On the sets of maximum points for generalized Takagi functions

Yasuhiro Fujita and Yusuke Saito

Abstract

Let φ be a continuous and periodic function on \mathbb{R} with period 1 and $\varphi(0)=0$. We consider the generalized Takagi function f_{φ} defined by $f_{\varphi}(x)=\sum_{n=0}^{\infty} \frac{1}{2^{n}} \varphi\left(2^{n} x\right)$ and the set M_{φ} of maximum points of f_{φ} in the interval $[0,1]$. When $\varphi_{0}(x)$ is the function defined by the distance from x to the nearest integer, $f_{\varphi_{0}}$ is just the Takagi function. Our aim is to seek a condition on φ in order that $M_{\varphi} \subset M_{\varphi_{0}}$.

1. Introduction and the result

The Takagi function is defined by

$$
\begin{equation*}
f_{\varphi_{0}}(x)=\sum_{n=0}^{\infty} \frac{1}{2^{n}} \varphi_{0}\left(2^{n} x\right), \quad x \in \mathbb{R} \tag{1}
\end{equation*}
$$

where $\varphi_{0}(x)$ is the function defined by the distance from x to the nearest integer (cf. [1, 6]). It is a pathological function in the sense that it is everywhere continuous but nowhere differentiable on \mathbb{R}. Let $M_{\varphi_{0}}$ be the set of maximum points in the interval $[0,1]$ for the Takagi function $f_{\varphi_{0}}$. By Kahane [4], we have

$$
\begin{equation*}
M_{\varphi_{0}}=\left\{\left.\sum_{j=1}^{\infty} \frac{a_{j}}{4^{j}} \right\rvert\, a_{j} \in\{1,2\}\right\} . \tag{2}
\end{equation*}
$$

[^0]Thus, $M_{\varphi_{0}}$ is uncountable. It is important to note that $\min M_{\varphi_{0}}=\frac{1}{3}$ and $\max M_{\varphi_{0}}=\frac{2}{3}$.

As a generalization of the Takagi function, we consider the function f_{φ} of the form

$$
\begin{equation*}
f_{\varphi}(x)=\sum_{n=0}^{\infty} \frac{1}{2^{n}} \varphi\left(2^{n} x\right), \quad x \in \mathbb{R} \tag{3}
\end{equation*}
$$

where φ is a continuous and periodic function on \mathbb{R} with period 1 . We call the function of the form (3) a generalized Takagi function. The functions of the form (3) have been considered since the work of [5]. Behrend [3] studied non-differentiability of the functions of the form (3).

In the following, for the function f_{φ} of (3), we use the notations

$$
\begin{equation*}
M_{\varphi}=\left\{x \in[0,1] \mid f_{\varphi}(x)=m_{\varphi}\right\}, \quad m_{\varphi}=\max _{y \in[0,1]} f_{\varphi}(y) \tag{4}
\end{equation*}
$$

Note that f_{φ} is also periodic with period 1.
Our aim is to compare M_{φ} with $M_{\varphi_{0}}$. In particular, we are interested in a condition on φ in order that $M_{\varphi} \subset M_{\varphi_{0}}$.

For a function $\varphi: \mathbb{R} \rightarrow \mathbb{R}$, we consider the following conditions:
(C1) $\quad \varphi$ is continuous and periodic on \mathbb{R} with period 1 and $\varphi(0)=0$. Furthermore, $\varphi \not \equiv 0$.
$(\mathrm{C} 2) \quad \varphi(x)=\varphi(1-x), \quad x \in[0,1]$.
(C3) φ is concave on $[0,1]$, that is, for all $x, y \in[0,1]$ and $\theta \in[0,1]$,

$$
\theta \varphi(x)+(1-\theta) \varphi(y) \leq \varphi(\theta x+(1-\theta) y)
$$

$$
\begin{equation*}
\varphi(x)<\varphi\left(\frac{1}{3}\right), \quad x \in\left[0, \frac{1}{3}\right) \tag{C4}
\end{equation*}
$$

There exist many functions φ with (C1), (C2), (C3) and (C4).

Example 1.1. Let $\alpha \in\left[\frac{1}{3}, \frac{1}{2}\right]$. Define the periodic function $\eta_{\alpha}: \mathbb{R} \rightarrow$ $[0, \infty)$ with period 1 by $\eta_{\alpha}(x)=\min \left\{\varphi_{0}(x), \alpha\right\}$ for $x \in \mathbb{R}$. Note that $\eta_{1 / 2} \equiv$ φ_{0}. It is easy to see that, for each $\alpha \in\left[\frac{1}{3}, \frac{1}{2}\right], \eta_{\alpha}$ fulfills (C1), (C2), (C3) and (C4).

Theorem 1.2. Let φ be a function with (C1), (C2), (C3) and (C4). Then, $M_{\varphi} \subset M_{\varphi_{0}}$.

Now, we consider the conditions (C1), (C2), (C3) and (C4). The condition (C1) is natural. The condition (C2) implies that φ is symmetric with respect to the line $x=\frac{1}{2}$. The condition (C3) is necessary in Theorem 1.2, since we have an example of a function $\hat{\varphi}$ with (C1), (C2) and (C4) such that $\hat{\varphi}$ does not fulfill (C3) and $M_{\hat{\varphi}} \not \subset M_{\varphi_{0}}$ (see Example 3.1 below). The condition (C4) is necessary in Theorem 1.2, since we have an example of a function $\hat{\eta}$ with (C1), (C2) and (C3) such that $\hat{\eta}$ does not fulfill (C4) and $M_{\hat{\eta}} \not \subset M_{\varphi_{0}}$ (see Example 3.2 below).

The contents of the present paper are as follows: In Section 2, we prove Theorem 1.2. In Section 3, we provide two examples which show that the conditions (C3) and (C4) for φ are necessary in order that $M_{\varphi} \subset M_{\varphi_{0}}$.

2. Proof of Theorem 1.2

In this section, we prove Theorem 1.2. We use the notations of Section 1.

Lemma 2.1. Assume that φ fulfills (C1) and (C3). Then, $\varphi>0$ in the open interval $(0,1)$.

Proof. We derive a contradiction by supposing that there exists an $x_{0} \in$ $(0,1)$ such that $\varphi\left(x_{0}\right)=0$. Since $\varphi \not \equiv 0$ by (C1), we find an $x_{1} \in(0,1) \backslash\left\{x_{0}\right\}$ such that $\varphi\left(x_{1}\right) \neq 0$. First, we consider the case that $0<x_{1}<x_{0}$. By (C3), we have

$$
\varphi\left(x_{1}\right)=\varphi\left(\frac{x_{1}}{x_{0}} x_{0}+\left(1-\frac{x_{1}}{x_{0}}\right) \cdot 0\right) \geq \frac{x_{1}}{x_{0}} \varphi\left(x_{0}\right)+\left(1-\frac{x_{1}}{x_{0}}\right) \varphi(0)=0 .
$$

Thus, $\varphi\left(x_{1}\right)>0$. On the other hand, let $\theta=\frac{1-x_{0}}{1-x_{1}}$. Then, $0<\theta<1$ and $\theta x_{1}+(1-\theta) \cdot 1=x_{0}$. Thus, we have

$$
0=\varphi\left(x_{0}\right)=\varphi\left(\theta x_{1}+(1-\theta) \cdot 1\right) \geq \theta \varphi\left(x_{1}\right)+(1-\theta) \varphi(1)=\theta \varphi\left(x_{1}\right)>0 .
$$

This is a contradiction. When $x_{0}<x_{1}<1$, we can derive a contradiction similarly. Therefore, $\varphi>0$ in $(0,1)$.

In the following, we assume that φ fulfills (C1), (C2) and (C3), otherwise stated. We define the function $p_{\varphi}: \mathbb{R} \rightarrow \mathbb{R}$ of period 1 by

$$
\begin{equation*}
p_{\varphi}(x)=\varphi(x)+\frac{1}{2} \varphi(2 x), \quad x \in \mathbb{R} \tag{5}
\end{equation*}
$$

Note that

$$
\begin{equation*}
f_{\varphi}(x)=\sum_{n=0}^{\infty} \frac{1}{4^{n}} p_{\varphi}\left(4^{n} x\right), \quad x \in \mathbb{R} \tag{6}
\end{equation*}
$$

Let

$$
\begin{equation*}
E_{\varphi}^{(n)}=\left\{x \in[0,1] \mid p_{\varphi}\left(4^{n} x\right)=\mu_{\varphi}\right\}, \quad n \in \mathbb{N} \cup\{0\} \tag{7}
\end{equation*}
$$

where $\mu_{\varphi}=\max _{y \in[0,1]} p_{\varphi}(y)$. By (6) and (7), it is clear to see that

$$
\begin{equation*}
\bigcap_{n=0}^{\infty} E_{\varphi}^{(n)} \subset M_{\varphi} \tag{8}
\end{equation*}
$$

It is also clear that if $\bigcap_{n=0}^{\infty} E_{\varphi}^{(n)} \neq \emptyset$, the inclusion relation in (8) is reduced to the equality.

Since the following two lemmas are clear, we omit their proofs.
Lemma 2.2. For each $m \in \mathbb{N}$, there exist integers $q_{m} \in \mathbb{N}$ and $r_{m} \in$ $\mathbb{N} \cup\{0\}$ such that

$$
\frac{1}{3}\left(4^{2 m}-1\right)=5 q_{m}, \quad \frac{1}{3}\left(4^{2 m-1}-1\right)=20 r_{m}+1
$$

Lemma 2.3. Assume that φ fulfills (C1), (C2) and (C3). Then,

$$
f_{\varphi}(x)=f_{\varphi}(1-x), \quad p_{\varphi}(x)=p_{\varphi}(1-x), \quad x \in[0,1] .
$$

Lemma 2.4. Assume that φ fulfills (C1), (C2) and (C3). Then,

$$
p_{\varphi}(x) \leq p_{\varphi}\left(\frac{1}{3}\right)=p_{\varphi}\left(\frac{2}{3}\right), \quad x \in[0,1] .
$$

Proof. Let $0 \leq x \leq \frac{1}{2}$. By (C2) and (C3), we have

$$
\begin{aligned}
& p_{\varphi}(x)=\frac{3}{2}\left[\frac{2}{3} \varphi(1-x)+\frac{1}{3} \varphi(2 x)\right] \leq \frac{3}{2} \varphi\left(\frac{2}{3}(1-x)+\frac{1}{3}(2 x)\right) \\
= & \frac{3}{2} \varphi\left(\frac{2}{3}\right)=\varphi\left(\frac{2}{3}\right)+\frac{1}{2} \varphi\left(2 \cdot \frac{1}{3}\right)=\varphi\left(\frac{1}{3}\right)+\frac{1}{2} \varphi\left(2 \cdot \frac{1}{3}\right)=p_{\varphi}\left(\frac{1}{3}\right) .
\end{aligned}
$$

By Lemma 2.3, we conclude the lemma.

Proposition 2.5. Assume that φ fulfills (C1), (C2) and (C3). Then,

$$
\begin{equation*}
\frac{1}{3}, \frac{2}{3} \in M_{\varphi} \tag{9}
\end{equation*}
$$

Proof. By Lemma 2.4, we have $\frac{1}{3} \in E_{\varphi}^{(0)}$. Let $n \in \mathbb{N}$. When n is even, it follows from Lemma 2.2 that there exists an integer $q_{n} \in \mathbb{N}$ such that $4^{n} \cdot \frac{1}{3}-5 q_{n}=\frac{1}{3} \in E_{\varphi}^{(0)}$. Thus, we have $\frac{1}{3} \in E_{\varphi}^{(n)}$. When n is odd, it follows from Lemma 2.2 that there exists an integer $r_{n} \in \mathbb{N} \cup\{0\}$ such that $4^{n} \cdot \frac{1}{3}-\left(20 r_{n}+1\right)=\frac{1}{3} \in E_{\varphi}^{(0)}$. Thus, we have $\frac{1}{3} \in E_{\varphi}^{(n)}$. Hence, $\frac{1}{3} \in E_{\varphi}^{(n)}$ for all $n \in \mathbb{N}$. Therefore, $\frac{1}{3} \in M_{\varphi}$ by (8). By Lemma 2.3, we see that $\frac{2}{3} \in M_{\varphi}$.

Proposition 2.6. Assume that φ fulfills (C1), (C2) and (C3). Then, $M_{\varphi}=\bigcap_{n=0}^{\infty} E_{\varphi}^{(n)}$. Furthermore, $m_{\varphi}=2 \varphi\left(\frac{1}{3}\right)$, where m_{φ} is the constant of (4).

Proof. Note that $\frac{1}{3} \in \bigcap_{n=0}^{\infty} E_{\varphi}^{(n)}$ by the proof of Proposition 2.5. Since $\bigcap_{n=0}^{\infty} E_{\varphi}^{(n)} \neq \emptyset$, it is easy to see that $M_{\varphi}=\bigcap_{n=0}^{\infty} E_{\varphi}^{(n)}$ by (8). Furthermore, by (6), (8) and Proposition 2.5, we have

$$
m_{\varphi}=\sum_{n=0}^{\infty} \frac{1}{4^{n}} p_{\varphi}\left(\frac{1}{3}\right)=2 \varphi\left(\frac{1}{3}\right) .
$$

Here, we used $p_{\varphi}\left(\frac{1}{3}\right)=\frac{3}{2} \varphi\left(\frac{1}{3}\right)$.
Proposition 2.7. Assume that φ fulfills (C1), (C2), (C3) and (C4). Then, $\min M_{\varphi}=\frac{1}{3}$ and $\max M_{\varphi}=\frac{2}{3}$.

Proof. Let $0 \leq x<\frac{1}{4}$. Then, by (C3) and (C4), we have

$$
\begin{aligned}
& p_{\varphi}(x)=\frac{3}{2}\left[\frac{2}{3} \varphi(x)+\frac{1}{3} \varphi(2 x)\right] \leq \frac{3}{2} \varphi\left(\frac{2}{3} x+\frac{1}{3}(2 x)\right)=\frac{3}{2} \varphi\left(\frac{4}{3} x\right) \\
< & \frac{3}{2} \varphi\left(\frac{1}{3}\right)=\varphi\left(\frac{1}{3}\right)+\frac{1}{2} \varphi\left(2 \cdot \frac{1}{3}\right)=p_{\varphi}\left(\frac{1}{3}\right) .
\end{aligned}
$$

Thus, $\left[0, \frac{1}{4}\right) \cap E_{\varphi}^{(0)}=\emptyset$. By Proposition 2.6, $\left[0, \frac{1}{4}\right) \cap M_{\varphi}=\emptyset$. For each $x \in\left[0, \frac{1}{4}\right)$ and $n \in \mathbb{N}$, we have

$$
p_{\varphi}\left(4^{n}\left(\sum_{i=1}^{n} \frac{1}{4^{i}}+\frac{x}{4^{n}}\right)\right)=p_{\varphi}(x)<p_{\varphi}\left(\frac{1}{3}\right)
$$

Thus, $\left[\sum_{i=1}^{n} \frac{1}{4^{i}}, \sum_{i=1}^{n+1} \frac{1}{4^{i}}\right) \cap E_{\varphi}^{(n)}=\emptyset$. By Proposition 2.6, $\left[\sum_{i=1}^{n} \frac{1}{4^{i}}, \sum_{i=1}^{n+1} \frac{1}{4^{i}}\right) \cap M_{\varphi}$ $=\emptyset$. Since $\sum_{i=1}^{\infty} \frac{1}{4^{i}}=\frac{1}{3}$, we conclude that $\left[0, \frac{1}{3}\right) \cap M_{\varphi}=\emptyset$. Since $\frac{1}{3} \in M_{\varphi}$ by Proposition 2.5, we have shown that $\min M_{\varphi}=\frac{1}{3}$. By Lemma 2.3, we have $\max M_{\varphi}=\frac{2}{3}$.

Lemma 2.8. Assume that φ and ψ fulfill (C1), (C2) and (C3). If $E_{\varphi}^{(0)} \subset$ $E_{\psi}^{(0)}$, then $M_{\varphi} \subset M_{\psi}$.

Proof. Let $x \in M_{\varphi}$. Then, by Proposition 2.6, $x \in E_{\varphi}^{(n)}$ for all $n \in$ $\mathbb{N} \cup\{0\}$. Thus, $p_{\varphi}\left(4^{n} x\right)=p_{\varphi}\left(\frac{1}{3}\right)$ for all $n \in \mathbb{N} \cup\{0\}$, which implies that $4^{n} x-\left[4^{n} x\right] \in E_{\varphi}^{(0)}$ for all $n \in \mathbb{N} \cup\{0\}$, where $[y]$ denotes the greatest integer not exceeding $y \in \mathbb{R}$. Since $E_{\varphi}^{(0)} \subset E_{\psi}^{(0)}$, we have $4^{n} x-\left[4^{n} x\right] \in E_{\psi}^{(0)}$ for all $n \in \mathbb{N} \cup\{0\}$. Then, $x \in E_{\psi}^{(n)}$ for all $n \in \mathbb{N} \cup\{0\}$. Hence, $x \in M_{\psi}$ by Proposition 2.6.

Now, we prove Theorem 1.2.

Proof of Theorem 1.2. Let φ be a function with (C1), (C2), (C3) and (C4). By the proof of Proposition 2.7, we have $\left[0, \frac{1}{4}\right) \cap M_{\varphi}=\emptyset$, so that $E_{\varphi}^{(0)} \subset\left[\frac{1}{4}, \frac{3}{4}\right]$ by Lemma 2.3. Since $E_{\varphi_{0}}^{(0)}=\left[\frac{1}{4}, \frac{3}{4}\right]$, we conclude the theorem by Lemma 2.8 .

3. Examples

In this section, we provide two examples which show that the conditions (C3) and (C4) for φ are indispensable in order that $M_{\varphi} \subset M_{\varphi_{0}}$.

Example 3.1. Let $\hat{\varphi}: \mathbb{R} \rightarrow \mathbb{R}$ be the periodic function with period 1 such that $\hat{\varphi}(x)=\left(\varphi_{0}(x)\right)^{2}$ in \mathbb{R}. In this case, $\hat{\varphi}$ fulfills (C1), (C2) and (C4). However, $\hat{\varphi}$ does not fulfill (C3). We show that $M_{\hat{\varphi}} \not \subset M_{\varphi_{0}}$.

Indeed, we see that

$$
\sum_{n=0}^{\infty} \frac{1}{2^{n}}\left(\varphi_{0}\left(2^{n} x\right)\right)^{2}=x-x^{2}, \quad x \in[0,1],
$$

since $\psi^{0}(x)=x$ and $\psi^{n}(x)=2 \varphi_{0}\left(2^{n-1} x\right)(n \in \mathbb{N})$ in the notations of the example of [8, p.335]. Thus, $f_{\hat{\varphi}}(x)=x-x^{2}$ in [0, 1]. Hence, $M_{\hat{\varphi}}=\left\{\frac{1}{2}\right\}$.

Example 3.2. Define the periodic function $\hat{\eta}: \mathbb{R} \rightarrow[0, \infty)$ with period 1 by $\hat{\eta}(x)=\min \left\{\varphi_{0}(x), \frac{1}{15}\right\}$ for $x \in \mathbb{R}$. In this case, $\hat{\eta}$ fulfills (C1), (C2) and (C3). However, $\hat{\eta}$ does not fulfill (C4). We show that $M_{\hat{\eta}} \not \subset M_{\varphi_{0}}$.

Indeed, we have, on $\left[0, \frac{1}{2}\right]$,

$$
p_{\hat{\eta}}(x)= \begin{cases}2 x, & 0 \leq x \leq \frac{1}{30} \\ x+\frac{1}{30}, & \frac{1}{30} \leq x \leq \frac{1}{15} \\ \frac{1}{10}, & \frac{1}{15} \leq x \leq \frac{7}{15} \\ -x+\frac{17}{30}, & \frac{7}{15} \leq x \leq \frac{1}{2}\end{cases}
$$

Thus, $E_{\hat{\eta}}^{(0)}=\left[\frac{1}{15}, \frac{7}{15}\right] \cup\left[\frac{8}{15}, \frac{14}{15}\right]$.
We show that $\frac{1}{15} \in M_{\hat{\eta}}$. Note that $\frac{1}{15} \in E_{\hat{\eta}}^{(0)}$. Fix $n \in \mathbb{N}$ arbitrarily. When n is even, it follows from Lemma 2.2 that there exists a number $q_{n} \in \mathbb{N}$ such that $4^{n} \cdot \frac{1}{15}=q_{n}+\frac{1}{15}$. Since $\frac{1}{15} \in E_{\hat{\eta}}^{(0)}$, we have $\frac{1}{15} \in E_{\hat{\eta}}^{(n)}$. When n is odd, it follows from Lemma 2.2 that there exists a number $r_{n} \in$ $\mathbb{N} \cup\{0\}$ such that $4^{n} \cdot \frac{1}{15}=4 r_{n}+\frac{4}{15}$. Since $\frac{4}{15} \in E_{\hat{\eta}}^{(0)}$, we have $\frac{1}{15} \in E_{\hat{\eta}}^{(n)}$. Therefore, $\frac{1}{15} \in E_{\hat{\eta}}^{(n)}$ for all $n \in \mathbb{N}$, and $\frac{1}{15} \in M_{\hat{\eta}}$. Since $\min M_{\varphi_{0}}=\frac{1}{3}$, we see that $\frac{1}{15} \notin M_{\varphi_{0}}$. Thus, we conclude the assertion.

References

[1] P. Allaart and K. Kawamura, The Takagi function: a survey, Real Anal. Exchange 37 (2011/12), 1-54.
[2] Y. Baba, On maxima of Takagi-van der Waerden functions, Proc. Amer. Math. Soc. 91 (1984), 373-376.
[3] F. A. Behrend, Some remarks on the construction of continuous non-differentiable functions , Proc. London Math. Soc. 50, (1949), 463481.
[4] J.-P. Kahane, Sur l'exemple, donné par M. de Rham, d'une fonction continue sans dérivée, Enseignement Math., 5 (1959), 53-57.
[5] K. Knopp, Ein einfaches Verfahren zur Bildüng stetiger nirgends differenzierbarer Funktionen, Math. Z. 2 (1918), 1-26.
[6] J. C. Lagarias, The Takagi function and its properties, RIMS Kôkyûroku Bessatsu, B34 (2012), 153-189.
[7] T. Takagi, A simple example of the continuous function without derivative, Phys.-Math. Soc. Japan 1 (1903), 176-177. The Collected Papers of Teiji Takagi, S. Kuroda, Ed., Iwanami (1973), 5-6.
[8] M. Yamaguti and M. Hata, Weierstrass's function and chaos, Hokkaido Math. J. 12 (1983), 333-342.

[^1]
[^0]: 2010 Mathematics Subject Classification. Primary 26A03, 26A27; Secondary 39B22.
 Key words and phrases. The Takagi function, Set of maximum points, Concavity.
 The first author is supported in part by JSPS KAKENHI \# 15K04949.

[^1]: Yasuhiro Fujita
 Department of Mathematics
 Faculty of Science
 University of Toyama
 Gofuku, Toyama 930-8555, JAPAN
 e-mail: yfujita@sci.u-toyama.ac.jp

 Yusuke Saito
 Graduate School of Science and Engineering for Education
 University of Toyama
 Gofuku, Toyama 930-8555, JAPAN
 e-mail: d1771001@ems.u-toyama.ac.jp

