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ABSTRACT
Due to modern technology trends, fault tolerance (FT) is acquir-
ing an ever increasing research attention. To reduce the overhead
introduced by the FT features, several techniques have been pro-
posed. One of these techniques is Instruction-Level Fault Tolerance
Configurability (ILCOFT). ILCOFT enables application develop-
ers to protect different instructions at varying degrees, devoting
more resources to protect the most critical instructions, and sav-
ing resources by weakening protection of other instructions. It is,
however, not trivial to assign a proper protection level for every
instruction. This work introduces the notion of Instruction Vul-
nerability Factor (IVF), which evaluates how faults in every in-
struction affect the final application output. The IVF is computed
off-line, and is then used by ILCOFT-enabled systems to assign
the appropriate protection level to every instruction. IVF releases
the programmer from the need to assign the necessary protection
level to every instruction by hand. Experimental results demon-
strate that IVF-based ILCOFT reduces the instruction duplication
performance penalty by up to 77%, while the maximum output
damage due to undetected faults does not exceed 0.6% of the to-
tal application output.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Fault tolerance; D.2.4 [Software/
Program Verification]: Reliability
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1. INTRODUCTION
Fault tolerance (FT) of computing systems is receiving an in-

stantly increasing attention since recently [1]. This is due to current
technology trends such as increasing the chip density by shrinking
the feature size and power supply minimization. When the transis-
tor feature size decreases, they become vulnerable to multiple ex-
ternal disturbances and internal problems. For example, radiation
which could not affect larger transistors and wires is able to cause
faults in smaller ones, internal crosstalk becomes more common,
etc. Minimization of the power supply increases the chance of bit
flips. As a result, FT is becoming increasingly important. While
strong FT techniques used to be applied only to special-purpose
high-end computing systems, and only a few techniques such as Er-
ror Correcting Codes (ECC) [2] in memories were relatively widely
used, they are becoming common nowadays.

FT is often based on some form of redundancy, which means
that it introduces a certain hardware overhead, performance penalty
and/or energy consumption increase. While acceptable for expen-
sive critical computing systems, it should be avoided as much as
possible in commodity systems. Therefore, FT overhead mini-
mization is receiving a lot of attention. Many techniques, some-
times trading FT for overhead minimization, have been proposed.
One of these techniques, Instruction-Level Fault Tolerance Con-
figurability (ILCOFT) [3, 4], requires the application developer to
assign the required protection level to every assembly instruction,
or every high-level programming language statement, or set of in-
structions/statements, and protects them accordingly. This is useful
for naturally error tolerant applications. For example, in multime-
dia applications, much of the computations do not strictly require
absolute correctness. Many faults can lead to slight output imper-
fections that in some cases are not even noticeable for a human.
For example, if a few pixels in a large image are wrong, they are
likely to be unnoticed. By enforcing the protection of more critical
instructions and/or weakening the protection of less critical ones,
ILCOFT achieves a higher overall reliability and/or minimizes the
protection overhead. Depending on the FT method used, this can
be performance, energy, and/or area overhead.
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A disadvantage of the ILCOFT scheme as presented in [3, 4]
is the manual protection level assignment required from the ap-
plication developer. To process (a large part of) a relatively large
application, significant effort is required. In addition, this process
is error-prone because it entirely relies on the programmer’s judg-
ment of every instruction’s vulnerability. An alternative automatic
method is also proposed in [3, 4] in which the compiler assigns
the required protection level. Because the compiler cannot eval-
uate the criticality of data processing instructions, it is assumed
that only control flow instructions need strong protection. Thus, all
control flow instructions (branches, jumps, function calls, etc.) and
instructions on which they depend (address calculations, condition
evaluations, etc.) are assigned a high protection level. Sundaram
et al. [5] discuss such compiler analysis in detail. This automatic
compiler-based method, however, is based on the assumption that
no data manipulating instructions are critical, which is not safe. In
many applications faults in data processing instructions can corrupt
the whole application output, in which case, even though the appli-
cation does not crash, it is not usable. This approach can only be
safely applied to a very limited set of applications. A more sophis-
ticated method to assess every instruction’s criticality is required
for most applications.

To address the instruction criticality assessment problem, this
work introduces the notion of Instruction Vulnerability Factor (IVF).
IVF is analogous to the Architecture Vulnerability Factor (AVF) [6],
but addresses application instructions instead of hardware struc-
tures. AVF estimates the probability that a fault in a particular
hardware structure will result in an error visible in the final ap-
plication output. Experiments demonstrate that different processor
structures have different AVFs [6]. For example, unlike faults in
ALUs, faults in branch predictors can only result in a slightly re-
duced performance, but cannot damage the final application output.
We suggest that a similar metric can be applied to the application’s
instructions. Faulty results of different instructions affect the final
application output in different ways. IVF measures how much of
the final output is corrupted due to faults in every instruction.

ILCOFT can be applied to different instructions based on their
IVF. Instructions with a higher IVF should be protected better, while
others can be assigned a weaker protection level to reduce the over-
head.

To compute the IVF for every instruction, off-line profiling is
performed. It can be done either in a simulation environment or
in real hardware capable of injecting faults. Fault(s) should be in-
jected into every instruction, one per experiment, and the resulting
application output be used to estimate the instruction IVF. Mul-
tiple experiments per instruction are preferable to obtain statisti-
cally valid results. To reduce the amount of work this process re-
quires, only the most time consuming application parts can be pro-
cessed. As shown in Section 3, this is able to provide significant
application-level advantage. This procedure has to be performed
off-line, only once per application. The result (IVF value for all
the considered instructions) is then stored and distributed together
with the application binary code. At runtime, every instruction is
protected at the level required by its IVF value.

The remainder of this paper is structured as follows. Section 2
describes the IVF estimation performed in this work, and how it is
then used to reduce the overhead of the instruction duplication error
detection technique. Section 3 presents the experimental results
evaluating the performance penalty reduction and fault coverage
of the proposed IVF-based ILCOFT technique. Finally, Section 4
draws conclusions and describes future work.

2. IVF AND IVF-BASED ILCOFT
This section introduces the IVF and demonstrates how it can be

used as a base for ILCOFT. Section 2.1 discusses how the IVF can
be estimated. Section 2.2 presents the instruction duplication error
detection scheme, which is adapted to support IVF-based ILCOFT
in Section 2.3.

2.1 IVF Estimation
IVF estimation requires monitoring how different faults in every

instruction propagate to the final application output. In other words,
how much of the output is corrupted due to faults in every instruc-
tion. This can be achieved using fault injection experiments, either
in a simulation environment or on fault injection-enabled hardware.
Alternatively, this can also be done in software without simulations.
To simulate faults in software, the correct machine instructions can
be substituted with other instructions producing wrong results in
the same output registers. The simulator-free software solution can
be expected to significantly speed up the IVF estimation process,
but it reduces the fault injection flexibility (does not provide access
to simulated hardware structures where faults happen).

Ideally, all the possible faults have to be injected one at a time
into every executed instruction, and the corresponding output cor-
ruption measured. Moreover, some faults in dependent instructions
can affect each other, thus combinations of faults in different in-
structions should also ideally be examined. This, however, would
require an enormous number of experiments which is not feasible.
Experimental results (see Section 3) demonstrate that injecting a
random fault into every instruction provides a sufficiently accurate
IVF estimation. It is desirable to perform multiple experiments
with every instruction to achieve statistically valid results, because
different faults in the same instruction can affect the execution in
different ways.

In this work, the IVF estimation is performed on the sim-outorder
simulator from the SimpleScalar tool set [7]. During every simula-
tion, the output of one instruction execution is assigned a random
value, simulating the worst case (a multi-bit) transient fault. Faults
are only injected into instructions producing results, such as arith-
metic operations and memory loads. Memory stores and jumps are
not affected, because the error detection scheme used in this work
does not cover faults in these instructions. The final application out-
put is then compared to the correct one, and the output corruption
is measured. Depending on the application, this can be the percent-
age of corrupted bytes in the output (in an image for instance), or
the percentage of corrupted output items, such as matrix elements.
The output corruption percentage is then saved as the instruction’s
IVF. When multiple experiments per instruction are performed, the
average IVF is saved for all the experiments.

The average IVF value is computed for every static instruction
within the considered code segment. This requires a large number
of simulations, especially if multiple experiments per instruction
are conducted (as is desirable). This, however, has to be done only
once per application, and can be done off-line. The collected statis-
tics are then saved together with the application binary code and
used at runtime. For large applications, it is not even necessary to
compute the IVF of every instruction. It can be estimated only for
the instructions within the most time consuming application parts,
such as multimedia kernels. Section 3.3 demonstrates that this ap-
proach achieves significant application-level performance improve-
ments.

The IVF information can be saved in a program binary code as a
separate table. This table maps application instructions (identified
by their PC) to the corresponding IVF values, or to the required
protection levels. Storing the protection levels is likely to take less
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Figure 1: Instruction duplication.

space (for example, only one bit is needed if two protection levels
are available), and no logic is needed to determine the protection
level from the IVF value. On the other hand, storing the IVF value
provides more flexibility, in that the system can be configured at
runtime to define the threshold IVF values controlling the required
protection levels. The IVF information stored in a separate table
needs to be loaded into a special hardware buffer (possibly simul-
taneously assigning the protection levels and storing them instead
of IVF values to reduce the storage requirements). Then, the ta-
ble must be looked up to determine the proper protection level for
every executed instruction. The table can be compressed. For ex-
ample, with only two protection levels available in the system (of
which one is default), only PCs of instructions with the non-default
required protection level have to be stored. Alternatively, instead of
keeping the IVF data in a separate table, it might be preferable to
change the instruction format, to add the required protection levels
there.

2.2 Instruction Duplication
In this work a hardware ILCOFT scheme is used. Instruction du-

plication in the pipeline is used as a time-redundant error detection
technique, and its overhead is minimized using the IVF information
collected as described in Section 2.1. The instruction duplication
scheme is based on [8], but executes every instruction twice rather
than duplicating them in the dynamic scheduler. This requires less
space in the dynamic scheduler, but does not protect against faults
in it. Figure 1 depicts the instruction execution steps with the cor-
responding activities performed by every instruction. A fetched
instruction proceeds normally until the execution stage. There the
instruction is kept in the RUU until it has been issued twice. When
the results of both executions are available, they are compared in
the Writeback stage, and the instruction commits if no errors are
detected.

What happens if the results do not match depends on the goals
of the system. A system targeting fail-safe operation would signal
an error and halt. If FT is required, another copy of the questioned
instruction could be created and executed, performing a majority
voting on all the obtained results according to the Triple Modular
Redundancy (TMR) scheme [9, 10], or a different form of recovery
could be initiated. This, however, is outside the scope of this work.

2.3 IVF-Based Selective Instruction Duplica-
tion

To support ILCOFT, the FT technique(s) used in the system have
to be able to apply different protection levels to different instruc-
tions. The higher the IVF is, the stronger the protection technique
applied to the instruction should be. In the simplest case, only two
protection levels are available: an instruction is either protected
or left unprotected. This case is very practical, because more com-
plex protection schemes with multiple protection levels can be very
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Figure 2: Histogram of IVF values for different applications
and kernels.

expensive. In this work such simple protection scheme based on
instruction duplication (see Section 2.2) is used, called IVF-Based
Selective Instruction Duplication (IVF-SID). Depending on its IVF,
an executed instruction is either duplicated and the result is verified,
or executed only once without error detection.

Note that two terms are used in this work: IVF-based ILCOFT
and IVF-SID. IVF-based ILCOFT is a general ILCOFT technique
which decides how critical instructions are based on their IVF val-
ues. IVF-based ILCOFT can be applied to many different FT tech-
niques able to protect individual instructions. IVF-based ILCOFT
applied to the instruction duplication error detection technique is
called IVF-SID.

The simple protected/unprotected scheme requires to establish
a threshold IVF value, further referred to as IVFthr . Instructions
with IVF above IVFthr should be protected, and instructions with
IVF below IVFthr are left unprotected. The IVFthr value should
be carefully chosen to guarantee that the amount of application out-
put corruption it represents is indeed tolerable. Ideally it should be
determined specifically for every application, because different ap-
plications have varying output damage tolerance.

Figure 2 shows the histogram of IVF values for different ker-
nels (the kernels are described in Section 3.1). It clearly illustrates
that the majority of IVF values are at the extremes, they are either
larger than 99% or less than 1%. Some kernels (Image Addition
and SAD) do not have any instructions with IVF values in between.
Most instructions either corrupt (almost) the whole output or less
than 1% of it. This indicates that 1% is a good IVFthr value. Dam-
age of 1% of the output can be considered tolerable for many appli-
cation domains, including many multimedia applications. Increas-
ing the IVFthr to, for example, 10% would not lead to significant
changes, because most kernels do not have any instructions with an
IVF in the range of 1% to 10% (see Figure 2). Thus, an IVFthr

value of 1% is used for IVF-SID in this work. Instructions whose
wrong results corrupt less than 1% of the application output are not
protected.

The IVF values distribution shown in Figure 2 suggests that a
simple protected/unprotected ILCOFT scheme is sufficient. Mul-
tiple available protection levels would not be very useful for most
of the benchmarks shown in Figure 2, because they have only a
few instructions with medium IVF values. On average 44% of the
instructions have an IVF below 1%, and 39% of the instructions
have an IVF above 99%. Most of the other instructions have an
IVF below 5% or above 95%. Only the ADPCM encoder and de-
coder have a significant number of instructions (10% or more) with
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Table 1: Processor configuration.
Fetch/Dec./Issue Width 2, 4, or 8
# of Int. ALUs 2, 4, or 8
# of Int. Mult./Div. 1
# of FP ALUs 1
# of FP Mult./Div. 1
RUU Size 64
Memory Latency 112 cycles (first chunk),

2 cycles (subsequent chunks)
L1 Data Cache 32 KB, 2-way set associative
L1 Instruction Cache 32 KB, 2-way set associative
L2 Unified Cache 512 KB, 4-way set associative

an IVF in the range 40-90%. For such applications, the following
scheme could be used: no or minimum protection for instructions
with an IVF below 1%, average protection for instructions with an
IVF between 1% and 99%, and maximum protection for instruc-
tions with an IVF above 99%.

3. EXPERIMENTAL EVALUATION
This section experimentally evaluates the proposed IVF-SID method.

Section 3.1 describes the used simulator and benchmarks. Sec-
tion 3.2 explains the details of the employed IVF estimation method.
Section 3.3 demonstrates the performance improvements IVF-SID
achieves compared to duplicating all instructions. Section 3.4 eval-
uates its fault coverage. Finally, Section 3.5 compares IVF-SID
with a manual ILCOFT method.

3.1 Experimental Setup
Simulations are performed using the sim-outorder simulator from

the SimpleScalar tool set [7]. The processor configuration (not very
powerful because small kernels are considered) is shown in Table 1.

Four kernels and four applications are used as benchmarks. Im-
age Addition, Matrix Multiplication (with rather small input matri-
ces of the size 20×10 and 10×20 to reduce the simulation time),
and Sum of Absolute Differences (SAD) are kernels very often
used in multimedia applications. The fourth kernel computes the
Fibonacci numbers, which are widely used in science, and even in
financial market trading and music [11]. Encoders and decoders
for JPEG image compression and ADPCM sound compression are
the full applications used, taken from the MediaBench benchmark
suite [12].

The kernels are chosen to represent a range of algorithms: from
(very) tolerable to faults to hardly tolerable to faults. Image Ad-
dition contains a large number of independent calculations, which
makes it tolerant to faults: a fault in most of the computational
instructions can only affect a single output element. Matrix Multi-
plication has many independent as well as many dependent opera-
tions. The output elements are, however, computed independently,
thus a fault in one of them does not affect the others. Every Fi-
bonacci number depends on all the previously computed numbers,
and thus, any fault leads to the corruption of all subsequent values.
SAD outputs a single value which depends on the whole compu-
tation sequence, and is either correct or wrong. Any fault is SAD
leads to a wrong result, thus, SAD is the most vulnerable kernel.

3.2 IVF Calculation
The IVF is estimated as described in Section 2.1. For the full

applications, to reduce the simulation time and demonstrate that it
still provides useful results, IVF-based ILCOFT is applied only to
the most time consuming functions. The applications are profiled

and the most demanding functions identified (for example, the for-
ward_DCT function in the JPEG encoder, and the jpeg_idct_islow
function in the JPEG decoder). The IVF values have been estimated
and are later used by ILCOFT only for the instructions within these
functions. In other parts of the applications all instructions have
been duplicated as described in Section 2.2.

To calculate the IVF of every instruction, ten fault injection ex-
periments per static instruction have been conducted for the ker-
nels, and three experiments per instruction for full applications. To
evaluate the accuracy of this method, an additional experiment is
performed with one of the kernels (Matrix Multiplication). This
experiment attempts to approach the ideal (exhaustive) case taking
into account all possible faults and even combinations of faults in
different instructions (see Section 2.1). First, for every evaluated
static instruction, one thousand experiments injecting a single ran-
dom fault into it are executed. Then, faults are injected in two dif-
ferent instructions at a time. This is achieved in the following way.
Each evaluated instruction is coupled with every other instruction
in the kernel whose originally estimated IVF (from the first ex-
periment with ten injections per instruction) does not exceed its
own originally estimated IVF. The obtained output corruption con-
tributes to the IVF of the evaluated instruction. Instructions with
greater originally estimated IVF are not coupled, because they af-
fect the output more than the evaluated instruction. Fifty iterations
of this double-injection experiment are performed, resulting in 350
to 1500 simulations per instruction.

The results of the short Matrix Multiplication IVF estimation ex-
periment closely follow the results of the large experiment. The
average difference between the obtained IVF values is 0.5%. The
maximum difference is 7% (it is so large only for two instructions).
Hence, the short experiment performs with a sufficient accuracy.
Fault injection experiments in Section 3.4 confirm that a high level
of reliability is achieved using the short IVF estimation experi-
ments.

To provide an insight on the time the IVF estimation process
takes, the fault injection experiment simulation time has been mea-
sured for one randomly chosen kernel and one application. For
the Fibonacci kernel, an experiment injecting one fault into one in-
struction took 0.8 seconds, and for the JPEG Encoding application
it took 136.7 seconds. Note that this is for the case when simulation
produces a complete output (does not crash due to faults). Simula-
tions crashing (or producing incomplete outputs) due to faults take
less time. On the other hand, there are also faults substantially in-
creasing the simulation time. For example, a fault that significantly
increases the value of a variable controlling the exit condition of a
large loop can have such effect.

3.3 Performance
Instruction duplication (see Section 2.2) requires that every dy-

namic instruction is executed twice. Since duplicated instructions
are independent, they can be executed in parallel, if sufficient com-
putational resources are available. Thus, instruction duplication in-
creases the amount of instruction-level parallelism (ILP) available
in the application. Unless the application originally has a very lim-
ited amount of ILP, instruction duplication is likely to introduce a
significant performance penalty due to the lack of computational
resources available to execute the instruction duplicates. By avoid-
ing the re-execution of instructions with an IVF smaller than 1%,
IVF-SID reduces the overhead of instruction duplication.

Figure 3 shows the performance overhead of full instruction du-
plication and IVF-SID over the original execution without any pro-
tective redundancy. The benchmarks are executed on a system with
four integer ALUs, and a fetch/decode/issue width of four. Fig-
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Figure 3: Performance penalty of instruction duplication and
IVF-SID compared to redundancy-free execution. System with
4 integer ALUs, and fetch/decode/issue width of 4.

ure 3 demonstrates that for all the benchmarks, IVF-SID recovers
a certain amount of the performance overhead due to instruction
duplication. For example, if the full duplication is 80% slower than
the redundancy free execution, and IVF-SID is 40% slower, than
the amount of performance it recovers is 50%. Figure 4 shows the
amount of recovered performance for different benchmarks. Three
machine configurations are considered: with two, four and eight
integer ALUs. To balance the machine organization, the fetch, de-
code, and issue width matches the number of integer ALUs (see
Table 1).

For the kernels, the recovered performance varies from 1.1% (for
Fibonacci, on a system with eight integer ALUs) to 77.7% (for Ma-
trix Multiplication, on a system with two integer ALUs). Full ap-
plications recover from 1% (JPEG Encoder, system with two inte-
ger ALUs) to 58.3% (ADPCM Encoder, system with two integer
ALUs).

The amount of recovered performance depends on the IVF dis-
tribution of the application, and the amount of ILP available in the
redundancy-free application. The more instructions with low IVF
are found in the application, the fewer executed instructions are
duplicated, and more performance is recovered. The distribution of
instructions with different IVF values in the benchmarks is shown
in Figure 2.

In SAD, almost 86.4% of the static instructions have an IVF of
above 99% (and thus definitely need to be duplicated in IVF-SID),
and only 13.6% of the instructions have an IVF lower than 1% (and
thus do not need to be duplicated). This is because SAD produces
only one output, which can be either correct (100% of the output
is correct) or wrong (100% of the output is damaged). Any fault
which propagates to the final SAD output damages 100% of it.
Therefore, only faults that do not propagate to the final output at
all (damage unused data, or faults that are masked) can be tolerated
in SAD. We call these faults escapes. Due to these characteristics,
SAD is one of the worst performing benchmarks: only 3.4% to
10.8% of performance is recovered in IVF-SID.

A similar situation appears with the Fibonacci numbers genera-
tor, for which IVF-SID recovers from 1.1% to 8.8%. The generator
produces a series of numbers, every one of which depends on the
previous values. Thus, an error appearing in the beginning of the
sequence damages all the subsequent numbers. Only 6.3% of the
static instructions in the Fibonacci numbers generator have an IVF
of below 1%. 50% of the static instructions have an IVF of 99%
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Figure 4: Performance penalty reduction achieved by IVF-SID
over instruction duplication on different processor configura-
tions. Fetch/decode/issue width matches the number of integer
ALUs.

or 100%, and 43.8% have an IVF in the range 95%-99% (see Fig-
ure 2).

The highest performance improvements achieved by IVF-SID
are obtained for Image Addition (58.7% to 77.4%) and Matrix Mul-
tiplication (52.2% to 77.7%). In Image Addition, 55% of the static
instructions have an IVF of below 1%, and 45% have an IVF of
above 99%. In Matrix Multiplication, 67.7% of the static instruc-
tions have an IVF of below 1%, and 22.6% have an IVF of above
99%. Both these benchmarks produce many independent elements
in the output. When one of them is damaged, it often corrupts less
than 1% of the whole output, which is the used IVFthr value. For
large images with millions of pixels which are common nowadays,
one wrong pixel will most probably not even be visible.

Figure 4 shows that IVF-SID improves the performance of the
ADPCM encoder much more than the other full applications. This
is due to the fact that the encoding function in the ADPCM encoder,
to which IVF-based ILCOFT is applied, is a substantial part of
the whole application. In contrast, the IVF-enabled forward_DCT
function in the JPEG encoder is only a part of the whole applica-
tion, which also calls many other functions. Thus, the ADPCM
encoder (and also decoder) functions affect the whole application
performance much more than the functions in the JPEG encoder
and decoder to which IVF-based ILCOFT is applied. The ADPCM
encoder, however, has significantly more instructions with an IVF
below IVFthr (75.4% of the instructions, compared to 26% in the
decoder), and thus it achieves a much higher performance improve-
ment.

Figure 4 indicates that in most cases, the performance recov-
ered by IVF-SID drops when the number of integer ALUs (and
the fetch/decode/issue width) increases. This is due to the larger
amount of computational resources available. The ILP introduced
by instruction duplication is utilized more effectively on systems
with more integer ALUs. Thus, the reduction of the number of ex-
ecuted instructions due to IVF-SID does not affect the performance
so much. In contrast, for Image Addition and the JPEG Encoder,
IVF-SID recovers less performance on a system with two integer
ALUs than with four of them. We attribute this to the issue width,
which is insufficient and becomes a bottleneck in these cases. In-
creasing the fetch/decode/issue width from two to four (while the
number of integer ALUs is still two) increases the recovered per-
formance from 58.7% to 70.3% for Image Addition.
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Table 2: Fault coverage statistics.

Benchmark Detected
(%)

Wrong
output

(%)

Escapes
(%)

Max. output
damage (%)

Min. output
damage (%)

Average output
damage (%)

Image Addition 43.16 48.42 8.42 0.06 0 0.05
Matrix Multiplication 59.14 18.28 22.58 0.25 0.25 0.25
Fibonacci 95.92 0 4.08 0 0 0
SAD 95 0 5 0 0 0
JPEG Encoding 76.77 0 23.23 0 0 0
JPEG Decoding 10 78 12 0.03 0 0.01
ADPCM Encoding 33.33 31.31 35.35 0.64 0 0.12
ADPCM Decoding 87.76 0 12.24 0 0 0

Note that the IVF values distribution in static application instruc-
tions cannot be expected to always perfectly indicate how useful the
IVF-based ILCOFT will be for the program. This is because per-
formance depends on the dynamic behavior, on how many times
every static instruction with a certain IVF will be executed.

3.4 Fault Coverage
To evaluate the fault coverage of IVF-SID with IVFthr equal 1%,

fault injection experiments have been conducted. Every benchmark
has been run around 100 times, with one fault in the output of a
random instruction within the kernel to which IVF-SID is applied.
To simulate the worst-case scenario, burst (multi-bit) faults are in-
jected rather than single-bit ones. This is achieved by changing
instruction output to a random value. There are two reasons to in-
ject only one fault per simulation. First, the current and near-future
fault rates are not very high, and thus, more than one fault in a rel-
atively small kernel is unlikely. Second, when injecting multiple
faults per experiment, the chance that at least one of them will be
detected increases. As a result, other faults that would not have
been detected alone are hidden, and their effect on the output is not
investigated.

Table 2 depicts the collected statistics. The second column shows
the percentage of faults detected by instruction duplication. The
third column indicates the percentage of simulations finished with
wrong output (with an undetected fault). The fourth column shows
the percentage of escapes, that is, undetected faults that did not
propagate to the output. The subsequent columns demonstrate the
maximum, minimum, and average observed output corruption per-
centage due to undetected faults.

Table 2 demonstrates that no undetected faults damaged more
than 0.64% of the output. For most benchmarks, the maximum
output damage is even smaller. The maximum output corruption
of 0.06% in Image Addition means that in the output image, 1152
pixels out of almost 2 million are wrong. A visual inspection of the
output image did not reveal any difference with the correct image.
We believe that the observed output damage in other benchmarks
is also tolerable.

SAD, Fibonacci, JPEG encoder and ADPCM decoder do not
have any output damage due to undetected faults. All faults in these
benchmarks were either detected or did not propagate to the output
(escapes). These benchmarks have only a few instructions with low
IVF values (see Section 3.3 and Figure 2). Most of their instruc-
tions have high IVF values, thus they are duplicated in IVF-SID,
and faults are detected. This high instruction coverage results, how-
ever, in a smaller performance improvement of IVF-SID compared
to full instruction duplication (see Figure 4).
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Figure 5: Comparison of performance penalty reduction
achieved by IVF-SID over instruction duplication and by
ILCOFT-enabled EDDI over EDDI.

3.5 IVF-SID Compared to ILCOFT-Enabled
EDDI

In this section we compare IVF-SID to ILCOFT-enabled EDDI [4].
Error Detection by Duplicated Instructions (EDDI) [13] is a soft-
ware error detection technique which duplicates all instructions
in the program assembly code and inserts checks to determine if
the original instruction and its duplicate produce the same result.
ILCOFT-enabled EDDI duplicates only the critical instructions. In [4]
instructions are categorized manually by a programmer, and are
considered critical if they affect the control flow.

Figure 5 compares the amount of performance recovered by IL-
COFT in IVF-SID and in ILCOFT-enabled EDDI. Table 3 com-
pares the maximum and average output damage observed when
these techniques are used. ILCOFT-enabled EDDI data is taken
from [4].

Note that this is not a straightforward comparison. First, these
techniques are very different, one is automatic and works in hard-
ware, while the other is manual and is applied in software. Second,
the processor organizations used in this work and in [4] differ in
some parameters such as memory access latency, cache sizes etc.
Both organizations, however, have an issue width of four and four
integer ALUs.

The main message Figure 5 and Table 3 illustrate is that IVF-
based ILCOFT is able to compete with a manual ILCOFT method.
This is clear from the Image Addition and Matrix Multiplication
performance and fault coverage: IVF-SID slightly improves perfor-
mance of Image Addition and reduces its average output damage,
and reduces performance of Matrix Multiplication and improves
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Table 3: Output damage of IVF-SID and ILCOFT-enabled EDDI.
IVF-SID ILCOFT-enabled EDDI

Maximum Average Maximum Average

Image Addition 0.06 % 0.05 % 0.13 % 0.01 %
Matrix Multiplication 0.25 % 0.25 % 99 % 3.1 %
Fibonacci 0 0 96.67 % 38.23 %
SAD 0 0 100 % 100 %

its fault coverage. For Fibonacci and SAD, however, IVF-SID has
a serious performance disadvantage. This is due to the fact that
ILCOFT-enabled EDDI considers only instructions affecting the
control flow to be critical. This leads to many undetected faults
causing an average output corruption of 38.2% for Fibonacci and
100% for SAD. IVF-SID does not allow any undetected faults in
these two kernels to reach the output, because it protects all the vul-
nerable instructions. Thus, IVF-SID is more suitable if reliability
is the primary concern, and ILCOFT-enabled EDDI is preferable
if performance is more important. Furthermore, another advantage
of IVF-SID is that it does not require the programmer to assign the
necessary protection level to every assembly instruction manually,
which demands a serious effort and is very error-prone.

4. CONCLUSIONS
This work introduces the concept of Instruction Vulnerability

Factor (IVF). IVF determines how much of the final application
output is corrupted due to faults in particular instructions, and can
be estimated using fault injection experiments. It is shown that in
most applications, instructions have different IVF values. Depend-
ing on the nature of the application, it may have a large number of
instructions with low IVF values, which means that faults in these
instructions are tolerable. Many applications in the multimedia do-
main, for example, have such characteristics. This work proposes
to use the Instruction-Level Fault Tolerance Configurability (IL-
COFT) principle based on the application profiling data containing
every instruction’s IVF value. Instructions with higher IVF values
are protected better than instructions with lower IVF values.

A selective hardware instruction duplication scheme controlled
by the instruction’s IVF values (IVF-SID) is evaluated from the
performance and fault coverage points of view. It is shown that,
like in other ILCOFT schemes, both performance and fault cover-
age of IVF-SID depend on the nature of the application. Like other
ILCOFT schemes, IVF-SID recovers maximum performance (and
also saves energy) in applications that produce many independent
output elements. For these applications, faults in many instructions
are likely to affect only a small part of the final output, and thus
many instructions have small IVF, and are not protected. The min-
imum performance is recovered in applications producing a single
output value, or a set of dependent values. Any fault propagating
to the final output corrupts it completely in these applications, thus
most of the instructions need to be protected. On the other hand,
these applications have a better fault coverage, because most in-
structions are protected.

The experimental results demonstrate that for both these types of
applications, IVF is a useful measure which allows to determine the
optimal way to balance the performance and fault coverage. More-
over, IVF can be estimated automatically. It releases application
developers from the need to attribute code for ILCOFT manually.

This saves time, effort, and improves reliability, because manual
instruction FT level assignment is very error-prone. IVF-based IL-
COFT achieves performance improvement comparable to a manual
ILCOFT method. In addition, it provides much more accurate re-
sults than other automatic (compiler-based) instruction attribution
methods, which are based on very general assumptions (that only
instructions affecting the control flow should be protected).

For future work, we plan to enhance our experimental setup.
Currently there is the following limitation. Both in IVF estimation
and fault injection, only the first dynamic occurrence of every static
instruction is processed, because it is unknown if this instruction
will ever be executed later. In most cases this is not problematic. In
rare cases, however, this can lead to inaccurate IVF estimation. For
example, consider an instruction which calculates a condition for
a branch controlling a loop. If it produces any non-zero value, the
subsequent branch is taken (or not taken). At one loop iteration this
instruction produces a 1, which becomes any non-zero number due
to a fault, and the branch still performs correctly. However, at an-
other loop iteration, this instruction produces a 0, which becomes a
non-zero value due to a fault. In the latter case the branch behaves
in the wrong way. Taking into account the dynamic application
behavior would solve this problem when estimating IVF.

A possible future profiling procedure enhancement is to use a
timer to detect cases when faults lead to a significant performance
degradation. During IVF profiling, we have observed several cases
when due to a fault, a critical loop iterates many orders of magni-
tude more times than it is supposed to. This leads to a correspond-
ing performance degradation. If such performance degradation is
unacceptable or if a significant profiling duration increase is unac-
ceptable, a timer can be used to detect these cases. If the applica-
tion execution takes more time than permitted, it can be terminated,
assigning the maximum output damage to the resulting IVF value.

Both problems mentioned above can be solved by the follow-
ing approach. All the instructions affecting the control flow can be
assigned the maximum IVF, because they can always lead to appli-
cation crashes. Then, the IVF is estimated using profiling only for
the remaining instructions. The instructions affecting the control
flow can be identified by the compiler.

IVF estimation as presented in this work is suitable for appli-
cations with equally important output values. However, there ex-
ist applications whose output consists of different parts of varying
importance. For example, in a video sequence, bytes defining in-
dividual pixel values are less important than bytes defining frame
attributes. For such applications the IVF estimation procedure has
to be adapted to take into account the importance of individual out-
put elements. This can be achieved by assigning different weight
to the corruption of more and less important output elements.
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