beads were stirred for 5 min in the vortex and centrifuged at 

16 000 g for 5 min. The supernatants were discarded and 1 mL of extraction buffer (1 % CTAB, 2 

% SDS, 1.5 M NaCl, 100 mM sodium phosphate buffer [pH 7.0], 10 mM Tris-HCl [pH 7.0], 1 mM 

EDTA [pH 8.0]) was added to the pellet. The mixture was gently homogenised and incubated at 65 

ºC for 15 min. After centrifugation at 16 000 g for 5 min, the supernatants were transferred to a 

new tube and 1 mL 21:1 chloroform-isoamyl alcohol solution was added. The tubes were gently 

mixed and centrifuged at 16 000 g for 5 min. The aqueous phase was then transferred to a tube 
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containing 0.6 % isopropanol (v/v) and incubated at room temperature (approx. 25 ºC) for 30 min. 

After another centrifugation at 16 000 g for 20 min, the supernatant was discarded and the pellet 

was incubated at 55 ºC for 10 min until completely dry. The pellet was then resuspended in 80 µL 

TE buffer (10 M Tris-HCl [pH 7.4] containing 1 mM EDTA.Na2 [pH 8.0]) and stored at -20 ºC.  

2.5.2. Molecular typing by BOX-PCR 

The BOX-PCR protocol was based in the method described by Martin et al. (1992). The 

PCR reaction mixture used in the procedure was composed of 8.75 µL dH2O, 1.25 µL DMSO, 1.50 

µL primer BOX_A1R (5’-CTA CGG CAA GGC GAC GCT GAC G-3’) and 12.50 µL of 

Mastermix (Thermo Fischer Scientific) for 25.00 µL of reaction. The amplification protocol 

included a denaturation step of 7 min at 94 °C, followed by 30 thermal cycles of 1 min at 94 °C, 2 

min at 53 °C, and 8 min at 65 °C, and an extension step at 65 °C for 16 min. PCR products were 

stored at -20 °C and run in agarose gel (1.5 %) electrophoresis, with 5.3x10-6 % (v/v) RedSafeTM, 

at 100 V for 2 h in TAE buffer 1x (5 Prime). The profiles were visualized in a UV transilluminator 

(Benchtop UV) and were photographed using a Canon Powershot G10.  

2.5.3. PCR-amplification of 16S rRNA gene fragments 

PCR amplification of 16S rRNA gene fragments was made using the primers 27F (5’- 

AGA GTT TGA TCC TGG CTC AG-3’) and 1378R (5’ – CGG TGT GTA CAA GGC CCG GGA 

ACG – 3’). The composition of the reaction mixture (25 µL) was 1 µL of sample, 12.5 µL 

DreamTaq™ PCR Master Mix, 0.25 µL of each primer, 1 µL BSA (2 mg/mL) and 10 µL dH2O. 

The PCR cycle was composed by 5 min of denaturation at 94 °C, 25 thermal cycles of 45 s at 94 

°C, 45 s at 56 °C, and 1.5 min at 72 °C, and a final extension step at 72 °C for 10 min. The success 

of the amplification of the 16S rRNA gene fragments was verified by agarose gel (1 %) 

electrophoresis, with 5.3x10-6 % (v/v) RedSafeTM as DNA staining agent, at 100 V for 30 min in 

TAE buffer 1x. The presence of bands was visualized in a UV transilluminator (Benchtop UV). 

The amplicons were sequenced by GATC Biotech (Germany). The obtained sequences were 

matched to the sequences available in the GenBank database using BLAST (Basic Local 

Alignment Search Tool; http://www.ncbi.nlm.nih.gov) to determine their closest relative. 

2.6. Growth curves of the selected isolate under different salinities 

 Salt tolerance and growth behaviour of the chosen isolate (SP1016-20) was observed by 

inoculation of fresh bacterial culture (50 µL) in 5 mL TSB medium supplemented with 0, 10, 20 

and 30 ‰ NaCl, using non-inoculated medium as control. The cultures were incubated at 37 °C 

and bacterial growth was determined by measuring the optical density at 590 nm every hour for 28 

h, when a growth plateau was observed. Bacterial growth behaviour under different salinities was 
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investigated by growth curve analysis. Each culture was replicated three times within the 

experiment.  

2.7. Seed germination tests 

The effects of seed dimorphism, storage time and salinity on the germination efficiency 

were tested by an approach adapted from Ameixa et al. (2016). To assess the effect of seed 

dimorphism, small and large seeds were separated based on their size (≤1.4 and ≥1.5 mm, 

respectively), as described by Ungar (1979). For the evaluation of the effect of storage time, seeds 

collected in 2014, 2015 and 2016 in Pontinha salt-marsh stored in the laboratory at room 

temperature, were used. To test the germination efficiency under different salinities, all types of 

seeds (small and large seeds collected at Pontinha salt-marsh) were allowed to germinate under 

salinities of 0, 10, 20 and 30 ‰ NaCl. The preparation of seeds was similar for all tests. S. 

ramosissima seeds were surface-sterilized with sodium hypochlorite (5 % active chlorine) for 15 

min, rinsed 4-5 times with sterilized dH2O and placed on a sterile petri dish containing two layers 

of sterile Whatman no.1 filter paper soaked with 5 mL of NaCl solutions with different salinities (0, 

10, 20 and 30 ‰). Three replicates for each treatment were performed in all germination 

treatments. For each replicate, twenty-five seeds per petri dish were arranged in five rows. The 

growth conditions were set to 24 °C and 16/8 h light/dark cycle in an incubator (Sanyo MLR 350 H 

Versatile Environmental Test Chamber). Emergence of radicle was daily monitored for 2 weeks. 

The data corresponding to the number of germinated seeds in each day and days to the first and last 

germination were registered, for further calculation of final germination (FG) percentage and mean 

daily germination (MDG: quotient of germination percentage by number of days to last 

germination, expressed as % day -1). 

2.8. Effect of the inoculation with selected bacterial isolate on seed germination under saline 

stress 

A pure culture of the chosen isolate (SP1016-20) was grown in TSB at 37 ºC and 100-fold 

diluted in sterile physiological saline solution. S. ramosissima large and small seeds collected at 

2016 from Pontinha salt marsh were used. Seeds were surface-sterilized as previously described, 

immersed in the bacterial suspension, immediately centrifuged at 16000 g for 10 min and incubated 

at room temperature for 2 h, to promote the adsorption of bacteria to the seeds. Control seeds were 

treated with dH2O without bacterial culture. Germination of inoculated seeds and non-inoculated 

controls under different salinities was evaluated as described for the initial germination tests.  
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2.9. Statistical analyses 

All statistical analyses were performed with Past® software, using two-way permutational 

multivariate analysis of variance (PERMANOVA) and a least significant difference (LSD) analysis 

at the 5 % probability level (Hammer et al., 2001).   
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3. Results and discussion 

 

3.1. Sediment temperature and salinity 

The temperature and salinity values of the sediment are presented in Table 2. The 

temperature of the sediment ranged from 16.7 ºC in January to 26.3 ºC in June and did not vary 

significantly between sites. The highest salinity was observed in June (64.7 ± 3.04 ‰) that 

corresponded to the highest temperature values. There is a correlation between sediment 

temperature and sediment salinity, since at higher temperatures there are an increase in soil salinity, 

mostly due to evaporation phenomena. Falling of S. ramosissima seeds from the parent plant occurs 

in late-September or October (depending mostly on the climacteric conditions) and germination 

takes place between January and April, where salinity levels are lower. 

Table 2 – Sediment properties in Pontinha salt-marsh on three sample sites (mean ± SD, n = 5) 
 

Sample 

site 

Temperature (ºC) Salinity (‰) 

January 2016 June 2016 January 2016 June 2016 

1 17.0 ± 1.60 26.2 ± 0.25 28.3 ± 1.10 45.2 ± 1.44 

2 16.7 ± 0.32 26.1 ± 0.07 28.5 ± 0.98 56.3 ± 0.93 

3 17.2 ± 0.55 26.3 ± 0.09 28.7 ± 0.99 64.7 ± 3.04 

 

3.2.  Biochemical, physiological and biocontrol traits of rhizobacterial isolates 

Initially, 54 representative bacterial strains were selected based on the morphological 

features of the colonies, but only bacteria that presented visible growth in 24 h at 37 ºC after 

purification in solid medium, were selected for further testing (23 isolates).  

3.2.1. Gram staining 

Gram-negative bacteria (78.3 %) were almost four times more represented in rhizosphere 

isolates than Gram-positive ones (21.7 %), independently of sampling site (Table 3). These results 

are in line with previous studies by Barin et al. (2015) and Szymanska et al. (2016) that reported 

the dominance of Gram-negative bacteria among rhizobacteria isolated from S. europaea. This can 

be due to the presence of cyclopropane fatty acids and outer lipopolysaccharide layer in the 

membranes of Gram-negative bacteria, which can counteract stressful conditions, such as high salt 

concentrations observed in saline environments (Trüper et al., 1991; Kaur et al., 2005). Previous 

studies also report that Salicornia species selected similar bacterial communities in the rhizosphere, 

independently from the site of sampling (Mapelli et al., 2013; Szymanska et al., 2016), suggesting 

that rhizosphere acts as a selection factor that tends to uniform bacterial diversity independently of 

the soil type. 
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3.2.2. Motility 

The motility of the isolates from Salicornia rhizosphere was examined as a plant-growth 

promoting trait and the results are shown in Table 3. Overall, 52 % of the tested isolates exhibited 

motility (Table 3). Bacteria can move by different mechanisms, including flagellar swimming, 

swarming, twitching and gliding motility (Jarrell & McBride, 2008), which were not discriminated 

in the present study.  

Previous studies report that more motile bacteria are present in the proximity of roots than 

in the bulk soil (Czaban et al., 2007; Barret et al., 2011). This is consistent with the idea that 

motility can enhance rhizosphere competence, defined as the ability of survival and colonisation of 

new habitats and hosts (De Weger et al., 1987; Bulgarelli et al., 2013). Motility could enhance 

colonisation ability by enabling cells to find attachment sites more quickly, turning motile microbes 

more competitive that non-motile ones (Turnbull et al., 2001; Yao & Allen, 2006). Additionality, 

motility facilitates bacterial response to fluctuations experienced in stressful environments such as 

salt-marshes (Turnbull et al., 2001b). In cultivation experiments with seeds inoculated with 

bacteria, motility can aid the movement of microbes from seeds into protective microniches, which 

may enhance the survival of the introduced population in the presence of the indigenous microflora 

(Turnbull et al., 2001b). Furthermore, Choi et al. (2006) demonstrated that swarming motility may 

contribute to stable maintenance of antifungal compounds on plant surface, showing that motility is 

particularly relevant to achieve satisfactory biocontrol results (Choi et al., 2006). 

3.2.3. Salt tolerance 

After 24 h, the isolates were characterized qualitatively as having strong, weak or no 

growth at all at different salinities, based on the turbidity of the TSB medium (Figure 4). Most of 

the isolates (60.9 %) grew well at lower (0 ‰ and 10 ‰) salinities, presenting weak growth or no 

growth at higher (20 ‰ and 30 ‰) salinities, while 26.1 % of the collection corresponded to 

halotolerant bacteria, able to grow well in all the tested salinities. Halophilic bacteria (unable to 

grow in the absence of NaCl in the medium) were not found (Figure 4). Naturally saline sediments 

such as in salt-marshes are mutable environments due to fluctuation of climatic conditions and 

precipitation throughout the year, which impact sediment salinity (Zahran, 1997). This type of 

habitat is inhabited by well adapted halophilic and halotolerant bacteria (Ollivier et al., 1994). 

Several studies have reported higher abundance of halotolerant and halophilic bacteria in the 

rhizosphere, as compared to bulk soil, which may be related to the “rhizosphere effect” and the 

presence of root exudates that can contribute to salt tolerance in bacteria (Mapelli et al., 2013). It is 

worth mentioning that in the soil, although NaCl is the most prevalent salt, there are more salts as 

well as other factors that can modify the overall salt tolerance of bacteria (Tavakkoli et al., 2010; 

Wood, 2015). Since the final goal of this work is to inoculate seeds with the bacteria and to conduct 
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the cultivation in field conditions, the PGPB used must be halotolerant and survive under varying 

salinity especially during the initial stages of germination (Ungar, 1979). Furthermore, halotolerant 

bacteria are more promising as PGPB by enhancing crop survival and productivity under saline 

stress (Nabti et al., 2015). Bacteria must also be easily cultivated (visible growth in 24 h) to be 

considered an efficient inoculum.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 – Salinity tolerance of bacterial isolates under different salinities (0, 10, 20 and 30 ‰ 

NaCl). Isolates were characterized qualitatively as having strong (dark green), weak (light green) or 

no growth at all (yellow) by inspection of TSB turbidity. 

3.2.4. Biocontrol effect against Alternaria sp.  

The antagonistic potential of the isolates against the phytopathogenic mold Alternaria sp. 

was examined by the dual culture assay, which is a simple and efficient approach to evaluate 

growth inhibition, since both fungi and bacteria grew well on PDA at 25 °C, and 10 days was 

usually sufficient for full growth of all microbes. The results, shown in Table 3, are presented as 

the percentage of inhibition of growth of Alternaria sp. mycelium in the direction of the inoculated 

disk (Figure 5). Among the 23 isolates, the most effective fungal antagonists were the isolates 
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coded as SP1016-20 (27.54 ± 7.33 %) and SB1016-78 (23.80 ± 11.22 %), whereas about 48 % of 

the isolates exhibited little or no inhibitory activity (lower than 10 % inhibition). 

Alternaria species were chosen for screening the antagonistic potential of the isolates due 

to the high prevalence of these fungi on S. europaea (Muhsin, 1996; Okane & Nakagiri, 2015). 

Despite their adaptability to saline environments, evidenced by their occurrence in halophytes, it 

has been shown that the presence of NaCl in the medium inhibits fungi in S. europaea (Szymanska 

et al., 2016). This makes seed germination a critical stage for Alternaria infection, since seed 

germination occurs at low salinity, where fungus has a better chance of surviving. Plant pathogens 

that affect seeds reduce the quantity and quality of the seed harvested and can be preserved in seed 

lots, making seeds an efficient means of plant pathogen dissemination (Mancini & Romanazzi, 

2013). Thus, the treatment of seeds with biocontrol agents can be very important for eradicating or 

reducing seedborne pathogens.  

 

 

 

 

 

 

 

 

 

Figure 5 – Biocontrol effect of the isolate SF1016-12 against Alternaria sp. Inoculated disk is 

represented in the figure with an arrow. 

3.2.5. Production of hydrogen cyanide  

The ability of the rhizobacteria to control pathogens by producing hydrogen cyanide 

(HCN) was tested by assessing the colour change of the filter paper from light yellow to orange and 

brown (Figure 6). As shown in Table 3, 13 of the 23 tested isolates could synthesize HCN, a 

volatile organic compound (VOC) produced by rhizobacteria that is involved in biological control 

in seedlings (Voisard et al., 1989; Flaishman et al., 1996; Kang et al., 2010). Production of HCN is 

highly dependent on glycine availability in the medium. Therefore, the level of HCN production in 

the rhizosphere may be lower compared to the tested in vitro conditions (where glycine is in 

excess), despite glycine being one of the predominant amino acids of root exudates (Lesuffleur et 

al., 2007). HCN exerts its toxic effects through inhibiting cytochrome c oxidase, the final 

component of the aerobic respiratory chain in many organisms, as well as other essential 
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metalloenzymes (Solomonson, 1981). The host plant is generally not harmed by inoculation with 

HCN producing bacteria (Saharan & Nehra, 2011) and due to its high volatility, HCN does not 

accumulate to higher concentrations in the immediate vicinity of the producer, causing no harm to 

the environment (Kai et al., 2010). It is important to note that, while production of HCN is a good 

strategy, it may not be an efficient inhibitor on its own (Voisard et al., 1989; Glick, 2012).  
 

 

 

 

 

 

 

 

 

 

 

Figure 6 – Production of hydrogen cyanide by isolate SB1016-102 (A), demonstrating a positive 

result. Isolate SF1016-104 (B) did not produce hydrogen cyanide, since there are no changes in 

filter paper colour. 

3.2.6. Proteolytic and lipolytic activity 

Among the 23 evaluated bacteria, most isolates were positive for protease or lipase 

production (56.5 %), while seven isolates present both proteolytic and lipolytic activity (Table 3). 

Most soil microorganisms express proteolytic activity (Vranova et al., 2013), assessed in vitro by 

the development of a clear zone around bacterial growth (Figure 7). Lipases are enzymes that 

hydrolyse triglycerides into fatty acids and glycerol (Jensen, 1983). In vitro lipase production by 

the microorganisms was evaluated using Tween 80 as substrate in agar media. The use of tweens 

(fatty acid esters of polyoxyethylene sorbitan) is one of the most widely used methods. When 

bacteria produce lipases, tweens are hydrolysed, and the liberated fatty acids bind with the calcium 

incorporated in the medium, originating a calcium complex, visible as insoluble crystals around the 

inoculation site (Kumar et al., 2012).  

Fungal cell walls are constituted predominantly by glucose (68 %) but also contain proteins 

and lipids (up to 3 %). Proteins in fungal cell walls are involved in critical processes in its 

operation such as iron transfer and promotion of survival under stress, while fungal lipids have a 

significant role on the structure and function of fungal cell walls (Feofilova, 2010). Therefore, 

hydrolytic enzymes that act on cell wall components such as proteins and lipids can have a serious 
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impact on fungi health and may cause its deterioration allowing, for example, penetration of small-

molecular inhibitors such as antibiotics (Susi et al., 2011).  
 

 

 

 

 

 

 

 

 

 

 

Figure 7 – Development of a clear zone around bacterial growth, demonstrating proteolytic activity 

of the isolate SB1016-113 (B), as opposed as SB1016-112 (A) that does not produce proteases. 

3.3. Overall perspective on biocontrol and plant-growth promotion traits 

Among 12 isolates antagonistic to Alternaria sp. (higher than 10 % of inhibition), those 

exhibiting lipolytic activity accounted for the highest percentage (75 %), followed by those 

showing proteolytic activity (58.3 %), while those that produce hydrogen cyanide had the lowest 

percentage (41.7 %) (Table 3).  

This result indicates that HCN production is not the main factor affecting in vitro inhibition 

of Alternaria growth, which is in line with the conclusion of Voisard et al. (1989). Furthermore, 

isolates coded as SF1016-68 and SF1016-69 expressed two hydrolytic enzymes but not HCN and 

did not greatly inhibit Alternaria growth (lower than 10 % of inhibition); two isolates (SB1016-15 

and SP1016-86) did not inhibit Alternaria growth (0 % of inhibition) and showed only one of the 

biocontrol traits studied. Since many of the isolates showed different traits, it is difficult to 

ascertain which mechanism is playing a key role in the in vitro inhibition of Alternaria growth and 

there are other biocontrol traits that were not evaluated in this study. Only the isolates SP1016-20 

and SB1016-102 presented all the biocontrol traits studied and a good growth inhibition of 

Alternaria (27.54 ± 7.33 % and 16.96 ± 4.71 %, respectively). The higher inhibition observed with 

SP1016-20 (27.54 ± 7.33 %) may be attributable to a combination of traits, since this isolate 

displayed multiple traits related to biocontrol. Although both isolates showed all the biocontrol 

traits, only SP1016-20 is motile, a crucial physiological trait. Thus, it was chosen for identification 

and for subsequent tests. This isolate was collected from the rhizosphere of S. ramosissima from 

Pontinha salt marsh. 
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Table 3 – Motility, Gram staining and biocontrol traits of isolates from the rhizosphere of S. 

ramosissima. Quantitative traits are shown as mean of three replicate observations ± SD. 

Qualitative results are shown as + (positive) or – (negative) for each tested trait. 

Bacterial 

isolate 

Alternaria sp. 

growth 

inhibitiona 

HCN 

productionb 

Proteolytic 

activity 

Lipolytic 

activity 
Motility Gramc 

       

SB1016-4 0.93 ± 1.61 + + - + - 

SB1016-8 2.67 ± 4.62 + + - - - 

SF1016-12 16.60 ± 4.40 - + + - - 

SB1016-15 0.00 ± 0.00 - + - - - 

SP1016-20 27.54 ± 7.33 + + + + + 

SF1016-23 16.06 ± 2.97 + - - + - 

SF1016-27 8.45 ± 8.34 - + - + - 

SP1016-32 1.28 ± 2.22 + - + - + 

SF1016-59 1.01 ± 1.75 + + - + - 

SF1016-68 2.78 ± 4.81 - + + + - 

SF1016-69 1.33 ± 2.31 - + + - + 

SF1016-77 11.89 ± 3.78 - - + - - 

SB1016-78 23.80 ± 11.22 - + + - + 

SP1016-86 0.00 ± 0.00 + - - + - 

SF1016-91 9.29 ± 5.67 - - + + - 

SF1016-92 1.23 ± 2.14 + - - - - 

SF1016-100 2.86 ± 4.95 + - + - - 

SB1016-102 16.96 ± 4.71 + + + - - 

SP1016-103 18.10 ± 3.52 + - + - - 

SF1016-104 9.05 ± 2.18 - + + - + 

SB1016-112 2.15 ± 3.72 + - - + - 

SB1016-113 19.02 ± 6.71 + + - + - 

SB1016-115 22.55 ± 6.97 - - + + - 
a % Mycelial inhibition was calculated as described in section 2.4.3. 
b HCN, hydrogen cyanide production 
c + (gram-positive); - (gram-negative) 
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3.4. Molecular identification of isolate SP1016-20 

PCR amplified products were sequenced and compared with the 16s rDNA sequences in 

NCBI database. Based on the partial sequences comparison by BLAST 

(http://www.ncbi.nlm.nih.gov/BLAST/), isolate SP1016-20 was identified as Bacillus aryabhattai 

(Table 4). It is a motile, gram-positive rod with colonies that, on TSA plate, appeared creamy 

white, opaque and were approximately 2–3 mm in diameter. 

 

Table 4 – Identification of bacterial strain with biocontrol potential isolated from S. ramosissima 

rhizosphere, based on 16S rDNA sequence 

 

Isolate Identified as % Similarity Accession number 

SP1016-20 
Bacillus 

aryabhattai 
100 % MG583717 

 

Previous studies report the ability of B. aryabhattai isolated from rhizospheres of 

halophytes to promote the growth of Xanthium italicum (Lee et al., 2012), soybean (Park et al., 

2017) and canola under salt stress (Siddikee et al., 2010). This growth promotion potential could be 

linked to production of 1 aminocyclopropane-1-carboxylate (ACC) deaminase and phytohormones 

(Lee et al., 2012; Park et al., 2017) as well as the ability of B. aryabhattai to form biofilms, 

solubilise phosphates, produce proteases, and efficiently utilize the root exudates as an energy 

source (Selim, 2015; Bhattacharyya et al., 2017). Bacillus sp. has been reported as one of the most 

dominant genus among Gram-positive bacteria in the rhizosphere of several plants, including 

halophytes (Irshad et al., 2014; Yaish et al., 2015). This may be a result of the endospore-forming 

capability among this group of bacteria, in addition to their greater resilience and tolerance to 

environmental changes (Lalloo et al., 2009).  

3.5. Growth curves of SP1016 under different salinities 

Analysis of salinity tolerance is fundamental to predict the survival of the inoculum in the 

plant under saline conditions. The ability of SP1016-20 to grow in TSB supplemented with NaCl is 

shown in Figure 8. As expected after the preliminary salt tolerance test (section 3.2.3.), SP1016-20 

could grow in all tested salinities although with a different kinetic profile. Without salt, the lag 

phase was about five hours, a relatively brief time for adaptation to a different medium. However, 

as the salinity increased, lag phase extended (11, 12 and 13 hours, respectively for 10, 20 and 30 ‰ 

NaCl) (Figure 8). After reaching the exponential phase, the isolate grew the fastest with 30 ‰ NaCl 

(growth rate of 0.28 h-1) and more slowly with decreasing salinity (0.22 h-1, 0.19 h-1 and 0.15 h-1 
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respectively for 20, 10 and 0 ‰ NaCl), however the growth rates are not very different, so these 

results may only indicate that the isolate is halotolerant and grow well in all the salinities tested. 

The value of optical density reached at the end of the exponential phase was higher in salt-free 

medium, followed by 30 ‰ NaCl, 20 ‰ NaCl and 10 ‰ NaCl. After 20 hours, the strain had 

already reached the stationary phase at all salinities (Figure 8). Thus, in general, the strain showed 

halotolerance, which can be important to tolerate high and changing salinities in S. ramosissima 

habitat and indicates that, in field conditions, the isolate may have a selective advantage over 

slower growing competitors. This is particularly important for bacteria possessing biocontrol traits, 

since it has been shown that bacteria generally protect the plant by rapid colonization and thereby 

exhausting the limited available substrates so that none are available for pathogens to grow 

(Heydari & Pessarakli, 2010). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 – Growth curve of SP1016-20 under a range of salinities (0, 10, 20 and 30 ‰ NaCl) in 

TSB medium at 37 ºC, determined by measuring optical density at 590 nm.  

 

3.6. Seed germination tests 

3.6.1. Effect of seed dimorphism and salinity on the germination efficiency 

Seed dimorphism, the production by a single plant of two or more seed morphs with 

distinct characteristics, is common in halophytes and confers a selective advantage to plants that 

grow in fluctuating environments, by promoting the formation of a seed bank, which enables the 

long-term survival of the species (Philipupillai & Ungar, 1984). The aim of this experiment was the 

evaluation of seed dimorphism on the germination efficiency of S. ramosissima seeds under saline 

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

O
D

5
9

0

Time (h)

0 ‰ 10 ‰ 20 ‰ 30 ‰



 

35 

 

stress. The experimental results showed that the seeds final percentage of germinated seeds (FG) 

was always higher in distilled water (up to 45 %), and a significant inhibition of germination with 

increasing salinity was observed, meaning that this species does not have a physiological 

requirement for salt to germinate. This is coincident with previous results on Salicornia (Ungar, 

1979; Silva et al., 2007; Ventura et al., 2011; Ameixa et al., 2016). The number of days until 

first germination was the same in all treatments (6 days after the beginning of the experiment), 

excluding small seeds at 30 ‰ NaCl, in which germination did not occur within the course of the 

experiment (14 days). The FG of large seeds was higher than that of the small seeds in all 

treatments (Figure 9), as previously described by Ungar (1979). At lower salinities (0 ‰ and 10 

‰), both seed types showed similar FG. However, there is a relevant decrease in FG at salinities 

over 10 ‰ (61 % for large seeds and 70 % for small seeds). These results are in line with the ones 

reported by Rubio-Casal et al. (2003) that stated a decrease of 81 % in germination of S. 

ramosissima seeds at salinity over 10 ‰. For large seeds, the minimum and maximum FG (mean 

± SD) were 9.3 ± 9.2 % and 45.3 ± 8.3 %, at the highest and lowest salinity, respectively. For small 

seeds, the minimum FG was 0 ± 0 % at 30 ‰ and the maximum FG was 44.0 ± 6.9 % at 0 ‰ 

(Table 1, Appendix A). 

 

 

 

 

 

 

 

 

 

Figure 9 - Germination frequency (mean ± SD) of large (yellow triangles) and small (green circles) 

seeds exposed to four treatments of salinity (0, 10, 20 and 30 ‰ NaCl, respectively) over 14 days. 
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The PERMANOVA analysis (Table 1, Appendix B) on FG revealed that there is not a 

significant interaction (P = 0.5983) between salinity and seed type. However, FG decreases 

significantly with both salinity (P = 0.0001) and seed type (P = 0.0107). The highest average FG 

(45.3 ± 8.3 %) corresponded to large seeds germinated at a salinity of 0 ‰, while the lowest value 

(0 ± 0 %) was observed for small seeds germinated at a salinity of 30 ‰. The PERMANOVA 

analysis of the daily germination (MDG) (Table 2, Appendix B) revealed a significant effect of 

both salinity (P = 0.0001) and seed type (P = 0.0388). The highest MDG (3.78 ± 0.69 % day -1) 

corresponded to large seeds at a salinity of 0 ‰ and the lowest value (0 ± 0 % day -1) to small seeds 

germinated at a salinity of 30 ‰. 

The higher germination efficiency of large seeds may be related to seed morphology. Both 

germination and salt tolerance require energy and large seeds have larger reserves, a greater ability 

to maintain ion homeostasis, and a thinner seed layer than small ones (Osmond et al., 1980; 

Flowers & Colmer, 2008), making them more prone to germination. However, despite the higher 

variability in germination responses with increasing salinity, a similar trend could be observed for 

both seed types (Figure 9), thus emphasizing that seed type is not the main factor when evaluating 

the germination behaviour of Salicornia. Moreover, as noted by Singh et al. (2004), the time-

consuming and tedious work of separating seeds is without any importance for the grower, since 

only negligible differences in germination are observed. 

The effects of NaCl on Salicornia germination can be due to a reduction in water potential 

of the growth media, or to the toxicity of Na+ and Cl- ions (Munns, 2002; Wang et al., 2002). 

However, salinity is not necessarily toxic as seeds will often recover and germinate when they are 

transferred to less-saline water (Ungar, 1978). The influence of salinity on seed germination are in 

line with what occurs in Salicornia natural environment since generally, seed germination in 

Salicornia occurs in early spring, when salinity is reduced by high soil moisture content, and 

temperatures are relatively low (Khan & Weber, 1989). Considering that although being 

halophytes, the germination of seeds of Salicornia is negatively affected by high soil salinity, the 

use of salt-tolerant PGPB may also contribute to mitigate salt stress and improve germination 

efficiency in field conditions. 

3.6.2. Effect of seed storage time on the germination efficiency 

Results demonstrated that seed germination is negatively correlated with storage time 

(Figure 10). PERMANOVA analysis showed that final germination (FG) of seeds significantly 

dropped as the storage time and salinity increased (P = 0.0001) (Table 3, Appendix B). For 

example, seeds from 2014 (2 years of storage), presented FG notably lower than seeds collected in 

2016 (from 73.33 ± 9.24 % to 9.33 ± 4.62 % for 0 ‰), and for 20 ‰ and 30 ‰ treatments no 

germination was observed (Table 2, Appendix A). Storage time also delayed the start of 
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germination. For seeds collected in 2014, the first germinated seed was observed after 10 days, 

while for the 2015 seeds the mean time for the first germination was 7.6 days and for the 2016 

seeds the corresponding period was 2 days (Table 2, Appendix A). Mean daily germination (MDG) 

also decreased significantly with both storage time (P = 0.0001) and salinity (P = 0.0005) (Table 4, 

Appendix B). Lower MDG values were observed in seeds stored for 2 years (2014) for both 20 and 

30 ‰ treatments (0.00 ± 0.00 % day -1) whereas seeds from 2016 germinating in distilled water 

presented the highest MDG (11.43 ± 5.16 % day -1) (Table 2, Appendix A). The interaction 

between storage and salinity was significant for MDG (P = 0.0041), which indicate that storage 

time enhances the effect of salinity. 

 Loss of seed viability during storage might be due to occurrence of physical and chemical 

changes that alter tensile strength of seed coats and increased their permeability to water and gases, 

becoming more sensitive to stress, like salinity, during germination (Qaderi et al., 2003). This loss 

of viability with time always occurs, but the rate depends strongly on storage conditions (Walters et 

al., 2005). Thus, it is important to consider that this effect may have been aggravated due to 

inefficient storage, since is advisable to dry the seeds before storage and to maintain temperature 

below 20 ºC and relative humidity below 60 % (Mbofung et al., 2013), conditions that have not 

been met in this experiment. The results emphasize the need for information on the factors that 

determine the efficiency of germination of Salicornia, since it is highly affected by storage 

conditions. This knowledge is crucial not only as basic knowledge on the biology of the species but 

also in the perspective of its crop cultivation, namely in the sowing seed storage time 

recommended.  

 

 

 

 

 

 

 

 

 

 

Figure 10 – Final percentage of germination (mean ± SD) of seeds collected in 2014, 2015 and 

2016 exposed to four salinity conditions (0, 10, 20 and 30 ‰ NaCl, respectively) over 14 days. 
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3.6.3. Effect of inoculation with Bacillus aryabhattai SP1016-20 on seed germination under 

saline stress 

Some bacteria, in addition to protecting the plant with their biocontrol traits, have the 

potential to promote seed germination and plant growth (Compant et al., 2005). To test this 

hypothesis, seeds of S. ramosissima were inoculated with B. aryabhattai SP1016-20 and final 

germination and mean daily germination, of uninoculated (control) and inoculated seeds was 

determined. 

 PERMANOVA analysis revealed that in general, in both groups, seed final germination 

and mean daily germination were significantly reduced with increasing concentrations of NaCl (P = 

0.0016 and P = 0.0102, respectively). Inoculation with B. aryabhattai did not have a significant 

effect on both final germination and mean daily germination (P = 0.618 and P = 0.906, 

respectively) (Tables 5 and 6, Appendix B). In lower salinities, final germination percentage was 

similar in inoculated and non-inoculated seeds (Table 3, Appendix A). This is in line with other 

studies that even report plant-growth inhibition by biocontrol agents, which demonstrates that 

biocontrol effect is usually not sufficient to promote plant growth (Whipps, 2001). However, at the 

salinity of 30 ‰, final germination values doubled in inoculated seeds (from 21.3 ± 24.4 % in 

control to 46.7 ± 26.6 % in inoculated seeds) (Table 3, Appendix A). This effect may be due to the 

production of ACC deaminase, not determined in this study but reported among Bacillus sp. 

(Barnawal et al., 2013). Under stress conditions, like those generated by salinity, the level of 

ethylene is significantly increased, with overall negative effects for the plant. ACC deaminase acts 

by decreasing ethylene levels which, in turn, improves plant salt tolerance (Bhattacharyya & Jha, 

2012). These results suggest that this strain of B. aryabhattai could enhance germination of S. 

ramosissima under salt stress, by increasing salt tolerance of seeds. However, a further 

characterization of the isolate in terms of other plant growth promoting traits and more germination 

tests are needed to prove this hypothesis, since the results are still not statistically significant. 
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4. Conclusion and future perspectives 

 

 Understanding microbial relations in soils and plants can lead to the discovery of 

microorganisms with agricultural potential. The aim of this study was to isolate and characterize 

bacteria with biocontrol traits, from S. ramosissima rhizosphere. The selected isolates were 

screened for biocontrol traits like the antagonist effect against Alternaria sp., production of 

hydrogen cyanide (HCN), production of extracellular hydrolytic enzymes (protease and lipase), and 

other related traits (salt tolerance and motility). All 23 bacterial isolates present one or more 

biocontrol traits, while only 2 isolates were positive for all tested traits. The isolate chosen for 

further studies (SP1016-20) displayed motility in addition to all biocontrol traits and was identified 

as B. aryabhattai. The growth behaviour of this strain under different salinities was evaluated, as 

well as its effect on S. ramosissima germination under salt stress. The results showed that B. 

aryabhattai SP1016-20 grew well at all the tested salinities and may improve seeds germination by 

enhancing salt tolerance. This effect is particularly important because this study demonstrated that 

both salinity and seed storage time significantly decrease germination of S. ramosissima seeds. 

Bacillus spp. are among the most commonly used biocontrol rhizobacteria. They are safe 

microorganisms able to synthesize several beneficial substances and, as all gram-positive bacteria, 

produce heat-resistant endospores. This is especially important for strain incorporation into 

biofungicides, since endospores make bacteria more able to survive harsh conditions when 

established in the field and enables its formulation into stable products such as dry powder.  

Although B. aryabhattai SP1016-20 seems to be a promising strain for application in the 

cultivation of Salicornia, further studies are still necessary to harness their potential as bio-

inoculant in agriculture. For example, since the ability of biocontrol agents to minimize the risk of 

infections in plants depends on their ability to colonize plant tissue, it is important to know if the 

strain forms biofilms and assess if the colonisation was successful, using for example 

immunofluorescence or molecular techniques. Furthermore, it is necessary to repeat the same 

experiments with different salinities, since all the biocontrol traits need to be maintained even in 

high salinities to ensure the beneficial attributes in saline environments. Further investigation is 

also needed on plant growth promoting traits of the strain to detect the possible reasons to the 

amelioration of salt stress on germination of seeds. Possible traits to evaluate are the production of 

phytohormones and siderophores and the ability of the strain to solubilize phosphate and fix 

nitrogen. The inconsistency of beneficial results when single microbes are used in the field trials 

has brought an emphasis on co-inoculation of microbes. This is a relevant research line, since co-

inoculating this strain with other PGPR that have different biocontrol traits, can sinergicaly 

improve their effect.  Finally, despite the importance of in vitro assays, it is crucial to evaluate the 
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biocontrol potential of B. aryabhattai SP1016-20 in field conditions where plants are actually 

exposed to the pathogens, and to assess if inoculation has any negative effects on the overall 

microbiological quality in the perspective of the use of Salicornia as food. 
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6. Appendix A 

 

Table 1 – Results (mean ± SD) on final germination (FG) (%), mean daily germination (MDG) (% 

day−1) and days to first germination for different salinities and seed types. 

 Salinity 

 0 ‰ 10 ‰ 20 ‰ 30 ‰ 

Central seeds     

FG (%) 45.30 ± 8.30 30.70 ± 6.10 12.00 ± 4.00 9.30 ± 9.20 

MDG (% day -1) 3.78 ± 0.69 2.56 ± 0.51 1.00 ± 0.33 0.78 ± 0.77 

Days to first germination 6.00 ± 0.00 6.00 ± 0.00 6.00 ± 0.00 6.00 ± 0.00 

Lateral seeds     

FG (%) 44.00 ± 6.90 26.70 ± 8.30 8.00 ± 4.00 0.0 ± 0.0 

MDG (% day -1) 2.78 ± 0.19 2.67 ± 0.83 0.67 ± 0.33 0.0 ± 0.0 

Days to first germination 6.00 ± 0.00 6.00 ± 0.00 6.00 ± 0.00 n.a. 

n.a. – non applicable 

 

Table 2 – Results (mean ± SD) on final germination (FG) (%), mean daily germination (MDG) (% 

day−1) and days to first germination for different salinities and sampling years. 

 Salinity 

 0 ‰ 10 ‰ 20 ‰ 30 ‰ 

2014     

FG (%) 9.33 ± 4.62 5.33 ± 4.62 0.0 ± 0.0 0.0 ± 0.0 

MDG (% day -1) 0.82 ± 0.35 0.46 ± 0.41 0.0 ± 0.0 0.0 ± 0.0 

Days to first germination 6.00 ± 0.00 14.0 ± 4.00 n.a. n.a. 

2015     

FG (%) 20.0 ± 10.58 13.33 ± 6.11 8.0 ± 6.93 5.33 ± 4.62 

MDG (% day -1) 1.58 ± 1.18 1.20 ± 0.26 0.51 ± 0.45 0.53 ± 0.46 

Days to first germination 8.00 ± 6.9 5.30 ± 2.3 9.00 ± 7.7 8.00 ± 0.00 

2016     

FG (%) 73.33 ± 9.24 60.00 ± 13.86 40.00 ± 6.93 26.67 ± 19.73 

MDG (% day -1) 11.43 ± 5.16 4.83 ± 1.63 3.54 ± 1.60 1.61 ± 1.21 

Days to first germination 2.00 ± 0.00 2.00 ± 0.00 2.00 ± 0.00 2.00 ± 0.00 

n.a. – non applicable 
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Table 3 – Results (mean ± SD) on final germination (FG) (%), mean daily germination (MDG) (% 

day−1) and days to first germination for different salinities with or without inoculation. 

 Salinity 

 0 ‰ 10 ‰ 20 ‰ 30 ‰ 

Control     

FG (%) 97.3 ± 2.3 80.0 ± 8.0 61.3 ± 26.6 21.3 ± 24.4 

MDG (% day -1) 9.60 ± 2.4 16.0 ± 8.7 7.4 ± 1.8 1.6 ± 1.7 

Days to first germination 2.00 ± 0.00 2.00 ± 0.00 2.00 ± 0.00 2.00 ± 0.00 

Inoculated (B. aryabhattai)     

FG (%) 92.0 ± 6.9 60.0 ± 28.0 45.3 ± 14.0 46.7 ± 26.6 

MDG (% day -1) 18.3 ± 9.8 7.9 ± 4.6 4.8 ± 1.1 4.5 ± 2.2 

Days to first germination 2.00 ± 0.00 2.00 ± 0.00 2.00 ± 0.00 2.0 ± 0.00 
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7. Appendix B 

 

Table 1 – Results of two-way PERMANOVA analysis on final germination (FG), carried out on 

factors of salinity, seed type and their interaction. df, degrees of freedom. P, P-value. 

Permutation N: 9999 

Source Sum of sqrs df Mean square F P 

Salinity 4693.3 3 1564.4 41.905 0.0001 

Seed type 322.67 1 322.67 8.6429 0.0107 

Interaction 72 3 24 0.64286 0.5983 

Residual 597.33 16 37.333   

Total 5685.3 23    

 

Table 2 – Results of two-way PERMANOVA analysis on mean daily germination (MDG), carried 

out on factors of salinity, seed type and their interaction. df, degrees of freedom. P, P-value. 

Permutation N: 9999 

Source Sum of sqrs df Mean square F P 

Salinity 34.586 3 11.529 40.371 0.0001 

Seed type 1.498 1 1.498 5.2457 0.0388 

Interaction 1.0903 3 0.36343 1.2727 0.3169 

Residual 4.569 16 0.28557   

Total 41.743 23    

 

Table 3 – Results of two-way PERMANOVA analysis on final germination (FG), carried out on 

factors of salinity, seed sampling year and their interaction. df, degrees of freedom. P, P-value. 

Permutation N: 9999 

Source Sum of sqrs df Mean square F P 

Salinity 2983.1 3 994.37 12.226 0.0001 

Sampling year 14721 2 7360.4 90.497 0.0001 

Interaction 1446.2 6 241.04 2.9636 0.0283 

Residual 1952 24 81.333   

Total 21102 35    
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Table 4 – Results of two-way PERMANOVA analysis on mean daily germination (MDG), carried 

out on factors of salinity, seed sampling year and their interaction. df, degrees of freedom. P, P-

value. 

 

Table 5 – Results of two-way PERMANOVA analysis on final germination (FG), carried out on 

factors of salinity, bacteria and their interaction. df, degrees of freedom. P, P-value. 

 

Table 6 – Results of two-way PERMANOVA analysis on mean daily germination (MDG), carried 

out on factors of salinity, bacteria and their interaction. df, degrees of freedom. P, P-value. 

 

Permutation N: 9999 

Source Sum of sqrs df Mean square F P 

Salinity 78.692 3 26.231 8.7792 0.0005 

Sampling year 180.29 2 90.147 30.171 0.0001 

Interaction 88.926 6 14.821 4.9604 0.0041 

Residual 71.708 24 2.9878   

Total 419.62 35    

Permutation N: 9999 

Source Sum of sqrs df Mean square F P 

Salinity 11917 3 3972.4 10.203 0.0016 

Bacteria 96 1 96 0.24658 0.618 

Interaction 1893.3 3 631.11 1.621 0.2306 

Residual 6229.3 16 389.33   

Total 20136 23    

Permutation N: 9999 

Source Sum of sqrs df Mean square F P 

Salinity 463.04 3 154.35 5.8439 0.0102 

Bacteria 0.35042 1 0.35042 0.013267 0.906 

Interaction 236.1 3 78.7 2.9798 0.0646 

Residual 422.59 16 26.412   

Total 1122.1 23    


