Toyama Math. J. Vol. 39(2017), 87-94

On the sets of maximum points for generalized Takagi functions

Yasuhiro Fujita and Yusuke Saito

Abstract. Let φ be a continuous and periodic function on \mathbb{R} with period 1 and $\varphi(0)=0$. We consider the generalized Takagi function f_{φ} defined by $f_{\varphi}(x)=\sum_{n=0}^{\infty}\frac{1}{2^{n}}\,\varphi(2^{n}x)$ and the set M_{φ} of maximum points of f_{φ} in the interval [0,1]. When $\varphi_{0}(x)$ is the function defined by the distance from x to the nearest integer, $f_{\varphi_{0}}$ is just the Takagi function. Our aim is to seek a condition on φ in order that $M_{\varphi}\subset M_{\varphi_{0}}$.

1. Introduction and the result

The Takagi function is defined by

$$f_{\varphi_0}(x) = \sum_{n=0}^{\infty} \frac{1}{2^n} \varphi_0(2^n x), \quad x \in \mathbb{R},$$
 (1)

where $\varphi_0(x)$ is the function defined by the distance from x to the nearest integer (cf. [1, 6]). It is a pathological function in the sense that it is everywhere continuous but nowhere differentiable on \mathbb{R} . Let M_{φ_0} be the set of maximum points in the interval [0, 1] for the Takagi function f_{φ_0} . By Kahane [4], we have

$$M_{\varphi_0} = \left\{ \sum_{j=1}^{\infty} \frac{a_j}{4^j} \mid a_j \in \{1, 2\} \right\}.$$
 (2)

2010 Mathematics Subject Classification. Primary 26A03, 26A27; Secondary 39B22. Key words and phrases. The Takagi function, Set of maximum points, Concavity. The first author is supported in part by JSPS KAKENHI # 15K04949.

Thus, M_{φ_0} is uncountable. It is important to note that $\min M_{\varphi_0} = \frac{1}{3}$ and $\max M_{\varphi_0} = \frac{2}{3}$.

As a generalization of the Takagi function, we consider the function f_{φ} of the form

$$f_{\varphi}(x) = \sum_{n=0}^{\infty} \frac{1}{2^n} \varphi(2^n x), \quad x \in \mathbb{R},$$
 (3)

where φ is a continuous and periodic function on \mathbb{R} with period 1. We call the function of the form (3) a generalized Takagi function. The functions of the form (3) have been considered since the work of [5]. Behrend [3] studied non-differentiability of the functions of the form (3).

In the following, for the function f_{φ} of (3), we use the notations

$$M_{\varphi} = \{x \in [0,1] \mid f_{\varphi}(x) = m_{\varphi}\}, \quad m_{\varphi} = \max_{y \in [0,1]} f_{\varphi}(y).$$
 (4)

Note that f_{φ} is also periodic with period 1.

Our aim is to compare M_{φ} with M_{φ_0} . In particular, we are interested in a condition on φ in order that $M_{\varphi} \subset M_{\varphi_0}$.

For a function $\varphi : \mathbb{R} \to \mathbb{R}$, we consider the following conditions:

- (C1) φ is continuous and periodic on \mathbb{R} with period 1 and $\varphi(0) = 0$. Furthermore, $\varphi \not\equiv 0$.
- (C2) $\varphi(x) = \varphi(1-x), x \in [0,1].$
- (C3) φ is concave on [0, 1], that is, for all $x, y \in [0, 1]$ and $\theta \in [0, 1]$,

$$\theta\varphi(x) + (1-\theta)\varphi(y) \le \varphi(\theta x + (1-\theta)y).$$

(C4)
$$\varphi(x) < \varphi\left(\frac{1}{3}\right), \quad x \in \left[0, \frac{1}{3}\right).$$

There exist many functions φ with (C1), (C2), (C3) and (C4).

Example 1.1. Let $\alpha \in \left[\frac{1}{3}, \frac{1}{2}\right]$. Define the periodic function $\eta_{\alpha} : \mathbb{R} \to [0, \infty)$ with period 1 by $\eta_{\alpha}(x) = \min\{\varphi_0(x), \alpha\}$ for $x \in \mathbb{R}$. Note that $\eta_{1/2} \equiv \varphi_0$. It is easy to see that, for each $\alpha \in \left[\frac{1}{3}, \frac{1}{2}\right]$, η_{α} fulfills (C1), (C2), (C3) and (C4).

Theorem 1.2. Let φ be a function with (C1), (C2), (C3) and (C4). Then, $M_{\varphi} \subset M_{\varphi_0}$.

Now, we consider the conditions (C1), (C2), (C3) and (C4). The condition (C1) is natural. The condition (C2) implies that φ is symmetric with respect to the line $x = \frac{1}{2}$. The condition (C3) is necessary in Theorem 1.2, since we have an example of a function $\hat{\varphi}$ with (C1), (C2) and (C4) such that $\hat{\varphi}$ does not fulfill (C3) and $M_{\hat{\varphi}} \not\subset M_{\varphi_0}$ (see Example 3.1 below). The condition (C4) is necessary in Theorem 1.2, since we have an example of a function $\hat{\eta}$ with (C1), (C2) and (C3) such that $\hat{\eta}$ does not fulfill (C4) and $M_{\hat{\eta}} \not\subset M_{\varphi_0}$ (see Example 3.2 below).

The contents of the present paper are as follows: In Section 2, we prove Theorem 1.2. In Section 3, we provide two examples which show that the conditions (C3) and (C4) for φ are necessary in order that $M_{\varphi} \subset M_{\varphi_0}$.

2. Proof of Theorem 1.2

In this section, we prove Theorem 1.2. We use the notations of Section 1.

Lemma 2.1. Assume that φ fulfills (C1) and (C3). Then, $\varphi > 0$ in the open interval (0,1).

Proof. We derive a contradiction by supposing that there exists an $x_0 \in (0,1)$ such that $\varphi(x_0) = 0$. Since $\varphi \not\equiv 0$ by (C1), we find an $x_1 \in (0,1) \setminus \{x_0\}$ such that $\varphi(x_1) \neq 0$. First, we consider the case that $0 < x_1 < x_0$. By (C3), we have

$$\varphi(x_1) = \varphi\left(\frac{x_1}{x_0}x_0 + \left(1 - \frac{x_1}{x_0}\right) \cdot 0\right) \ge \frac{x_1}{x_0}\varphi(x_0) + \left(1 - \frac{x_1}{x_0}\right)\varphi(0) = 0.$$

Thus, $\varphi(x_1) > 0$. On the other hand, let $\theta = \frac{1-x_0}{1-x_1}$. Then, $0 < \theta < 1$ and $\theta x_1 + (1-\theta) \cdot 1 = x_0$. Thus, we have

$$0 = \varphi(x_0) = \varphi(\theta x_1 + (1 - \theta) \cdot 1) \ge \theta \varphi(x_1) + (1 - \theta) \varphi(1) = \theta \varphi(x_1) > 0.$$

This is a contradiction. When $x_0 < x_1 < 1$, we can derive a contradiction similarly. Therefore, $\varphi > 0$ in (0,1).

In the following, we assume that φ fulfills (C1), (C2) and (C3), otherwise stated. We define the function $p_{\varphi} : \mathbb{R} \to \mathbb{R}$ of period 1 by

$$p_{\varphi}(x) = \varphi(x) + \frac{1}{2}\varphi(2x), \quad x \in \mathbb{R}.$$
 (5)

Note that

$$f_{\varphi}(x) = \sum_{n=0}^{\infty} \frac{1}{4^n} p_{\varphi}(4^n x), \quad x \in \mathbb{R}.$$
 (6)

Let

$$E_{\varphi}^{(n)} = \{x \in [0,1] \mid p_{\varphi}(4^n x) = \mu_{\varphi}\}, \quad n \in \mathbb{N} \cup \{0\},$$
 (7)

where $\mu_{\varphi} = \max_{y \in [0,1]} p_{\varphi}(y)$. By (6) and (7), it is clear to see that

$$\bigcap_{n=0}^{\infty} E_{\varphi}^{(n)} \subset M_{\varphi}. \tag{8}$$

It is also clear that if $\bigcap_{n=0}^{\infty} E_{\varphi}^{(n)} \neq \emptyset$, the inclusion relation in (8) is reduced to the equality.

Since the following two lemmas are clear, we omit their proofs.

Lemma 2.2. For each $m \in \mathbb{N}$, there exist integers $q_m \in \mathbb{N}$ and $r_m \in \mathbb{N} \cup \{0\}$ such that

$$\frac{1}{3}(4^{2m} - 1) = 5q_m, \quad \frac{1}{3}(4^{2m-1} - 1) = 20r_m + 1.$$

Lemma 2.3. Assume that φ fulfills (C1), (C2) and (C3). Then,

$$f_{\varphi}(x) = f_{\varphi}(1-x), \quad p_{\varphi}(x) = p_{\varphi}(1-x), \quad x \in [0,1].$$

Lemma 2.4. Assume that φ fulfills (C1), (C2) and (C3). Then,

$$p_{\varphi}(x) \le p_{\varphi}\left(\frac{1}{3}\right) = p_{\varphi}\left(\frac{2}{3}\right), \quad x \in [0, 1].$$

Proof. Let $0 \le x \le \frac{1}{2}$. By (C2) and (C3), we have

$$p_{\varphi}(x) = \frac{3}{2} \left[\frac{2}{3} \varphi(1-x) + \frac{1}{3} \varphi(2x) \right] \le \frac{3}{2} \varphi\left(\frac{2}{3} (1-x) + \frac{1}{3} (2x) \right)$$

$$= \frac{3}{2}\varphi\left(\frac{2}{3}\right) = \varphi\left(\frac{2}{3}\right) + \frac{1}{2}\varphi\left(2\cdot\frac{1}{3}\right) = \varphi\left(\frac{1}{3}\right) + \frac{1}{2}\varphi\left(2\cdot\frac{1}{3}\right) = p_{\varphi}\left(\frac{1}{3}\right).$$

By Lemma 2.3, we conclude the lemma.

Proposition 2.5. Assume that φ fulfills (C1), (C2) and (C3). Then,

$$\frac{1}{3}, \ \frac{2}{3} \in M_{\varphi}. \tag{9}$$

Proof. By Lemma 2.4, we have $\frac{1}{3} \in E_{\varphi}^{(0)}$. Let $n \in \mathbb{N}$. When n is even, it follows from Lemma 2.2 that there exists an integer $q_n \in \mathbb{N}$ such that $4^n \cdot \frac{1}{3} - 5q_n = \frac{1}{3} \in E_{\varphi}^{(0)}$. Thus, we have $\frac{1}{3} \in E_{\varphi}^{(n)}$. When n is odd, it follows from Lemma 2.2 that there exists an integer $r_n \in \mathbb{N} \cup \{0\}$ such that $4^n \cdot \frac{1}{3} - (20r_n + 1) = \frac{1}{3} \in E_{\varphi}^{(0)}$. Thus, we have $\frac{1}{3} \in E_{\varphi}^{(n)}$. Hence, $\frac{1}{3} \in E_{\varphi}^{(n)}$ for all $n \in \mathbb{N}$. Therefore, $\frac{1}{3} \in M_{\varphi}$ by (8). By Lemma 2.3, we see that $\frac{2}{3} \in M_{\varphi}$.

Proposition 2.6. Assume that φ fulfills (C1), (C2) and (C3). Then, $M_{\varphi} = \bigcap_{n=0}^{\infty} E_{\varphi}^{(n)}$. Furthermore, $m_{\varphi} = 2 \varphi(\frac{1}{3})$, where m_{φ} is the constant of (4).

Proof. Note that $\frac{1}{3} \in \bigcap_{n=0}^{\infty} E_{\varphi}^{(n)}$ by the proof of Proposition 2.5. Since $\bigcap_{n=0}^{\infty} E_{\varphi}^{(n)} \neq \emptyset$, it is easy to see that $M_{\varphi} = \bigcap_{n=0}^{\infty} E_{\varphi}^{(n)}$ by (8). Furthermore, by (6), (8) and Proposition 2.5, we have

$$m_{\varphi} = \sum_{n=0}^{\infty} \frac{1}{4^n} p_{\varphi} \left(\frac{1}{3}\right) = 2 \varphi \left(\frac{1}{3}\right).$$

Here, we used $p_{\varphi}(\frac{1}{3}) = \frac{3}{2} \varphi(\frac{1}{3})$.

Proposition 2.7. Assume that φ fulfills (C1), (C2), (C3) and (C4). Then, $\min M_{\varphi} = \frac{1}{3}$ and $\max M_{\varphi} = \frac{2}{3}$.

Proof. Let $0 \le x < \frac{1}{4}$. Then, by (C3) and (C4), we have

$$p_{\varphi}(x) = \frac{3}{2} \left[\frac{2}{3} \varphi(x) + \frac{1}{3} \varphi(2x) \right] \le \frac{3}{2} \varphi\left(\frac{2}{3}x + \frac{1}{3}(2x)\right) = \frac{3}{2} \varphi\left(\frac{4}{3}x\right)$$
$$< \frac{3}{2} \varphi\left(\frac{1}{3}\right) = \varphi\left(\frac{1}{3}\right) + \frac{1}{2} \varphi\left(2 \cdot \frac{1}{3}\right) = p_{\varphi}\left(\frac{1}{3}\right).$$

Thus, $[0, \frac{1}{4}) \cap E_{\varphi}^{(0)} = \emptyset$. By Proposition 2.6, $[0, \frac{1}{4}) \cap M_{\varphi} = \emptyset$. For each $x \in [0, \frac{1}{4})$ and $n \in \mathbb{N}$, we have

$$p_{\varphi}\left(4^{n}\left(\sum_{i=1}^{n}\frac{1}{4^{i}}+\frac{x}{4^{n}}\right)\right)=p_{\varphi}(x)< p_{\varphi}\left(\frac{1}{3}\right).$$

Thus, $\left[\sum_{i=1}^{n} \frac{1}{4^{i}}, \sum_{i=1}^{n+1} \frac{1}{4^{i}}\right) \cap E_{\varphi}^{(n)} = \emptyset$. By Proposition 2.6, $\left[\sum_{i=1}^{n} \frac{1}{4^{i}}, \sum_{i=1}^{n+1} \frac{1}{4^{i}}\right) \cap M_{\varphi} = \emptyset$. Since $\sum_{i=1}^{\infty} \frac{1}{4^{i}} = \frac{1}{3}$, we conclude that $\left[0, \frac{1}{3}\right) \cap M_{\varphi} = \emptyset$. Since $\frac{1}{3} \in M_{\varphi}$ by Proposition 2.5, we have shown that $\min M_{\varphi} = \frac{1}{3}$. By Lemma 2.3, we have $\max M_{\varphi} = \frac{2}{3}$.

Lemma 2.8. Assume that φ and ψ fulfill (C1), (C2) and (C3). If $E_{\varphi}^{(0)} \subset E_{\psi}^{(0)}$, then $M_{\varphi} \subset M_{\psi}$.

Proof. Let $x \in M_{\varphi}$. Then, by Proposition 2.6, $x \in E_{\varphi}^{(n)}$ for all $n \in \mathbb{N} \cup \{0\}$. Thus, $p_{\varphi}(4^n x) = p_{\varphi}\left(\frac{1}{3}\right)$ for all $n \in \mathbb{N} \cup \{0\}$, which implies that $4^n x - [4^n x] \in E_{\varphi}^{(0)}$ for all $n \in \mathbb{N} \cup \{0\}$, where [y] denotes the greatest integer not exceeding $y \in \mathbb{R}$. Since $E_{\varphi}^{(0)} \subset E_{\psi}^{(0)}$, we have $4^n x - [4^n x] \in E_{\psi}^{(0)}$ for all $n \in \mathbb{N} \cup \{0\}$. Then, $x \in E_{\psi}^{(n)}$ for all $n \in \mathbb{N} \cup \{0\}$. Hence, $x \in M_{\psi}$ by Proposition 2.6.

Now, we prove Theorem 1.2.

Proof of Theorem 1.2. Let φ be a function with (C1), (C2), (C3) and (C4). By the proof of Proposition 2.7, we have $[0, \frac{1}{4}) \cap M_{\varphi} = \emptyset$, so that $E_{\varphi}^{(0)} \subset \left[\frac{1}{4}, \frac{3}{4}\right]$ by Lemma 2.3. Since $E_{\varphi_0}^{(0)} = \left[\frac{1}{4}, \frac{3}{4}\right]$, we conclude the theorem by Lemma 2.8.

3. Examples

In this section, we provide two examples which show that the conditions (C3) and (C4) for φ are indispensable in order that $M_{\varphi} \subset M_{\varphi_0}$.

Example 3.1. Let $\hat{\varphi}: \mathbb{R} \to \mathbb{R}$ be the periodic function with period 1 such that $\hat{\varphi}(x) = (\varphi_0(x))^2$ in \mathbb{R} . In this case, $\hat{\varphi}$ fulfills (C1), (C2) and (C4). However, $\hat{\varphi}$ does not fulfill (C3). We show that $M_{\hat{\varphi}} \not\subset M_{\varphi_0}$.

Indeed, we see that

$$\sum_{n=0}^{\infty} \frac{1}{2^n} (\varphi_0(2^n x))^2 = x - x^2, \quad x \in [0, 1],$$

since $\psi^0(x) = x$ and $\psi^n(x) = 2\varphi_0(2^{n-1}x)$ $(n \in \mathbb{N})$ in the notations of the example of [8, p.335]. Thus, $f_{\hat{\varphi}}(x) = x - x^2$ in [0, 1]. Hence, $M_{\hat{\varphi}} = \{\frac{1}{2}\}$.

Example 3.2. Define the periodic function $\hat{\eta}: \mathbb{R} \to [0, \infty)$ with period 1 by $\hat{\eta}(x) = \min \left\{ \varphi_0(x), \frac{1}{15} \right\}$ for $x \in \mathbb{R}$. In this case, $\hat{\eta}$ fulfills (C1), (C2) and (C3). However, $\hat{\eta}$ does not fulfill (C4). We show that $M_{\hat{\eta}} \not\subset M_{\varphi_0}$. Indeed, we have, on $\left[0, \frac{1}{2}\right]$,

$$p_{\hat{\eta}}(x) = \begin{cases} 2x, & 0 \le x \le \frac{1}{30}, \\ x + \frac{1}{30}, & \frac{1}{30} \le x \le \frac{1}{15}, \\ \frac{1}{10}, & \frac{1}{15} \le x \le \frac{7}{15}, \\ -x + \frac{17}{30}, & \frac{7}{15} \le x \le \frac{1}{2}. \end{cases}$$

Thus, $E_{\hat{\eta}}^{(0)} = \left[\frac{1}{15}, \frac{7}{15}\right] \cup \left[\frac{8}{15}, \frac{14}{15}\right].$

We show that $\frac{1}{15} \in M_{\hat{\eta}}$. Note that $\frac{1}{15} \in E_{\hat{\eta}}^{(0)}$. Fix $n \in \mathbb{N}$ arbitrarily. When n is even, it follows from Lemma 2.2 that there exists a number $q_n \in \mathbb{N}$ such that $4^n \cdot \frac{1}{15} = q_n + \frac{1}{15}$. Since $\frac{1}{15} \in E_{\hat{\eta}}^{(0)}$, we have $\frac{1}{15} \in E_{\hat{\eta}}^{(n)}$. When n is odd, it follows from Lemma 2.2 that there exists a number $r_n \in \mathbb{N} \cup \{0\}$ such that $4^n \cdot \frac{1}{15} = 4r_n + \frac{4}{15}$. Since $\frac{4}{15} \in E_{\hat{\eta}}^{(0)}$, we have $\frac{1}{15} \in E_{\hat{\eta}}^{(n)}$. Therefore, $\frac{1}{15} \in E_{\hat{\eta}}^{(n)}$ for all $n \in \mathbb{N}$, and $\frac{1}{15} \in M_{\hat{\eta}}$. Since $\min M_{\varphi_0} = \frac{1}{3}$, we see that $\frac{1}{15} \notin M_{\varphi_0}$. Thus, we conclude the assertion.

References

[1] P. Allaart and K. Kawamura, *The Takagi function: a survey*, Real Anal. Exchange 37 (2011/12), 1–54.

- [2] Y. Baba, On maxima of Takagi-van der Waerden functions, Proc. Amer. Math. Soc. 91 (1984), 373–376.
- [3] F. A. Behrend, Some remarks on the construction of continuous non-differentiable functions, Proc. London Math. Soc. 50, (1949), 463–481.
- [4] J.-P. Kahane, Sur l'exemple, donné par M. de Rham, d'une fonction continue sans dérivée, Enseignement Math., 5 (1959), 53–57.
- [5] K. Knopp, Ein einfaches Verfahren zur Bildüng stetiger nirgends differenzierbarer Funktionen, Math. Z. 2 (1918), 1–26.
- [6] J. C. LAGARIAS, The Takagi function and its properties, RIMS Kôkyûroku Bessatsu, B34 (2012), 153–189.
- [7] T. TAKAGI, A simple example of the continuous function without derivative, Phys.-Math. Soc. Japan 1 (1903), 176–177. The Collected Papers of Teiji Takagi, S. Kuroda, Ed., Iwanami (1973), 5–6.
- [8] M. Yamaguti and M. Hata, Weierstrass's function and chaos, Hokkaido Math. J. 12 (1983), 333–342.

Yasuhiro Fujita
Department of Mathematics
Faculty of Science
University of Toyama
Gofuku, Toyama 930-8555, JAPAN
e-mail: yfujita@sci.u-toyama.ac.jp

Yusuke Saito Graduate School of Science and Engineering for Education University of Toyama Gofuku, Toyama 930-8555, JAPAN e-mail: d1771001@ems.u-toyama.ac.jp

(Received July 12, 2017)