OPEN ACCESS JOURNAL

Gene Section Short Communication

SOCS3 (suppressor of cytokine signaling 3)

Zoran Culig

Experimental Urology, Department of Urology, Innsbruck Medical University, Anichstrasse 35, A-6020 Innsbruck, Austria (ZC)

Published in Atlas Database: February 2012

Online updated version : http://AtlasGeneticsOncology.org/Genes/SOCS3ID44124ch17q25.html DOI: 10.4267/2042/47423

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence. © 2012 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Identity

Other names: ATOD4, CIS3, Cish3, MGC71791, SOCS-3, SSI-3, SSI3 HGNC (Hugo): SOCS3

Location: 17q25.3

DNA/RNA

Description

Size: 3300 bases.

Transcription

2 introns. Transcription generates 3 different mRNAs, 2 spliced variants and 1 unspliced form.

Protein

Description

225 amino acids, 24770 Da.

Expression

Widely expressed in normal and tumor tissues. Expression in tumors is variable due to its different

functions.

Localisation

Cytoplasm.

Function

SOCS is a negative regulator of cytokines that signal through the JAK/STAT pathway. It binds to tyrosine kinase receptors such as gp130 subunit of receptors.

It interacts with cytokine receptors or JAK kinases and interaction with growth factor receptors (insulin-like growth factor-I, insulin, fibroblast growth factor). It inhibits JAK2 kinase activity.

Part of the ubiquitin-protein ligase complex which contains elongin, RNF7, and CUL5.

Binding to leptin.

Tumor promoting or tumor suppressive functions. Antagonizing cAMP-antiproliferative effects. SOCS3 suppresses erythropoietin in fetal liver and IL-6 signaling in vivo.

Mutations

Note

Mutations not detected.

KIR = kinase inhibitory region.

Implicated in

Lung cancer

Note

SOCS-3 acts as a tumor suppressor and is frequently lost in the disease. Its transient transfection in lung cancer cell lines leads to a decrease in proliferation.

Liver cancer

Note

SOCS-3 is silenced by methylation. SOCS-3 is a tumor suppressor in this malignancy. It is implicated in regulation of migration of cancer cells. SOCS-3 deletion enhances JAK/STAT and FAK signaling.

Barret's adenocarcinoma

Note

SOCS-3 is methylated. It is considered as a tumor suppressor.

Glioblastoma multiforme

Note

SOCS-3 expression is lost through promoter methylation.

Head and neck squamous cell cancer

Note

SOCS-3 is frequently down-regulated as a result of promoter methylation. It causes a growth inhibition.

Hematological malignancies

Note

SOCS-3 inhibits megakaryocytic growth, overexpression of SOCS-3 is associated with a decreased survival of patients with follicular lymphoma.

Melanoma

Note

SOCS-3 is a tumor promoter in melanoma and is constitutively expressed in several cell lines.

Prostate cancer

Note

SOCS-3 stimulates proliferation and inhibits apoptosis in prostate cancer cells which do not express the androgen receptor.

It may also antagonize the effects of fibroblasts growth factor and mitogen-activated protein kinases.

In androgen-sensitive prostate cancer cells, SOCS-3 is induced by androgen and may inhibit androgenstimulated proliferation and secretion.

Diabetes

Note

SOCS-3 may antagonize function of insulin-like growth factors.

Various cancers

Prognosis

Loss of protein expression and promoter hypermethylation occur in lung, liver cancer, head and neck squamous cell cancer. Overexpression occurs in melanoma and prostate cancer.

References

Brender C, Nielsen M, Kaltoft K, Mikkelsen G, Zhang Q, Wasik M, Billestrup N, Odum N. STAT3-mediated constitutive expression of SOCS-3 in cutaneous T-cell lymphoma. Blood. 2001 Feb 15;97(4):1056-62

He B, You L, Uematsu K, Zang K, Xu Z, Lee AY, Costello JF, McCormick F, Jablons DM. SOCS-3 is frequently silenced by hypermethylation and suppresses cell growth in human lung cancer. Proc Natl Acad Sci U S A. 2003 Nov 25;100(24):14133-8

Niwa Y, Kanda H, Shikauchi Y, Saiura A, Matsubara K, Kitagawa T, Yamamoto J, Kubo T, Yoshikawa H. Methylation silencing of SOCS-3 promotes cell growth and migration by enhancing JAK/STAT and FAK signalings in human hepatocellular carcinoma. Oncogene. 2005 Sep 22;24(42):6406-17

Weber A, Hengge UR, Bardenheuer W, Tischoff I, Sommerer F, Markwarth A, Dietz A, Wittekind C, Tannapfel A. SOCS-3 is frequently methylated in head and neck squamous cell carcinoma and its precursor lesions and causes growth inhibition. Oncogene. 2005 Oct 6;24(44):6699-708

Bellezza I, Neuwirt H, Nemes C, Cavarretta IT, Puhr M, Steiner H, Minelli A, Bartsch G, Offner F, Hobisch A, Doppler W, Culig Z. Suppressor of cytokine signaling-3 antagonizes cAMP effects on proliferation and apoptosis and is expressed in human prostate cancer. Am J Pathol. 2006 Dec;169(6):2199-208

Komyod W, Böhm M, Metze D, Heinrich PC, Behrmann I. Constitutive suppressor of cytokine signaling 3 expression confers a growth advantage to a human melanoma cell line. Mol Cancer Res. 2007 Mar;5(3):271-81

O'Connor JC, Sherry CL, Guest CB, Freund GG. Type 2 diabetes impairs insulin receptor substrate-2-mediated phosphatidylinositol 3-kinase activity in primary macrophages to induce a state of cytokine resistance to IL-4 in association with overexpression of suppressor of cytokine signaling-3. J Immunol. 2007 Jun 1;178(11):6886-93

Capello D, Deambrogi C, Rossi D, Lischetti T, Piranda D, Cerri M, Spina V, Rasi S, Gaidano G, Lunghi M. Epigenetic inactivation of suppressors of cytokine signalling in Philadelphia-negative chronic myeloproliferative disorders. Br J Haematol. 2008 May;141(4):504-11

Martini M, Pallini R, Luongo G, Cenci T, Lucantoni C, Larocca LM. Prognostic relevance of SOCS3 hypermethylation in patients with glioblastoma multiforme. Int J Cancer. 2008 Dec 15;123(12):2955-60

Puhr M, Santer FR, Neuwirt H, Susani M, Nemeth JA, Hobisch A, Kenner L, Culig Z. Down-regulation of suppressor of cytokine signaling-3 causes prostate cancer cell death through activation of the extrinsic and intrinsic apoptosis pathways. Cancer Res. 2009 Sep 15;69(18):7375-84

This article should be referenced as such:

Culig Z. SOCS3 (suppressor of cytokine signaling 3). Atlas Genet Cytogenet Oncol Haematol. 2012; 16(7):496-497.