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Abstract 

Capacity dimensioning in production systems is an important task within strategic and tactical production planning which impacts system cost 
and performance. Traditionally capacity demand at each worksystem is determined from standard operating processes and estimated production 
flow rates, accounting for a desired level of utilization or required throughput times. However, for distributed production control systems, the 
flows across multiple possible production paths are not known a priori. In this contribution, we use methods from algorithmic game-theory and 
traffic-modeling to predict the flows, and hence capacity demand across worksystems, based on the available production paths and desired 
output rates, assuming non-cooperative agents with global information. We propose an iterative algorithm that converges simultaneously to a 
feasible capacity distribution and a flow distribution over multiple paths that satisfies Wardrop's first principle. We demonstrate our method on 
models of real-world production networks. 
 
© 2015 The Authors. Published by Elsevier B.V. 
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1. Introduction 

After deciding on the planned production program, a 
production planner has to decide on (1) the production 
processes to use and allocate expected production flow to 
each of them, (2) calculate the capacity demand at each 
worksystem, and (3) set resource capacities, so as to attain a 
target utilization rate that balances high utilization and short 
cycle times [c.f. 1, Ch. 3.2]. 

Usually these steps are executed sequentially: A fixed flow 
distribution on one or many process paths for a given end 
product is given, assuming a fixed distribution of flow 
between the alternative paths before the capacity is 
dimensioned. However such a setup is not compatible with 
distributed control settings, where routing decisions are 
usually delayed and left to the product at run-time [2]. 
Without reliable information on expected flow distributions, 

the production designer cannot production capacities properly 
and runs the risk of observing unexpected levels of utilization 
and lead times, making production systems with distributed 
control less predictable and hence hindering their acceptance 
in industry [2, 3]. 

To overcome this problem, we extend a method from 
traffic modeling to predict the flow of non-cooperating agents 
in networks with alternative process paths. We devise an 
iterative algorithm that simultaneously sizes the capacities and 
determines the flow of agents. 

2. Existing Approaches 

Traditional manufacturing system design frameworks 
consider the steps of process path selection (and distribution 
of flow among them) separate from the subsequent tasks of 
capacity requirements calculation and capacity dimensioning 
[c.f. 1, Ch. 3.2]. Given a known set of production paths and 

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the scientifi c committee of 48th CIRP Conference on MANUFACTURING SYSTEMS - CIRP CMS 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ASU Digital Repository

https://core.ac.uk/display/155243913?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


461 Henning Blunck et al.  /  Procedia CIRP   41  ( 2016 )  460 – 465 

flow distributions among them, the machine requirements and 
capacity dimensioning problems have been studied since the 
1950s (see [4] for a review of early work). Typically the 
number of required machines per operation is calculated by 
dividing the capacity demand (calculated as the product of 
deterministic or expected flow and processing time) by the 
total working time in the same time-period [4]. Subsequent 
research aimed at formulating optimization models that 
(considering, capacity, floor space, cost, ...) calculated the 
optimal number of machines, still assuming fixed flow 
distribution [5]. 

With the rise of modern manufacturing design paradigms, 
such as Flexible Manufacturing Systems (FMS), researchers 
have tried to take into account alternative process paths in the 
decision making process. An integrated approach was 
proposed in [6] in the form of an optimization problem based 
on flow independent waiting times. In FMS design, 
“processing capacity issues” have largely been tackled 
through queuing networks and related models [7], with some 
contributions also including the flow distribution over path 
alternatives in the optimization search space: Both Tetzlaff [8] 
and Lee et al. [9] discuss the cost-minimal FMS configuration 
capable of fulfilling production requirements. While 
accounting for queuing effects, they do not consider 
autonomous (agent-controlled) products. For a review, the 
reader is referred to [10]. 

Beside analytical and optimization approaches, simulation 
models can be applied for the resource requirements problem, 
however only for rather small systems, where the parameter 
space is feasibly explorable [11, Ch. 5.3]. 

The concept of interaction between intelligent products and 
adjustable machine capacity has been experimentally and 
analytically investigated in [12], focusing on short term 
capacity adjustment rather than production system design. 
Previous simulation experiments where capacity 
dimensioning had to be made in the context of distributed 
production usually focused on parallel worksystems [e.g. 13] 
(or linear sequences thereof [14]), where the capacity problem 
can easily be solved (assign equal capacity to each parallel 
server). 

Differing from previous work, our approach accounts for 
non-cooperative decision making by autonomous product-
agents in arbitrary networks (see also Sec. 7), considering 
flow dependent delays (queueing effects). By solving a game-
theoretic equilibrium problem we forgo computationally 
expensive simulation experiments and hence can operate more 
quickly and comprehensively on the solution space than the 
optimization approaches discussed above. 

3. Prediction of Traffic Flows through Game-Theory 

Predicting the routing behavior of individual, non-
cooperative agents is known in traffic-modeling as the Traffic 
Assignment (TA) problem [15]. Game-theoretic approaches to 
solve the TA problem find a Nash equilibrium which in this 
context is known as Wardrop’s first principle [16]. Wardrop 
states that for individual agents choosing one of several 
alternative routes, the steady state distribution will be such 
that 

“The journey times in all routes actually used are 
equal and less than those which would be experienced 
by a single vehicle on any unused route.” [16] 

 
The usual assumptions about Nash Equilibiria translate 

into three important consequences of Wardrop’s principle: (i) 
The agents require perfect information about the current state 
of the system - in particular the waiting times at all relevant 
worksystems - in order to compare the latency along all 
possible paths, (ii) the traffic is assumed to be nonatomic (i.e. 
the size of one unit of flow is marginal as compared to the 
overall flow), and (iii) the cost equilibrium only holds for 
paths with positive flow (i.e. there can be unused paths). 

The assumption of perfect information is an issue in the 
context of distributed decision making systems, for which a 
local information horizon is commonly considered (c.f. e.g. 
[2, 17] and [18, Ch. 1.1]). It should be noted though that some 
methods of distributed control (e.g. pheromone-based 
approaches) lead to a buildup of “global information” through 
dropped pheromones accessible locally [c.f. 19, 20, 21]. 
Papadimitriou and Valiant [22] present an approach to flows 
distributions satisfying Wardrop’s first principle, where 
agents use local information only. However, they do not 
present an algorithm to calculate them for arbitrary network 
structures. 

The nonatomic flow assumption will barely hold for the 
actual operation of the factory (or road network) but is a 
tribute to the notion of long-term steady state distributions and 
a necessary assumption in Wardrop’s principle. Also in the 
discussion of distributed control, the nonatomic flow 
assumption is not new [c.f. e.g. 12, 21]. 

The third consequence implies that even for linear cost 
functions, the problem is not a linear problem, but rather a 
Mixed Integer Linear Programming problem where a subset 
of alternative paths has to be selected. Hence the problem 
cannot be solved as a set of equations, but naturally entails a 
notion of subset selection which could require enumeration of 
path combinations at prohibitive computational cost [23]. 

Fortunately, with the Method of Successive Averages 
(MSA) there exists a widely used heuristic to find Nash 
equilibria in traffic assignment problems [24]. The idea is the 
following: Given a flow distribution , calculate the “cost” of 
each path alternative. Create a distribution  by assigning all 
flow to the “cheapest” alternative and calculate the new flow 
distribution  as the weighted average of old and new 
flow. Sheffy & Powell [25] proposed, using a particular 
weighting for the averages for which they showed in [23] that 
the process, given increasing convex cost functions (as 
function of flow), will converge to a Nash equilibrium. 

The requirement on the cost functions (waiting time on a 
road in the TA problem, throughput time at a machine in the 
production equivalent) to be non-decreasing with flow, holds 
for all typical clearing functions [26]. So our model poses 
little restrictions on e.g. the queuing model class incorporated, 
allowing for example the incorporation of variability in arrival 
and departure processes or machine breakdowns, by using the 
respective cycle time approximations. 

 
 



462   Henning Blunck et al.  /  Procedia CIRP   41  ( 2016 )  460 – 465 

4. Proposed Iterative Approach to Capacity Dimensioning 

The proposed algorithm, shown in Alg. 1, wraps the 
(already iterative) MSA algorithm (Step 3) into another loop 
in which the predicted flow distribution (the outcome of the 
MSA algorithm), given the current capacity distribution, is 
then used to calculate utilization rates per worksystem (Step 
4). Subsequently, unless a set convergence criterion is met, 
worksystem capacities are adjusted such that, given the 
calculated flow, all worksystems would have the desired 
capacity utilization (Step 2). The algorithm end, if the flow 
distribution resulting from the MSA run is “close enough” to 
the distribution assumed in the last round of capacity 
adjustments and hence the actual capacity utilization levels 
are close to the desired value. In other words: The flow 
resulting from non-cooperative agents sufficiently matches 
the flow expected during the capacity dimensioning process. 

To generate an initial flow distribution (Step 1), we use the 
“Equal Share Assignment” rule, proposed in [27] (see also 

[15, Sec. 4.2.1]), which distributes flow evenly among all 
alternative paths. The following notation is based on [15]: Let 

 be the set of all worksystems (with length | | = m) and   
the capacity distribution among them. Let  be the set of all 
possible paths in the systems (| | = ). Then is the 
flow-path incidence matrix, where elements  indicate the 

number of times, worksystem  is visited by path . Let  be a 
flow distribution over , then  gives the capacity 
demand (flow) for all worksystems. 

Each worksystem  has a (convex) cost (i.e. cycle 
time) function , yielding a per-worksystem cost vector 
(given the current flow distribution and capacity levels) , 
from which cost per path ( ) can be calculated as 

. 

5. Experimental Setup 

To show the applicability even on large scale production 
networks, we demonstrate the methods on networks derived 
from actual production system’s feedback data. We use the 
same datasets as investigated in [28] (c.f. Tab. 1), except for 
Company D, where the feedback data was not available in a 
suitable format. We seek to create a capacity distribution such 
that autonomous controlled product flow would result in an 

 target utilization. The following assumptions are 
necessary to transform the feedback data into networks of 
alternative production paths. They do not do justice to the 
intricacies of the actual production systems, but are deemed 
acceptable for a first proof-of-concept. 

 All process paths with the same first and last 
worksystem are considered alternative. 

 The total flow for one origin-destination (OD) 
relationship is the sum of products (each given weight 
1) recorded over all paths between this origin and 
destination. 

 The cost function  represents the 
cycle time of an M/M/1 queueing system where µ is 
the capacity and λ is the flow [11, Ch. 3.2]. However, 
to ensure convexity for utilization levels > 1 and to bar 
products from disestablished worksystems, we define 
the worksystem cost  piecewise as follows: 

 

 The processing time is one time unit for every item on 
every machine. 

After the initial network generation, we remove all pareto-
dominated paths. We assume a path  to be pareto-
dominated by path  if and only if  is longer and the set of 
worksystems in  is a superset of those in . Note that this 
filtering of process alternatives improves performance (c.f. 
Fig. 1) but is not necessary, since the MAS approach filters 
out inefficient paths automatically. 
 

Company Type Worksystems OD-Pairs Undom. Paths Paths/OD-Pair Req. Iterations 
A Job-Shop 215 (220) 1190 2114 1.78 11 
B Job-Shop 50 (51) 182 376 2.07 19 
C Job-Shop 94 (98) 690 853 1.24 10 
E Job-Shop 55 (57) 185 263 1.42 9 
F Customizing 67 (87) 204 342 1.67 7 

Table 1: Datasets analyzed in this publication. Originally investigated and named in [28]. Worksystems column shows number of worksystems on undominated 
paths and the total number in brackets.
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6. Results 

The experimental results for these (suitably transformed) 
real production networks are shown in Fig. 1. Worksystems 
are ordered by the capacity utilization attained after the first 
round (black line) where capacities were dimensioned 
according to an “equal-share” flow-distribution. We find: 

 All test-instances eventually converge to a scenario 
where the assumed flow (based on which the 
capacities were dimensioned) and the actual flow 
(using MSA to assign flow) matches and all 
worksystems with non-zero flow are within ±2% of 
the target utilization. 

 The algorithm correctly eliminates dominated flows: 
Fig. 1a shows an instance where the iterated 
application of agent-based control leads to the 
elimination of worksystems (all paths that crossed the 
worksystems in the original equal share flow 
assignment have been found dominated) and hence the 
final capacity for these worksystems is 0. 

 The number of iterations required and the associated 
computational effort has been limited so far (no more 
than 19 iterations or about one hour of computation 
time in one instance). The number of iterations 
required increases with the number of path alternatives 
(c.f. Fig. 2) and the tolerance window for attained 

utilization levels. The computational effort per round 
is primarily affected by the convergence criteria set for 
the MSA algorithm. The worksystems that show a 
constant 80% utilization level throughout all iterations 
are those which are only found on OD-pairs without 
alternatives. For these worksystems, we can calculate 
the required capacity demand and hence the necessary 
capacity in the known fashion (c.f. Sec. 2). Instances 
with many such “easy” worksystems (Fig. 1c through 
1e) are unsurprisingly the quickest to converge. 

  

Figure 1: Development of capacity utilization over iterations on networks from [28]. Worksystems are ordered by the utilization attained with after initial 
round (black line). For the MSA, a maximum flow deviation of 1% was chosen as convergence criterion. The overall process was terminated, once all 
worksystem utilization levels were within a ±2% window around the target utilization rate (80%). 

Figure 2: Required iterations as function of undominated paths per Origin-
Destination pair for networks from Tab. 1. 
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7. Discussion and Possible Extensions 

We have proposed and demonstrated on realistic 
production networks, an algorithm to dimension capacities in 
the presence of agent-controlled, autonomous products. The 
algorithm simultaneously yields a capacity distribution and 
steers non-cooperative, minimal throughput time seeking 
agents towards a flow distribution that yields the expected 
utilization (and hence cycle time) levels. It thus reduces the 
unpredictability of autonomous control in the design and 
implementation phase of manufacturing systems. The 
approach significantly extends previous research which 
assumed central control over (or even fixed) distribution of 
flow over alternative production paths. 

While demonstrated here for simple paths, our algorithm 
holds for general network structures, including multigraphs 
such as assembly and disassembly networks, as long as the set 
of alternative paths is enumerable and the flow experienced at 
a worksystem, given a unit-flow across a particular path, is 
known. 

The obvious next step is a validation through discrete event 
simulation. A fluid approach would be easier *, however it 
would not be sufficient to validate the nonatomic flow 
approximation. 

The game-theoretic founding of the applied concept allows 
for further, game-theory inspired investigations into the 
performance of autonomous control architectures in 
production environments: It is well known that the Nash-
Equilibrium (NE), i.e. the steady state achieved by the 
interaction of selfish agents, may have higher social cost than 
the social optimum [29]. The social-optimum flow 
distribution for convex cost functions can be attained by 
finding the Nash-Equilibrium when the worksystem cost 
functions are replaced by the marginal cost function [30] 

 

The ratio of NE-cost and optimal cost is called “Price of 
Anarchy” [31]. The identification of networks non socially-
optimal flow Nash-Equilibria has so far only been tackled in 
form of an optimization problem in [32] and capacity 
distributions that guarantee to exhibit no cost of anarchy can 
only be guaranteed for very simple setups with parallel 
processors [33]. Little is known about the (network-structural) 
relative aptitude towards agent-based control. Our initial 
investigations did not show significant prices of anarchy, 
however, since those only arise for small ranges of flow [22], 
more investigations are necessary. 

 
 
* Since it is deterministic and does not rely on the processing 
of future event lists 
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