


ABSTRACT 

 
During the last 20 years ecology has evolved towards a vision of the ecosystem as a system of 

interactions where the centre of interest is represented by interactions between them, quantified by 

flows of matter and energy. The quantitative mapping of food web flows based on empirical data is 

crucial and it is a difficult task in ecology: it is hard to comprehend the nature of complex food webs 

through direct observation, because the number of flows of matter and energy involved can be 

overwhelming. Furthermore, it is generally difficult to measure or quantify the exchange of mass or 

energy between the compartments of a system. The planktonic food web of the Gulf of Trieste was 

studied using linear inverse modelling. We computed both the LIM – MN and the LIM – MCMC 

following literature criterions, in order to get the best solution for our planktonic food web case. We 

implemented a new compartment, the growth compartment, in order to have a more realistic view of 

the food web, trying to take into account the possibility of compartment growing. We compared the 

solutions of the two methods with the a priori scientific knowledge of the Gulf of Trieste to determine 

which could be defined the best way of solving the food web fluxes. The LIM – MN selects the best 

solution minimizing the sum of squared flows, while the LIM – MCMC selects the solution by an 

exhaustive sampling of the solution space. Both solutions respect the inequalities and all the 

ecological requests and therefore both of them are valid. The LIM- MN usually underestimates all 

the fluxes, while the LIM – MCMC gives a good representation of the flows ranges, rarely 

overestimating not very well bounded fluxes. Growth fluxes behave well, especially the LIM – 

MCMC ones, and give a good response as they are in agreement with the scientific knowledge of the 

Gulf of Trieste. Implementing this type of compartment could be a good compromise in using steady 

state conditions. It is our opinion that LIM – MCMC solution is the best way to depict all the 

planktonic food web fluxes of the Gulf of Trieste. Values of fluxes represent better what is the a 

priori ecological knowledge found in the literature. In particular, the solution explains the important 

role of bacterial compartments that are fundamental for the Gulf of Trieste marine life, as they 

channeled most of the carbon inside the food web. The so-called microbial loop is very strong, and 

poses the microzooplankton as the main actor in channelling carbon from lower ecotrophic level to 

higher ones, including fishes. Moreover, thanks to the values found in this study, the Gulf of Trieste 

planktonic ecosystem could be compared with more productive ecosystems on a world scale. 
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1. INTRODUCTION 

 

The aim of the Scientists has always been to understand how nature and nature forces work. They try to 

depict and predict functioning and behavior of the ecosystems. In the last decades the interest has 

shifted from a properly scientific knowledge point of view to a more holistic one, in order to 

understand how humans are affecting the Earth system. The focus is on “Global changes” (Nicholas 

and Robinson, 1992) and human induced ones. Nowadays scientists try to define and quantify 

“planetary boundaries” that allow sustainable growth and development of humanity (Rockstrom et 

al., 2009; Steffen et al., 2015). Planetary boundaries are defined for Biogeochemical cycles and fluxes 

too (Rockstrom et al., 2009; Steffen et al., 2015). Biogeochemical cycles have a huge impact on the 

whole Earth system as they are related to all the system components: biosphere (living matter), 

atmosphere (air), geosphere (earth) and hydrosphere (water). Carbon cycle is one of the major 

biogeochemical cycles describing the flow of essential elements from the environment to living 

organisms and back to the environment again. In particular carbon most important fluxes are inside 

the Ocean. One of the pivotal actors of the ocean carbon cycle is plankton, and especially 

phytoplankton. Phytoplankton is recognized to be capable of impacting climate change because of its 

capacity to transport carbon and other elements from the surface ocean and in contact with the 

atmosphere, to the deep ocean and sediments (Falkowsky et al., 1998; Sigman and Boyle, 2000; 

Sarmiento and Gruber, 2006; Willliams and Follows, 2011). Phytoplankton, performing 

photosynthesis (primary production), converts inorganic nutrients into organic compounds. Most of 

the primary productivity is recycled locally through complex pathways of biological and chemical 

transformations, while only a smaller fraction is delivered into the deep ocean (biological carbon 

pump). Among the part channelled in the deeper layers the smallest one is buried into marine 

sediments, whereas the most is remineralized in the water column. Therefore, understanding how the 

plankton community behaves is important to better estimate carbon biogeochemical fluxes, especially 

in shallow coastal ecosystems. Coastal ecosystems are the most complex environmental framework 

in marine ecology as - due to shallow water - all biogeochemical processes are faster and strongly 

linked. Moreover, coastal ecosystems are the most endangered and affected by human activities. In 

the past, in order to understand the impacts of human activities on marine systems, scientists focused 

on the biomasses state of organisms: the idea was to study ecosystems through their biomasses state. 

During the last 20 years ecology has evolved towards a vision of the ecosystem as a system of 

interactions (Fasham 1984) where the centre of interest is no longer the state of the biomasses of the 

different groups of organisms, but the interactions between them, quantified by flows of matter and 

energy (Ulanowics and Wolff, 1990; Niquil et al., 1999; Bondavalli et al., 2006; Kones et al., 2009). 
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The challenge, however, still remains comprehending the nature of a system’s interactions, given 

their complexity (Kones et al., 2009). The quantitative mapping of food web flows based on empirical 

data is a crucial yet difficult task in ecology (Oevelen et al., 2010). Furthermore, it is difficult to 

comprehend the nature of complex food webs through direct observation, because the number of 

flows of matter and energy involved can be overwhelming (Pimm 1982; Szymer and Ulanowics 

1987). A food web structure shows how primary production is channeled via complex interactions 

between the biotic and abiotic compartments in a food web and eventually lost through dissipation or 

export. It is generally difficult to measure or quantify the exchange of mass or energy between the 

compartments of a system (Kones et al., 2009). In most ecological applications there are more 

unknown food web flows to be estimated than formulated equations, with an average ratio of 4:1 

(Vézina and Pahlow, 2003). Therefore, food web flows cannot be uniquely determined from the 

available data. One way to deal with this under determinacy has been the use of linear inverse method 

(LIM) (Kones et al., 2009). This LIM finds the food web configuration that agrees with the available 

quantitative data (e.g. Vézina and Platt, 1988; Niquil et al., 1998; Donali et al., 1999; Vézina and 

Savenkoff, 1999; Leguerrier et al., 2003), the designed food web and the solution chosen. 

1.1 INVERSE MODELLING 

Inverse modelling problems are common in geophysical sciences for the study of earth and ocean 

characteristics that couldn’t be measured directly (Parker 1977, Wunsch 1978). Only in the 80’s they 

have been used and translated into the field of ecology and quantitative biology. In particular, they 

have been used for the study of food webs, which are high dynamic expressions of ecology 

interactions in an ecosystem. Food webs can be defined as the formal expression of the exchanges of 

energy or matter among living and non-living compartments in an ecosystem (Van Ovelen, 2006).  

The work of Vezina and Platt (1988) could be defined as the milestone of inverse modelling applied 

to marine ecosystems, focusing in particular on the planktonic food web. The planktonic food web is 

the base/lower level of all marine ecosystems. Vezina and Platt were the first that used a combination 

of equalities and inequalities merging field data with the a priori knowledge from literature and 

experiments. They underline the great importance of field data estimated in situ, considering them as 

a priority compared to theoretical ones. The set of equations comprised the mass balance of each 

compartments plus a set of measured in situ flows. All other information was arranged in a set of 

inequalities. Missing flow values were selected minimising the quadratic norm (e.g. the sum of 

squared flows).  

Based on the definition of Niquil et al. (2011), Vezina and Platt method could be named the “LIM – 

MN” method, because of a linear inverse approach with a minimum norm (quadratic norm). This 
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method is highly flexible because it depends on the user’s choices to determine the best solutions. 

The definition of a criterion of choice together with the weighting scheme of flows are directly chosen 

by the user. Furthermore, the LIM depicts a polytope - space of solutions - defining the ranges of 

possible values of the flows, giving the user a more comprehensive view of the food web and an 

important way of interpretation.  

The LIM – MN has a strong mathematical construct, but it has a great uncertainty in the interpretation 

of results because the solution choice is based on a minimization. The minimization could not be the 

best option when the user is depicting the interactions inside an ecosystem. Thus, new techniques 

built on the previous algorithm were defined. The aim of this new method was to depict the complete 

set of solutions for each flow. 

It can be called LIM – MCMC technique (Niquil et al 2011) as the algorithm includes a Monte Carlo 

Markov Chain algorithm to randomly sample the solutions. The high number of dimensions (one for 

each flow) of the polytope and its complex geometry (defined by the interactions of flows) led to 

computational problems. Van den Meerche et al (2009) suggested a new method that decreases the 

computational capacity needed.  

They proposed a LIM – MCMC with a mirror technique that uses the “borders” of the polytope as 

reflecting axes if the points chosen by the random sampling fall outside the polytope. This method 

defines samples of flows that fall inside the polytope and permits to save time in the choice of 

solutions. The important factor of the LIM – MCMC is to choose an appropriate number of iteration 

and of jump length (the space between each point of the solution). If these operations are performed 

in a good way, the method will give a representative sample of the PDF (Probability Density 

Function) for each flow.  

Van Ovelen (2010) has shown how the mean of each set of solutions – i.e. the mean of each 

probability density function, being a linear operation - could be used to generate a mass balanced 

solution that fits all the constraints. PDF could be not normal, sometimes truncated by the inequality 

constraints and sometimes uniform if the model and data are not sufficient to constrain the value of a 

flow (Niquil et al 2010). 

It is important to note how the evolution of methodologies goes from a direct optimization to a range 

of solutions that better depict the solutions space for each flow. 
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1.2 AIM OF THE WORK 

The planktonic food web of the Gulf of Trieste was studied using linear inverse modelling. We 

computed both the LIM – MN and the LIM – MCMC following literature criterion, in order to get 

the best solution for our planktonic food web case. We implemented a new compartment - the growth 

compartment - to have a more realistic view of the food web, trying to go beyond the limits of the 

steady state modelling that does not take into account what is the behaviour of compartments from a 

biomasses point of view, as a snapshot of data is usually used. We then compared the two methods 

solutions with the a priori scientific knowledge of the Gulf of Trieste to determine which could be 

defined the best way of solving the food web fluxes. With the Gulf of Trieste case study, we would 

like to contribute to literature advances in the LIM methodology. Our aim is to understand which 

LIM approach would be the best in studying complex planktonic food webs. 
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2. METHODS 

 

2.1 MODEL CONSTRUCTION 

Before speaking thoroughly about the mathematical techniques that are beyond the inverse modelling 

procedures, it is important to explain how the system of equalities and inequalities is constructed. It 

is important to understand that in this work we deal with undetermined problems, and we focus only 

on these specific types of problems, leaving out all the other general cases: we’ll report functions and 

methodologies that deal with this type of problems only. 

First of all, the user has to define the a priori model that can better represent the food web of the 

ecosystem he wants to study. The a priori model is divided into two major components, the living 

and the non-living compartments. Usually, and in our case studies, non-living compartments have no 

mass balance. Living compartments are divided into minor components, depending on how deeply 

the user wants to investigate the ecosystems and on data available principally.  

Once the model is defined, a mass balance equation is written for each compartment. The terms of 

the equations define which are the relations between all the compartments that exchange fluxes with 

the compartment depicted. Flows measured in situ have to be included in  the system of equation too, 

as well as all the inequalities constraints that define the ranges of each flow - the limits of the polytope. 

These mathematical constructions have to be put in a matrix form to better handle the inverse model 

problem.  

The representation of the food web in a matricial form is depicted as follow: 

{
𝐴𝑥 ≅ 𝑏
𝐸𝑥 = 𝑓
𝐺𝑥 ≥ ℎ

 

A x = b represents the set of equalities depicted by the mass balance equations. In particular, x is the 

vector of the unknowns that has to be determined, A is the matrix of 0 and 1 that defines the equalities, 

b is the numerical vector that contains the ratios of each mass balance. E x = f is the set of equalities 

that defines which flows have to be met exactly, e.g. in situ measurement of known flows. G x ≥ h 

represents the set of inequalities explaining the upper and lower limit of each flow, derived from 

literature data. A graphic help of the model construction is given by the following image, modified 

from Niquil et al. (2011) 
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Figure 1: LIM approach modified from Niquil et al. (2011) 

R Encoding 

Soetart et al. (2009) published an R package that permits the user to build an inverse modelling model 

in a declarative way that can help not to make mistakes in writing model matrices. The LIM package 

is designed for reading, implementing and solving and inverse model. The first step is to declare all 

the LIM elements:  

 Compartments – Components between which flows are defined. 

 Externals – Compartments that represent the external world. 

 Parameters – Parameters that have constant values. 

 Flows – Flows between two compartments written in the form Source → Sink. 

 Variables – A linear expression involving flows, parameters and variables too. 

 Equalities – Relationships between unknowns or measured values that are assumed to be 

perfectly known (e.g. in situ measurement). 

 Inequalities – Relationships between unknowns or values that defines unknown ranges. 

All these declarations have to be settled in a .lim R document. 

Then, we test the .lim document with the function Read that looks for errors and tests if all the parts 

are well declared. If not, errors warnings are declared. 

To set up the LIM problems we will use the function Setup that automatically builds the matrices we 

need and implements the LIM problem in a matrix way, as a function of the unknowns. At this point 
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in the work environment the user will have all the parts needed to proceed with the solution (Matrices 

A, E, and G, vectors x, b, f and h). 

More detailed explanations are written in the manual and vignettes of LIM packages. 

 

2.2 LIM – MN  

The solution of the process relies on the principle of parsimony (Vezina and Platt, 1988). Through 

this way of solving the LIM, the user will generate a set of values for the unknowns that satisfies the 

minimisation of the quadratic norm ||A x - b||2 and the constraints of inequalities and mass balance.  

The first step is to find the solution of the continuity equation  

𝐴−1 𝑏 = 𝑥 

As in inverse problems there are fewer equations (m) than unknowns (n), 𝐴−1  does not exist as it is 

not quadratic. A solution to inverse problem can be found reparametrizing the continuity equation in 

terms of k unknowns, where k is the number of the solvable unknowns, solved explicitly. To achieve 

this, the n - dimensional space of solutions/unknowns has to be reduced to a k - dimensional space. 

The continuity equation can be solved explicitly for k unknowns by factoring A in k – dimensional 

subspaces of its observations and parameter spaces. A solution of the continuity equation can be 

reconstructed knowing the relationships between those unknowns and the original parameters. The 

SVD (Singular Value Decomposition) of A is the mathematic method that permits the user to achieve 

the solution. We rewrite A as: 

𝐴 =  𝑈 𝐿 𝑉𝑇 

Where U is a m x K matrix containing k linear independent linear combinations of the rows of A 

(observation space), V is an n x k matrix of linear combinations of the column of A (parameter space) 

and L is a diagonal k x k matrix of scaling factors. At this level the continuity equations will be written 

as: 

𝑈𝐿𝑉𝑇 𝑥 =  𝑏 

Which can be solved explicitly for x: 

𝑥 =  𝑉𝐿−1𝑈𝑇 𝑏 

Defining c = 𝐿−1𝑈𝑇 𝑏, where c is a k x 1 vector of unknowns that can be solved explicitly, the 

continuity equation can be written as:  



Methods 

8 

 

𝑥 =  𝑉𝑐 

that defines the relationship between k solvable unknowns and n. Adding n – k column vectors to that 

are usually independent and independent of the original k columns, we can make V a square matrix. 

This new V would be an equivalent representation of the parameter space of A, leading to a new 

solution that also satisfies the continuity equation, appending arbitrary values to c increasing its length 

to n. Therefore, the new solution to the continuity equation can be written as  

𝑥𝑛 =  𝑉𝑐 +  𝑉′ 𝑑 

Where V’ is a matrix of additional vectors with dimensions n x n - k and d a n - k x 1 vector of arbitrary 

constant. We can also rewrite the last equation as:  

𝑥𝑛  =  𝑥 +  𝑉′𝑑 

It is important to understand that infinite solutions could be generated changing the components of d. 

Now we can implement the information that comes from the constraints. They are defined by the 

inequalities of constraints. 

𝐺 𝑥 ≥  ℎ 

We have to update the inequalities related to the new form of the solutions:  

𝐺(𝑥 +  𝑉′𝑑)  ≥  ℎ 

𝐺𝑉′𝑑 ≥  ℎ –  𝐺𝑟 

Through diverse mathematical techniques (refer to Vezina and Platt 1988), after implementing the V’ 

matrix, which contains the n - k independent linear combinations that span the null space of A, we 

will obtain a new form of inequalities constraints, that is 

𝐺′𝑑 ≥ ℎ′ 

Where G’ = GV’ and h’ = h – Gr. The vector d can be now substituted in the  

𝑥𝑛 =  𝑉𝑐 +  𝑉′ 𝑑 

to recover the constrained solution. 

The least squares solution method, e.g. minimising the residual of ||Ax - b||, is the best way to solve 

the inverse modelling because it is a compromise between the error left by the solution and the 

increasing complexity of the solution x. The method implemented in the limSolve package from 

Soetart et al. derives from the Haskell and Hanson “algorithm for linear least squares problems with 
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equality and non-negativity constraints” (1981). The least squares method used is the one that 

minimises the sum of ||Ax - b||2, i.e. ∑ε2. The residual of the solutions (e = A x - b) could be useful in 

the choice of a solution or in comparing different solutions. 

R Encoding 

Once we got the matrices that we need to solve the inverse problem, we can implement the function 

that will give us the first solution. 

The function is the lsei() function from the R package limSolve (Functions that find the 

minimum/maximum of a linear or quadratic function: min or max (f(x)), where f(x) = ||Ax-b||2 or f(x) 

= sum(a_i*x_i) subject to equality constraints Ex = f and/or inequality constraints Gx>=h. Sample 

an underdetermined or overdetermined system Ex = f subject to Gx >= h, and if applicable Ax~=b 

solve a linear system Ax=B for the unknown x. It includes banded and tridiagonal linear systems. The 

package calls Fortran functions from 'LINPACK'), Soetart et al. 2009. 

lsei (A = NULL, B = NULL, E = NULL, F = NULL, G = NULL, H = NULL, Wx = NULL, Wa = 

NULL, type = 1, tol = sqrt(Machine$double.eps), tolrank = NULL, fulloutput = FALSE, verbose = 

TRUE) 

INPUT: 

 A: numeric matrix containing the coefficients of the quadratic function to be minimised, ||Ax - 

B||2; if the columns of A have a names attribute, they will be used to label the output. 

 B: numeric vector containing the right-hand side of the quadratic function to be minimised. 

 E: numeric matrix containing the coefficients of the equality constraints, Ex = F; if the columns 

of E have a names attribute, and the columns of A do not, they will be used to label the output. 

 F: numeric vector containing the right-hand side of the equality constraints. 

 G: numeric matrix containing the coefficients of the inequality constraints, Gx >= H; if the 

columns of G have a names attribute, and the columns of A and E do not, they will be used to 

label the output. 

 H: numeric vector containing the right-hand side of the inequality constraints. 

 Wx: numeric vector with weighting coefficients of unknowns (length = number of unknowns). 

 Wa: numeric vector with weighting coefficients of the quadratic function (Ax-B) to be minimised 

(length = number of number of rows of A). 

 Type: integer code determining algorithm to use 1 = lsei, 2 = solve.QP from R-package quadprog. 

 Tol: tolerance (for singular value decomposition, equality and inequality constraints). 
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 Tolrank: only used if type = 1; if not NULL then tolrank should be a two - valued vector 

containing the rank determination tolerance for the equality constraint equations (1st value) and 

for the reduced least squares equations (2nd value). 

 Fulloutput: if TRUE, also returns the covariance matrix of the solution and the rank of the 

equality constraints - only used if type = 1. 

 Verbose: logical to print error messages. 

OUTPUT: 

 X: vector containing the solution of the least squares problem. 

 residualNorm: scalar, the sum of absolute values of residuals of equalities and violated 

inequalities. 

 solutionNorm: scalar, the value of the minimised quadratic function at the solution, i.e. the value 

of ||Ax − b||2. 

 IsError: logical, TRUE if an error occurred. 

 type the string: "lsei", such that how the solution was obtained can be traced. 

 Covar: covariance matrix of the solution; only returned if fulloutput = TRUE. 

 RankEq: rank of the equality constraint matrix.; only returned if fulloutput = TRUE. 

 RankApp: rank of the reduced least squares problem (approximate equations); only returned if 

fulloutput = TRUE. 

 

2.3 LIM – MCMC  

This type of algorithm randomly samples the feasible region of the undermined linear problem in a 

uniform way, where the feasible region of linear problem is the part of the parameter space that 

contains all the solutions of the reduced problem (the problem is reduced due to the equalities and 

inequalities constraints).  

When we write the problem as Ax = b + ε, with ε as an error in the data vector b, the generated sample 

in the feasible region are not uniformly distributed as x is subjected to inequalities constraints (G x ≥ 

h). Thus, Van den Merschee et al. (2009) proposed a truncated distribution for x:  

𝑝(x)  ∝  𝑒−
1
2

 (𝐴𝑥−𝑏)𝑇𝑊2(𝐴𝑥−𝑏) 𝑖𝑓 𝑥 ∈  𝐿;  𝑝(𝑥)  = 0 𝑖𝑓 𝑥 ∉  𝐿 

Where W is the weight matrix W = diag(s-1) (s = standard deviation).  
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The method consists of two steps. The first step consists in eliminating the equality constraints E x = 

f to get independent samples; the second step consists in performing the sampling through a 

Metropolis algorithm with a Mirror algorithm. 

In order to eliminate the linear dependencies between xi (they are coupled by the equations E x = f), 

they have to be transformed in a vector q, which elements qi are linear independent. All solutions can 

be rewritten as: 

𝑥 =  𝑥0  +  𝑍𝑞 

where Z is a matrix obtained through the QR-decomposition or SVD of E (ZT Z = I, E Z =0). As there 

are no equalities constraints, the inverse problem can be rewritten in the form: 

{
𝐴′ 𝑞 −  𝑏′ =  ɛ

𝐺′ 𝑞 −  ℎ′ ≥  0
 

Where A’ = A Z, b’ = Ap – b, G’ G Z and h’ = G x0 – h. Using the function xsample(), a particular 

solution x0 could be used, the one that comes out from the Lsei method (previous chapter) to take 

advantage into the calculations.  

It is important to notice that the trivial solution of the inverse problem is 0 (q = 0), as p meets the 

inequality constraints: so, the x0, from which the new points will be sampled, is now 0. 

At this point we have to see the distribution of q to get the targeted distribution of the sample set x. 

The PDF (probability density function) of q is a product of the PDF of x and the jacobian determinant 

if a vector x(q) is a function of q: 

𝑝(𝑞)  =  𝑝(𝑥)||
𝜕𝑥

𝜕𝑞
 || 

as Z is orthonormal, the norm is equal to 1, the jacobian is 1 and therefore p(x) = p(q). So, if q is 

sampled uniformly, x is sampled uniformly, too. 

As x is transformed into q, it is possible to go on sampling q properly. 

The function xsample() is based on two algorithms to sample the feasible region: the metropolis 

algorithm (Roberts 1996) and the Mirror algorithm (Van de Meerche et al., 2009). The Mirror 

algorithm is an algorithm in which new samples are taken from a normal jump distribution with q1 as 

average and a fixed standard deviation called jump length. With a high number of constraints, a lot 

of new points that should be defined by the Metropolis algorithm will be outside of the feasible region 

slowing down the performance of the algorithm and have to be rejected.  
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It is important to point out that, in a Euclidean space, every inequality defines a boundary of the 

feasible space of the solution. Each boundary is a hyperplane in the solution space, inside of it there 

is the feasible region in which the inequalities are met, outside of it there is the non-feasible region. 

The hyperplanes are defined from the set of equations here:  

𝐺′(,𝑖)𝑞 −  ℎ′(𝑖)  =  0 ∀𝑖 

If q1 is a point for which the inequalities are fulfilled, we will use it as the starting point for the 

sampling distribution. A new point q2 can be sampled: first, a point q2-0 is sampled from a normal 

distribution in the space not taking into account the inequality constraints. So 

𝑞2−0  =  𝑞1  +  𝜂 

with η drawn from a normal distribution with mean 0 and fixed standard deviation. Ƞ is called the 

jump length of the Markov Chain Montecarlo and is very important as it has an important role in the 

efficiency of the algorithm: it defines the distance covered by the algorithm in one iteration. If q2-0 is 

in the feasible region, it is accepted as the new sample point q2 and evaluated in the Metropolis 

algorithm. 

If not, i.e. some inequalities are violated, the q2-0 is mirrored consecutively in the hyperplanes that 

represent the inequalities violated: the line that connects the point q1 and q2 crosses the hyperplanes. 

For each hyperplane we can calculate a scalar value α as:  

(𝐺′)(,𝑖)(𝑞1  +  𝛼(𝑖)𝜂)  + ℎ′(𝑖)  =  0 

With η = q2-0 – q1. The hyperplane with the smallest non-negative α(i), which is called α(s), is the 

hyperplane that is crossed first by the line that connect the point q1 and q2. Q2-0 is mirrored around 

this hyperplane.  

If the constraints are still violated, a new set of α(i) is calculated from the line between the new point 

and the intersection of the previous line and the first hyperplane. Again, the algorithm chooses the 

smallest non-negative α, and along the line that held the lower α is reflected the point q2-1. This 

procedure is repeated until the inequalities are met. The new point q2 is in the feasible subspace of 

the solution space and it is selected. A graphic support is represented by the following figure from 

Van den Meerche et al. (2009) 
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Figure 2: Functioning scheme of the mirror algorithm from Van den Meerche et al. (2009) 

Going back to the metropolis algorithm, it evaluates the point q2 in case it is immediately sampled in 

the feasible region of the space solution.  

The Metropolis algorithm produces samples whose distribution respects an established target 

distribution. In the function xsample() is designed randomly from a jump distribution with a 

probability density function (PDF j(.|q1) that depends on the previous point q1 accepted. The new 

sample q2 is accepted or rejected on the base of the following statement: 

if  𝑟 ≤
𝑝(𝑞2)

𝑝(𝑞1) 
    (with 0 <  𝑟 ≤  1) 

the algorithm accepts q2 else keeps q1 and re-iterate the sample procedure. The important and only 

prerequisite for the sample distribution is that the jump distribution from which q2 is drawn has to be 

symmetrical: the probability to jump from q1 to q2 (j(q2|q1) has to be the same probability to jump to 

q2 to q1 (j q1|q1). The jump distribution is written as: 

𝑖𝑓 𝐺′ 𝑞 ≥  𝑝(𝑞)  ∝  𝑒− 
1
2 

𝜎−2(𝐴′𝑞−𝑏′)𝑇𝑊2(𝐴′𝑞−𝑏′) 
 

𝑒𝑙𝑠𝑒 𝑝(𝑞)  =  0 

where σ = 1 and W = diag (s -1). If it is not set, σ is estimated from fitting the unconstrained model Ax 

- b ~ N(0,σ).  
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R encoding 

Random sampling of inverse linear problems with linear equality and inequality constraints. Xsample 

function uses Random algorithm mixed with a Mirroring technique for sampling. 

xsample (A = NULL, B = NULL, E = NULL, F =NULL, G = NULL, H = NULL, sdB = NULL, W = 

1, iter = 3000, outputlength = iter, burninlength = NULL, type = "mirror", jmp = NULL, tol = 

sqrt(Machine$double.eps), x0 = NULL, fulloutput = FALSE, test = TRUE) 

INPUT:  

 A: numeric matrix containing the coefficients of the (approximate) equality constraints, Ax 'B. 

 B: numeric vector containing the right-hand side of the (approximate) equality constraints. 

 E: numeric matrix containing the coefficients of the (exact) equality constraints, Ex = F. 

 F: numeric vector containing the right-hand side of the (exact) equality constraints. 

 G: numeric matrix containing the coefficients of the inequality constraints, Gx >= H. 

 H: numeric vector containing the right-hand side of the inequality constraints. 

 sdB: vector with standard deviation on B. Defaults to NULL. 

 W: weighting for Ax 'B. Only used if sdB=NULL and the problem is overdetermined. In that case, 

the error of B around the model Ax is estimated based on the residuals of Ax 'B. This error is made 

proportional to 1/W. If sdB is not NULL, W = diag(sdB−1). 

 Iter: integer determining the number of iterations. 

 Outputlength: number of iterations kept in the output; at most equal to iter. 

 Burninlength: a number of extra iterations, performed at first, to "warm up" the algorithm. 

 Type: type of algorithm: one of: "mirror", (mirroring algorithm), "rda" (random directions 

algorithm) or "cda" (coordinates directions algorithm). 

 Jmp: jump length of the transformed variables q: x = x0+Zq (only if type=="mirror"); if jmp is 

NULL, a reasonable value is determined by xsample, depending on the size of the NULL space. 

 Tol: tolerance for equality and inequality constraints; numbers whose absolute value is smaller 

than tol are set to zero. 

 x0: initial (particular) solution. 

 Fulloutput: if TRUE, also outputs the transformed variables q. 

 Test: if TRUE, xsample will test for hidden equalities (see details). This may be necessary for 

large problems, but slows down execution a bit. 
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OUTPUT: 

 X: matrix whose rows contain the sampled values of x. 

 Acceptedratio: ratio of acceptance (i.e. the ratio of the accepted runs / total iterations). 

 Q: only returned if fulloutput is TRUE: the transformed samples Q. 

 P: only returned if fulloutput is TRUE: probability vector for all samples (e.g. one value for each 

row of X). 

 Jmp: the jump length used for the random walk. Can be used to check the automated jump length. 
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3. MATERIALS  

 

3.1 STUDY SITE 

The study site is placed in the Gulf of Trieste, the east-northernmost edge of the Adriatic Sea (Umani 

et al 2012). The Gulf of Trieste is a shallow basin (23 m maximum depth, Umani et al., 2007), with 

a 600 km2 surface and a 9.5 km3 volume (Cossarini and Solidoro, 2008). It is highly influenced by 

the river runoff, especially the one of the Soca-Isonzo river, with the highest river discharge in spring 

and autumn, opposite to winter and summer that are the drought periods. The seasonal alternation of 

stratification and mixing and the occurrence of wind events (Querin et al., 2006) deeply influence and 

characterize the Gulf of Trieste systems. The hydrological station C1 (Latitude 45°42'2.99"N 

Longitude 13°42'36.00"E) is located in the middle east part of the gulf of Trieste, in a shallow coastal 

zone (17 m), at the outer board of the Protected Sea Area of Miramare. It is part of the Adriatic Long 

Term Ecological Research (LTER). Long term research provides a consistent picture of the 

trophodynamics interactions that define the Gulf of Trieste and permits to recognize some patterns 

that are recorded every year. In particular, spring and autumn are characterized by surface blooms of 

large diatoms, while in summer the presence of small phytoplankton - that is relevant in the 

oligotrophic and stratification condition - is observed (Malej et al., 1995; Umani, 1996; Terzic et al., 

1998). At the end of spring, at the begin of summer and during autumn, mixed filter feeders and 

herbivorous (copepod species) are present (Umani et al., 1992; Cataletto et al., 1995; Mozetic et al., 

1998). Ciliates, tintinnids and metazoans (Microzooplankton) are present during the whole year and 

dominate in summer (Mozetic et al., 1998; Cataletto et al., 1995; Umani and Beran, 2003). 

A crucial role in the flow of energy from dissolved organic matter to higher trophic levels is played 

by heterotrophic bacteria, through the protozoans grazing processes (Umani and Beran, 2003).  

 

3.2 THE A PRIORI MODEL 

We have decided to maintain the structure of the dataset, identifying three compartments of 

autotrophs, i.e. autotrophic picoplankton (Cyanobacteria – CB), autotrophic nanoplankton (AN), 

microphytoplankton (MP), and four compartments of heterotrophs: heterotrophic picoplankton 

(heterotrophic bacteria – HB), heterotrophic nanoplankton (HNF), microzooplankton (MIZ) and 

mesozooplankton (MEZ): There are also four external compartments: a CO2-Respiration 

compartment (CO2),  a DOC compartment, a Detritus compartment (DET) and a growth compartment 

(GR). The Growth compartment is implemented in order to allow the model to consider compartments 

biomass growth, as we have secondary production data. Every compartment has an outflow to CO2 
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compartment (respiration), to DOC compartment (exudation and sloppy feeding), to DET 

compartments (death, faecal pellets, sloppy feeding) and to growth compartment (net primary 

production or secondary production). Heterotrophic bacteria feed on DOC, while they are predated 

by HNF and MIZ in the same way as autotrophic bacteria. MIZ and MEZ predate on autotrophic 

nanoplankton and microphytoplankton. MIZ also predates on HNF while it is predated by MEZ only. 

The ingestion of detritus is allowed for all heterotrophic compartment (HNF, MIZ and MEZ), except 

for heterotrophic bacteria. Heterotrophic bacteria ingestion is defined as DOC uptake flux. 

Hereby we report the compartments and fluxes as they are implemented and explained in the model. 

Autotrophs compartments: 

 CB = Cyanobacteria (Autotrophic Picoplankton). 

 AN = Nanoplankton  (Autotrophic Nanoplankton). 

 MP = Microphytoplankton. 

Heterotrophs compartments: 

 HB = Hetererotrophic Bacteria (Hetererotrophic-Pikoplankton). 

 HNF = Heterotrophic_Nanoplankton. 

 MIZ = Microzooplankton. 

 MEZ = Mesozooplankton. 

External compartments: 

 CO2 = Respiration + GPP. 

 DOC = Dissolved organic carbon. 

 DET = Detritus. 

 GROWTH = C to growth. 

Flows are written in the form source → sink, respecting model and literature standards. 

CB Flows (Cyanobacteria): 

 CO2_CB: Flow (CO2, CB); GPP. 

 CB_DOC: Flow (CB, DOC); Exudation. 

 CB_CO2: Flow (CB, CO2); Respiration. 

 CB_DET: Flow (CB, DET); To detritus. 

 CB_HNF: Flow (CB, HNF); Predation by HNF. 

 CB_MIZ: Flow (CB, MIZ); Predation by MIZ. 

 CB_GR: Flow (CB, GROWTH); Net primary production. 

AN flows (Nanoplankton): 

 CO2_AN: Flow (CO2, AN); GPP. 
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 AN_DOC: Flow (AN, DOC); Exudation. 

 AN_CO2: Flow (AN, CO2); Respiration. 

 AN_DET: Flow (AN, DET); To POC. 

 AN_MIZ: Flow (AN, MIZ); Predation by MIZ. 

 AN_MEZ: Flow (AN, MEZ); Predation by MEZ. 

 AN_GR: Flow (AN, GROWTH); Net primary production. 

MP Flows (Microphytoplankton): 

 CO2_MP: Flow (CO2, MP); GPP. 

 MP_DOC: Flow (MP, DOC); Exudation. 

 MP_CO2: Flow (MP, CO2); Respiration. 

 MP_DET: Flow (MP, DET); To detritus. 

 MP_MIZ: Flow (MP, MIZ); Predation by MIZ. 

 MP_MEZ: Flow (MP, MEZ); Predation by MEZ. 

 MP_GR: Flow (MP, GROWTH); NET primary production. 

HB Flows (Heterotrophic picoplankton): 

 HB_CO2: Flow (HB, CO2); Respiration. 

 HB_DOC: Flow (HB, DOC); Exudation. 

 HB_DET: Flow (HB, DET); To detritus. 

 HB_HNF: Flow (HB, HNF); Predation by HNF. 

 HB_MIZ: Flow (HB, MIZ); Predation by MIZ. 

 HB_GR: Flow (HB, GROWTH); Secondary production 

HNF Flows (Heterotrophic nanoplankton): 

 HNF_CO2: Flow (HNF, CO2); Respiration. 

 HNF_DOC: Flow (HNF, DOC); Exudation. 

 HNF_DET: Flow (HNF, DET); To detritus. 

 HNF_MIZ: Flow (HNF, MIZ); Predation by MIZ. 

 HNF_GR: Flow (HNF, GROWTH); Secondary production. 

MIZ Flows (Microzooplankton): 

 MIZ_CO2: Flow (MIZ, CO2); Respiration. 

 MIZ_DOC: Flow (MIZ, DOC); Exudation and sloppy feeding. 

 MIZ_DET: Flow (MIZ, DET); To detritus. 

 MIZ_MEZ: Flow (MIZ, MEZ); Predation by MEZ. 

 MIZ_GR: Flow (MIZ, GROWTH); Secondary production. 
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MEZ Flows (Mesozooplankton): 

 MEZ_CO2: Flow (MEZ, CO2); Respiration. 

 MEZ_DOC: Flow (MEZ, DOC); Exudation and sloppy feedings. 

 MEZ_DET: Flow (MEZ, DET); To detritus (sloppy feeding, fecal pellets). 

 MEZ_GR: Flow (MEZ, GROWTH); Secondary production. 

DET Flows (Detritus): 

 DET_HNF: Flow (DET, HNF); Ingestion by HNF. 

 DET_MIZ: Flow (DET, MIZ); Ingestion by MIZ. 

 DET_MEZ: Flow (DET, MEZ); Ingestion by MEZ. 

DOC Flow: 

DOC_HB: Flow (DOC, HB); DOC uptake. 

Mass equation for each compartment: 

 CO2_CB - CB_DOC - CB_CO2 - CB_DET - CB_HNF - CB_MIZ - CB_GR  = 0 

 CO2_AN - AN_DOC - AN_CO2 - AN_DET - AN_MIZ - AN_MEZ - AN_GR  = 0 

 CO2_MP - MP_DOC - MP_CO2  - MP_DET - MP_MIZ - MP_MEZ - MP_GR = 0 

 DOC_HB - HB_CO2 - HB_DOC - HB_DET  - HB_HNF - HB_MIZ - HB_GR = 0 

 CB_HNF + HB_HNF + DET_HNF - HNF_CO2 - HNF_DOC - HNF_DET - HNF_MIZ - 

HNF_GR = 0 

 CB_MIZ + AN_MIZ + MP_MIZ + HNF_MIZ + DET_MIZ - MIZ_CO2 - MIZ_DOC - 

MIZ_DET - MIZ_MEZ - MIZ_GR = 0 

 MP_MEZ + MIZ_MEZ + DET_MEZ - MEZ_CO2 - MEZ_DOC - MEZ_DET - MEZ_GR = 0 

 

3.3 DATA 

All the data used in this work (Table 1) are taken from the paper “Carbon fluxes in the pelagic 

ecosystem of the Gulf of Trieste (Northern Adriatic Sea)”, by Serena Fonda Umani, Francesca 

Malfatti and Paola Del Negro, published in 2012 in Estuarine, Coastal and Shelf Sciences. Data are 

divided into different days of sampling, reported by season, and they include all field measurements 

and laboratory experiment data. We screened the dataset to select those case studies in which all the 

different plankton compartments biomass is measured: in particular we focus on the 2001 samplings, 

as the whole year is portrayed (winter, spring, summer and autumn). We use both biomass data, 

expressed in carbon content, and fluxes data as ingestions rates and secondary production (Table1) 

as input data for inverse modelling. We tried to use also net primary production and respiration rates, 

but they frequently didn’t match the constraining requests of the inverse model.  
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DATA SYMBOL UNIT 12/02/2001 07/05/2001 07/08/2001 15/11/2001 

       

Temperature T  C 10.27 15.71 25.33 14.59 

Chlorophyll content chl µg l-1 3.39 0.36 4.63 0.74 

Photosynthetically active radiation PAR µE m-2 s-1 1048.81 340.43 1756.24 1006.98 
              

Autotrophic Picoplankton biomass CB_biomass µg C l-1 8.24 16 40.1 5.85 

Autotrophic Nanoplankton biomass AN_biomass  µg C l-1 6.61 6.82 6.57 6.24 

Microphytoplankton biomass MP_biomass  µg C l-1 151 3.35 14.8 5.27 
              

Heterotrophic Picoplankton biomass HB_biomass  µg C l-1 25 24.7 27 20.3 

Heterotrophic Nanoplankton biomass HNF_biomass  µg C l-1 1.33 1.7 1.3 0.84 

Microzooplankton biomass MIZ_biomass µg C l-1 4.4 2.88 5.86 5.41 

Mesozooplankton biomass MEZ_biomass  µg C l-1 13.52 11.41 12.51 3.03 
              

Microzoo ingestion on microphytoplankton MP_MIZ µg C l-1 d-1 77.16 0.49 8.58 / 

Microzoo ingestion on AN AN_MIZ µg C l-1 d-1 6.46 2.43 9.61 3.38 

Microzoo ingestion on HNF  HNF_MIZ µg C l-1 d-1 0.77 / / / 

Microzoo ingestion on HP  HB_MIZ µg C l-1 d-1 9.83 32.16 53.44 11.34 

Microzoo ingestion on AP  CB_MIZ µg C l-1 d-1 3.02 7.21 28.23 / 

Mesozoo ingestion on AN AN_MEZ µg C l-1 d-1 3.56 6.11 / / 

Mesozoo ingestion on microphytopl  MP_MEZ µg C l-1 d-1 47.08 1.9 / / 

Mesozoo ingestion on microzoo MIZ_MEZ µg C l-1 d-1 0.22 1.76 / / 

HNF ingestion on  Heterotrophic Picoplankton  HB_HNF µg C l-1 d-1 2.54 / 36.75 9.94 

HNF ingestion on Autotrophic Picoplankton CB_HNF µg C l-1 d-1 0.38 / 37-75 1.46 
              

BCP (3H) leucine  HB_GR µg C l-1 d-1 4.8 16.32 53.21 3.58 

HNF production  HNF_GR µg C l-1 d-1 0.24 / 0.35 / 

Microzoo production MIZ_GR µg C l-1 d-1 / 0.81 4.94 / 

Table 1: Data from Umani et al., 2012 
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3.4 GROSS PRIMARY PRODUCTION (GPP) 

We chose gross primary production equalities from Jassby and Platt (1976), later modified by Lazzari 

et al. (2012). We modified the equation as we linearized it obtaining the final form we needed: 

𝐺𝑃𝑃 = 𝑓𝑝𝑡 ∗ 𝑓𝑝𝑒 ∗ 𝑓𝑝𝑝 ∗ 𝑝𝑐 ∗ 𝑟0𝑝 

where fpt indicates a function of temperature, fpe a function of light availability, fpp a function of 

nutrient availability, pc is the parameter about biomasses data of the compartment studied and r0p is 

the growth parameter of the compartment studied.  

FPT expresses the GPP relation with temperature (in the form: q10((T-10)/10), where q10 is the 

characteristic coefficient of each compartment and T is the temperature value). FPE represents the 

GPP dependence from light availability and is in the form: 

 fpe = (1- exp(- ((alpha*Epar*pl)/(r0p*pc)))) 

where Epar is the photosynthetically active radiation multiplied for the per day light availability in 

seconds (winter: 10.5 daylight hours, spring: 15 daylight hours, summer: 14 daylight hours and 

autumn: 9 daylight hours), pl is the chl concentrations in µg chl m-3, alpha is the maximum light 

utilization coefficient in mg C (mg chl)-1 (1.035 10-5 for MP, 1.52 10-5 for CB and 0.46 10-5 for AN), 

r0p is the growth parameter of the compartment studied (2 for AN, 3.5 for CB and 2 for MP), pc is 

the parameter about biomasses data of the compartment studied. All parameters explanation and 

values are drawn from the Biogeochemical Flux Model (BFM) manual version 5.1, by Vichi et al. 

(2015). 

FPP is the nutrient limitation, but we considered no limitation at all, setting the fpp value equal to 1. 

3.5 W PARAMETER 

W parameter represents the mass cell weight to insert in all the inequalities. We chose to use the 

following W values:  

 W_CB = 0.200 pg C cell-1, from Umani et al. 2012. 

 W_HB = 0.020 pg C cell-1, from Umani et al. 2012. 

 W_HNF = 5.63 pg C cell-1, from Vezina et al. 2000. 

 W_MIZ = 582.96 pg C cell-1, from Vezina et al. 2000. 

 W_MEZ = 3800000 pg C cell-1, from Richardson et al., 2006. 
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3.6 INEQUALITIES 

In table 2 inequalities used for the LIM methodology are reported. Inequalities are taken from Niquil 

et al. (2011) and represents the last upgrade of inequalities for inverse modelling found in literature.
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Table 2: Inequalities table modified from Niquil et al. 2011. 
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4. RESULTS 

 

4.1 LIM - MN 

In this section the solutions of the LIM – MN technique will be reported and described. 

 

Figure 3: Total Carbon fluxes 2001 in µg C l-1 d-1. 

There is a great difference in the sum of certain total carbon fluxes during the year (Figure 3). The 

highest level of total carbon exchanged (which is equal to the sum of the whole fluxes in the selected 

season) is in summer with a total of 969.6 µg C l-1 d-1, while the minimum is in winter with 127.1 µg 

C l-1 d-1. Spring value is near to winter value with 161.9 µg C l-1 d-1, followed by the autumn value of 

224.3 µg C l-1 d-1. Similar trends are designed for the total gross primary production and the total 

respiration of the entire food web. The total gross primary production is maximum in summer with a 

value of 98.4 µg C l-1 d-1, sinking to a lower level in autumn and spring with a value of 47.1 µg C l-1 

d-1 and 38.2 µg C l-1 d-1 respectively, and reaching the minimum of 15.8 µg C l-1 d-1 in winter. Total 
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 FLUXES LSEI_W LSEI_SP LSEI_SU LSEI_A 

1 CO2_CB 3.98 14.03 77.17 16.43 

2 CB_DOC 0.38 1.72 7.33 2.56 

3 CB_CO2 0.20 0.70 3.86 0.82 

4 CB_DET 0.00 2.07 0.00 5.79 

5 CB_HNF 0.38 0.25 37.75 1.46 

6 CB_MIZ 3.02 7.21 28.23 0.00 

7 CB_GR 0.00 2.07 0.00 5.79 

8 CO2_AN 11.72 14.29 11.24 17.00 

9 AN_DOC 1.11 1.36 1.07 2.67 

10 AN_CO2 0.59 0.71 0.56 0.85 

11 AN_DET 0.00 1.03 0.00 4.97 

12 AN_MIZ 6.46 2.43 9.61 3.38 

13 AN_MEZ 3.56 6.11 0.00 0.16 

14 AN_GR 0.00 2.65 0.00 4.97 

15 CO2_MP 0.14 9.95 10.04 14.49 

16 MP_DOC 0.05 1.08 0.95 2.89 

17 MP_CO2 0.04 0.50 0.50 0.72 

18 MP_DET 0.02 3.00 0.00 4.79 

19 MP_MIZ 0.00 0.49 8.58 0.00 

20 MP_MEZ 0.00 1.90 0.00 1.29 

21 MP_GR 0.02 3.00 0.00 4.79 

22 HB_CO2 7.08 6.53 59.11 10.25 

23 HB_DOC 10.09 9.79 84.29 14.61 

24 HB_DET 0.00 0.00 0.00 0.00 

25 HB_HNF 2.54 0.00 36.75 9.94 

26 HB_MIZ 9.83 0.00 53.44 11.34 

27 HB_GR 4.80 16.32 53.21 3.58 

28 HNF_CO2 0.66 0.05 17.09 2.74 

29 HNF_DOC 0.62 0.03 17.09 2.74 

30 HNF_DET 0.63 0.05 21.69 2.77 

31 HNF_MIZ 0.77 0.00 8.84 0.00 

32 HNF_GR 0.24 0.12 0.35 3.16 

33 MIZ_CO2 4.38 2.38 24.16 3.02 

34 MIZ_DOC 5.74 2.38 24.16 3.02 

35 MIZ_DET 4.72 2.80 30.06 3.31 

36 MIZ_MEZ 0.22 1.76 25.39 1.52 

37 MIZ_GR 5.02 0.81 4.94 3.86 

38 MEZ_CO2 0.90 2.54 5.52 0.66 

39 MEZ_DOC 0.90 2.38 5.52 0.66 

40 MEZ_DET 0.96 2.40 6.79 0.80 

41 MEZ_GR 1.01 2.45 7.57 0.85 

42 DET_HNF 0.00 0.00 0.00 0.00 

43 DET_MIZ 0.00 0.00 0.00 0.00 

44 DET_MEZ 0.00 0.00 0.00 0.00 

45 DOC_HB 34.34 32.64 286.80 49.72 

Table 3: Carbon Fluxes 2001 in µg C l-1 d-1. 
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Total fluxes to the detritus are characterized by a high value in summer, with 58.5 µg C l-1 d-1, 

followed by 22.4 µg C l-1 d-1 in autumn, 11.3 µg C l-1 d-1 in spring and the minimum in winter with 

6.3 µg C l-1 d-1. 

0 fluxes are always present in all the seasons: they vary from a number of seven in spring and autumn 

to ten in winter and twelve in summer. There are some fluxes that are always settled to 0 µg C l-1 d-1 

as the particulate ingestion fluxes of heterotrophic nanoplankton, microzooplankton and 

mesozooplankton and the flux from heterotrophic bacteria to detritus. Most of the other 0 fluxes are 

mostly concentrated in winter and summer. Some of them are fluxes directed to the detritus as those 

ones of cyanobacteria and autotrophic nanoplankton, both in winter and in summer, coupled in both 

cases to the flux and to the growth compartment. MP to detritus and to GR in summer are null, too. 

The remaining fluxes settled to 0 µg C l-1 d-1 are predation fluxes: the ingestion of MIZ and MEZ on 

MP in winter, the predation of HNF and MIZ on HB and MIZ ingestion of HNF in spring. The 

predation of MEZ on AN and MP are null in summer. In autumn only MIZ predation on CB, MP and 

HNF are 0 µg C l-1 d-1. 

 

Figure 4: CB Carbon Fluxes 2001 in µg C l-1 d-1. 
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Considering cyanobacteria (Figure 4), the highest flux detected is gross primary production in 

summer with a value of 77.1 µg C l-1 d-1, while the minimum is in winter with 3.9 µg C l-1 d-1. In 

spring and autumn gross primary production has similar values with 14 µg C l-1 d-1 in spring and 16.4 

µg C l-1 d-1 in autumn. The highest predatory pressure is carried out by HNF and MIZ in summer with 

37.75 µg C l-1 d-1 and 28.23 µg C l-1 d-1 respectively. MIZ predation is also relatively high in spring 

with 7.2 µg C l-1 d-1. Fluxes to growth compartment are present in spring and summer with 2 µg C l-

1 d-1 and 5.7 µg C l-1 d-1 respectively. Excretion of DOC is higher in summer with 7.3 µg C l-1 d-1 with 

a minimum of 0.3 µg C l-1 d-1 in winter. Detritus fluxes are detected in spring and autumn with 2 µg 

C l-1 d-1 and 5.7 µg C l-1 d-1 respectively. 

 

Figure 5: AN Carbon Fluxes 2001 in µg C l-1 d-1. 
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spring respectively. Doc exudation is nearly constant during the year (from 1.06 µg C l-1 d-1 to 1.3 µg 

C l-1 d-1), with a peak of 2.6 µg C l-1 d-1in autumn. Respiration fluxes are low during the year, going 

from a minimum of 0.56 µg C l-1 d-1 in summer to a maximum of 0.8 µg C l-1 d-1 in autumn. MIZ 

predatory pressure have a maximum in summer with 9.61 µg C l-1 d-1 and a minimum in spring with 

2.43 µg C l-1 d-1, while during winter and autumn they are about 6.46 and 3.38 µg C l-1 d-1 respectively. 

The predation behaviour of MEZ is opposite to the one of MIZ, with a maximum of 6.11 µg C l-1 d-1 

in spring, a minimum of 0.15 µg C l-1 d-1 in autumn and 3.56 µg C l-1 d-1 in winter. Detritus fluxes 

vary from 4.9 µg C l-1 d-1 in autumn to 1.03 µg C l-1 d-1 in spring. Autumn growth flux is higher (4.9 

µg C l-1 d-1) than spring growth flux (2.65 µg C l-1 d-1). 

 

Figure 6: MP Carbon Fluxes 2001 in µg C l-1 d-1. 
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1 in spring, 0.50 µg C l-1 d-1 in summer and a maximum of 0.72 µg C l-1 d-1 in autumn. Excretion of 

DOC varies from 0.05 µg C l-1 d-1 in winter to 2.88 µg C l-1 d-1 in autumn, with 1.07 µg C l-1 d-1 and 

0.95 in spring and summer respectively. Predation by MIZ has a peak in summer with 8.58 µg C l-1 

d-1, while the MIZ maximum is in spring with 1.9 µg C l-1 d-1. Growth flux varies from 4.79 µg C l-1 

d-1 in autumn to 0.02 µg C l-1 d-1 in spring. Similar values are observed for the detritus fluxes, with 

4.79 µg C l-1 d-1 in autumn and 0.02 µg C l-1 d-1 in winter. 

 

Figure 7: HB Carbon Fluxes 2001 in µg C l-1 d-1. 

Coming to speak of heterotrophic compartment, heterotrophic bacteria (Figure 7) are the 

compartment which is better described by field data as secondary production fluxes and predation 

fluxes have been directly detected by in situ measurements. Summer is the season in which carbon 

fluxes through the heterotrophic bacteria compartment are important in term of carbon. Maximum 

values are registered in this season as 286.8 µg C l-1 d-1 of DOC uptake, 84.28 µg C l-1 d-1 of DOC 

excretion, 59.11 µg C l-1 d-1 of respiration flux and 53.21 µg C l-1 d-1 of growth flux. In this period 

predation pressure gets to its maximum value, varying from 36.75 µg C l-1 d-1 by HNF to 53.44 by 

0

10

20

30

40

50

60

70

80

90

HB_CO2 HB_DOC HB_DET HB_HNF HB_MIZ HB_GR

µ
g 

C
 l-1

d
-1

HB fluxes 2001

LSEI_W LSEI_SP LSEI_SU LSEI_A



Results 

30 

MIZ. In the other seasons, fluxes are lower than summer fluxes. Doc uptake has similar values in 

winter and spring with 34.34 µg C l-1 d-1 and 32.64 µg C l-1 d-1 respectively. While it is a little higher 

in autumn with 49.72 µg C l-1 d-1. Respiration fluxes go from 6.52 µg C l-1 d-1 in spring to 7.07 µg C 

l-1 d-1 in winter, with a higher value in autumn (10.24 µg C l-1 d-1). Doc excretion has similar values 

in winter (10.09 µg C l-1 d-1) and spring (9.79 µg C l-1 d-1), and is higher in autumn (14.61 µg C l-1 d-

1). Growth fluxes are higher in spring with 16.32 µg C l-1 d-1, lower in winter with 4.8 µg C l-1 d-1 and 

autumn 3.58 µg C l-1 d-1. HNF predation in autumn (9.94 µg C l-1 d-1) is three times higher than in 

winter (2.54 µg C l-1 d-1), while MIZ predation flux is nearly the same in autumn (11.34 µg C l-1 d-1) 

and in winter (9.83 µg C l-1 d-1). 

 

Figure 8: HNF Carbon Fluxes 2001 in µg C l-1 d-1. 

Heterotrophic nano flagellates respiration and DOC excretion fluxes have similar trends during the 

year (Figure 8). The maximum value is in summer, both with 19.02 µg C l-1 d-1 and the minimum 

values are in spring with 0.04 µg C l-1 d-1 and 0.02 µg C l-1 d-1 respectively . Similar values are in 

winter with 0.66 µg C l-1 d-1 and 0.62 µg C l-1 d-1, and they have the same value with 2.73 µg C l-1 d-
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1 in autumn again. Detritus fluxes vary a lot during the year: summer value is about 21.68 µg C l-1 d-

1, while winter, spring and autumn values are 0.62 µg C l-1 d-1, 0.045 µg C l-1 d-1 and 2.76 µg C l-1 d-

1 respectively. Predation by MIZ is about 8.84 µg C l-1 d-1 in summer and 0.77 µg C l-1 d-1 in winter. 

The fluxes to the growth compartment vary from 3.16 µg C l-1 d-1 in autumn to 0.12 µg C l-1 d-1 in 

spring (0.24 µg C l-1 d-1 in winter and 0.35 µg C l-1 d-1 in summer). 

 

Figure 9: MIZ Carbon Fluxes 2001 in µg C l-1 d-1. 

Microzooplankton group (Figure 9) is characterized by high fluxes values in summer. Respiration 

values vary from 24.15 µg C l-1 d-1 in summer to 2.38 µg C l-1 d-1 in spring. Autumn value is near to 

the spring one (3.01 µg C l-1 d-1), while winter respiration is a little higher (4.37 µg C l-1 d-1). Except 

for the winter value (5.74 µg C l-1 d-1), doc excretion values are the same as those of the respiration 

flux. Detritus flux is lower in spring (2.79 µg C l-1 d-1) and it is maximum in summer (30.05 µg C l-1 

d-1). Predation by MEZ is active principally in summer with 25.39 µg C l-1 d-1, while it is very low 

during the other seasons (0.22 µg C l-1 d-1 in winter, 1.76 µg C l-1 d-1 in spring and 1.52 µg C l-1 d-1 in 
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autumn). Fluxes directed to the growth compartment have a different trend: the maximum value is in 

winter with 5.02 µg C l-1 d-1 and the minimum one is in spring with 0.81 µg C l-1 d-1 (4.94 µg C l-1 d-

1 in summer and 3.85 µg C l-1 d-1 in autumn).  

 

Figure 10: MEZ Carbon Fluxes 2001 in µg C l-1 d-1. 

Mesozooplankton fluxes have similar values during each season (Figure 10), except for the summer 

ones that vary. In spring respiration and doc excretion have the same value  (0.90 µg C l-1 d-1) while 

fluxes to the detritus and to growth are slightly different: 0.96 µg C l-1 d-1 and 1 µg C l-1 d-1 

respectively. A similar trend is observed in summer with 5.51 µg C l-1 d-1 for respiration and doc 

excretion, 6.78 µg C l-1 d-1 for detritus flux and 7.57 µg C l-1 d-1 for the growth flux. In spring and 

autumn fluxes values are similar: 2.54 µg C l-1 d-1, 2.38 µg C l-1 d-1, 2.39 µg C l-1 d-1 and 2.44 µg C l-

1 d-1 in spring,  0.66 µg C l-1 d-1, 0.66 µg C l-1 d-1, 0.79 µg C l-1 d-1 and 0.85 µg C l-1 d-1 in autumn. 

As it can be seen in Figure 11, carbon fluxes values varied a lot during the year 2001. 
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In the autotrophic compartments, higher values are related to primary production fluxes, generally 

followed by predatory fluxes, respiration and dissolved organic carbon fluxes. In the heterotrophic 

compartments higher values are related to respiration terms and ingestion ones. 

During summer the compartment with higher carbon fluxes are Bacteria compartments, both 

autotrophic and heterotrophic ones, followed by HNF compartment. Autumn is characterised by HB 

and HNF compartment carbon fluxes, while in spring MP and HB compartments are the ones with 

the major fluxes. Winter is characterised by AN and HB compartment in terms of carbon values. 
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Figure 11: LSEI Food web Carbon fluxes 2001 in µg C l-1 d-1 
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4.2 LIM - MCMC 

In this section the solution of the LIM – MCMC technique is reported and described. 

 

Figure 12: Total Carbon fluxes 2001 in µg C l-1 d-1. 

In figure 12 the sum of certain total fluxes relevant for the analysis of the food web is reported, which 

were obtained with the LIM – MCMC technique. At a first glance it is important to realize the great 

differences of Carbon values during the year, except for summer values that are always higher than 

the others. The total carbon exchanged (that is equal to the sum of the whole fluxes in the selected 

season), has its maximum value in summer with 1692.38 ± 133.2 µg C l-1 d-1 and the minimum one 

in autumn with 405.07 ± 33.14 µg C l-1 d-1. Spring value is near the autumn one with 460.9 ± 45.05 

µg C l-1 d-1 but less than the winter value that is 654.98 ± 68.85 µg C l-1 d-1. Total gross primary 

production is low in spring with 44.97 ± 5.36 µg C l-1 d-1 and has a similar value in autumn with 55.01 

± 5.14 µg C l-1 d-1. Higher values are registered in winter with 204.79 ± 31.24 µg C l-1 d-1, and the 

maximum one is in summer with 404.38 ± 94 µg C l-1 d-1. Respiration fluxes have similar values in 

winter and spring, with 84.83 ± 20.78 µg C l-1 d-1 and 82.30 ± 20.95 µg C l-1 d-1 respectively. The 

lowest value is in autumn with 69.90 ± 17.55 µg C l-1 d-1, while the highest one is in summer with 

229.56 ± 43.55 µg C l-1 d-1. In spring and autumn, fluxes to detritus assume similar value with 42.96 

± 14.96 µg C l-1 d-1 and 40.38 ± 11.07 µg C l-1 d-1. Higher values are registered in winter with 88.24 

± 36.12 µg C l-1 d-1, while the maximum is in summer with 144.47 ± 27.79 µg C l-1 d-1. 
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 FLUXES MCMC_M_W SD_W MCMC_M_SP SD_SP MCMC_M_SU SD_SU MCMC_M_A SD_A 

1 CO2_CB 24,27 4,14 18,99 3,66 286,49 93,49 22,88 3,37 

2 CB_DOC 5,97 2,87 3,27 1,64 89,02 53,56 5,16 2,45 

3 CB_CO2 3,90 1,88 3,68 1,80 48,25 25,15 3,99 1,87 

4 CB_DET 5,53 3,93 1,79 1,56 28,30 21,77 4,22 3,27 

5 CB_HNF 0,38 0,00 1,74 1,56 37,75 0,00 1,46 0,00 

6 CB_MIZ 3,02 0,00 7,21 0,00 28,23 0,00 3,86 3,03 

7 CB_GR 5,57 3,89 1,79 1,57 54,95 36,00 4,36 3,26 

8 CO2_AN 18,35 1,51 18,55 3,55 48,45 6,89 20,44 3,26 

9 AN_DOC 3,17 1,36 3,28 1,66 11,35 5,33 4,73 2,26 

10 AN_CO2 2,47 1,21 3,62 1,75 7,79 3,75 3,59 1,68 

11 AN_DET 1,59 1,31 1,76 1,57 10,31 7,08 4,26 2,98 

12 AN_MIZ 6,46 0,00 2,43 0,00 9,61 0,00 3,38 0,00 

13 AN_MEZ 3,56 0,00 6,11 0,00 0,85 0,74 0,60 0,48 

14 AN_GR 1,59 1,31 1,83 1,59 8,61 6,50 4,03 2,98 

15 CO2_MP 162,18 30,93 7,43 1,69 69,44 13,63 11,69 2,12 

16 MP_DOC 40,83 19,73 1,68 0,88 16,81 8,49 2,69 1,34 

17 MP_CO2 27,16 13,18 1,31 0,64 11,44 5,41 1,91 0,92 

18 MP_DET 51,13 34,54 1,32 1,07 15,29 10,73 2,32 1,84 

19 MP_MIZ 2,69 1,95 0,49 0,00 8,58 0,00 2,20 1,77 

20 MP_MEZ 2,07 1,39 1,90 0,00 0,86 0,75 0,55 0,45 

21 MP_GR 38,31 32,11 1,31 1,06 16,50 11,03 2,34 1,84 

22 HB_CO2 41,09 15,87 57,49 20,71 117,67 34,94 46,66 17,29 

23 HB_DOC 20,85 14,33 29,92 19,29 66,71 33,90 21,94 13,52 

24 HB_DET 17,98 9,47 21,59 14,18 14,53 10,51 14,52 9,41 

25 HB_HNF 2,54 0,00 12,71 8,93 36,75 0,00 9,94 0,00 

26 HB_MIZ 9,83 0,00 2,00 1,71 53,44 0,00 11,34 0,00 

27 HB_GR 4,80 0,00 16,32 0,00 53,21 0,00 3,58 0,00 

28 HNF_CO2 2,64 1,10 9,34 1,66 16,07 0,61 4,40 0,61 

29 HNF_DOC 1,43 0,66 6,21 2,00 11,69 2,48 2,95 0,85 

30 HNF_DET 1,75 0,94 8,67 3,85 28,30 2,64 4,01 1,67 

31 HNF_MIZ 0,77 0,00 2,10 1,76 8,64 0,14 3,37 2,25 

32 HNF_GR 0,24 0,00 11,41 4,66 0,35 0,00 3,51 2,30 

33 MIZ_CO2 5,72 0,45 4,43 0,85 23,00 0,70 8,78 1,29 

34 MIZ_DOC 2,91 1,97 2,66 0,81 17,03 3,52 5,71 1,65 

35 MIZ_DET 8,01 2,05 4,73 1,28 40,51 3,76 10,36 2,89 

36 MIZ_MEZ 0,22 0,00 1,76 0,00 22,20 1,04 0,65 0,51 

37 MIZ_GR 8,71 2,11 0,81 0,00 4,94 0,00 11,60 3,31 

38 MEZ_CO2 1,86 0,24 2,42 0,17 5,35 0,24 0,57 0,07 

39 MEZ_DOC 1,22 0,34 1,66 0,39 3,76 0,83 0,38 0,10 

40 MEZ_DET 2,24 0,59 3,10 0,64 7,23 1,44 0,69 0,18 

41 MEZ_GR 2,66 1,14 3,65 1,19 8,49 1,76 1,19 0,77 

42 DET_HNF 5,33 2,73 23,28 11,01 0,39 0,37 6,70 3,12 

43 DET_MIZ 2,80 1,99 2,05 1,75 0,10 0,10 12,96 6,80 

44 DET_MEZ 2,12 1,41 1,07 0,65 0,89 0,77 0,65 0,50 

45 DOC_HB 97,07 18,59 140,02 26,71 342,25 22,27 107,95 18,11 

Table 4: Carbon Fluxes MCMC 2001 in µg C l-1 d-1. 



Results 

37 

 

Figure 13: CB Carbon Fluxes MCMC 2001 in µg C l-1 d-1. 

Summer is the season when the maximum values of carbon for each flow of the cyanobacteria 

compartment (Figure 13) are registered. Gross primary production in summer is very high, about 

286.49 ± 93.49 µg C l-1 d-1, while values are similar in the other seasons: 24.26 ± 4.14 µg C l-1 d-1 in 

winter, 22.88 ± 3.36 µg C l-1 d-1 in autumn and 18.99 ± 3.65 µg C l-1 d-1 in spring. A similar trend is 

observed for the excretion of DOC, with the maximum in summer (89.01 ± 53.55 µg C l-1 d-1) and 

similar values in winter (5.97 ± 2.86 µg C l-1 d-1), autumn (5.15 ± 93.49 µg C l-1 d-1) and lower in 

spring (3.27 ± 1.67 µg C l-1 d-1). Respiration fluxes have similar values in winter, autumn and spring, 

with 3.90 ± 1.88 µg C l-1 d-1, 3.68 ± 1.79 µg C l-1 d-1 and 3.98 ± 1.87 µg C l-1 d-1, with the maximum 

one in summer with 48.25 ± 25.14 µg C l-1 d-1. Detritus fluxes vary during the year: the minimum is 

spring with 1.79 ± 1.56 µg C l-1 d-1, the maximum is in summer with 28.30 ± 21.76 µg C l-1 d-1, winter 

value is about 5.53 ± 3.92 µg C l-1 d-1 and autumn is about 4.22 ± 3.26 µg C l-1 d-1. Growth fluxes are 

like detritus ones (winter 5.56 ± 3.88 µg C l-1 d-1, 1.78 ± 1.57 µg C l-1 d-1, 3.26 ± 1.79 µg C l-1 d-1) 

except for the one in summer, which is doubled: 54.95 ± 36 µg C l-1 d-1. Predation fluxes estimated 

by the LIM – MCMC are those in spring by HNF with 1.74 ± 1.55 µg C l-1 d-1 and by MIZ in autumn 

with 3.85 ± 3.03 µg C l-1 d-1. 
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Figure 14: AN Carbon Fluxes MCMC 2001 in µg C l-1 d-1. 

AN primary production (figure 14) is characterized by a maximum of 48.44 ± 6.88 µg C l-1 d-1in 

summer, similar values in winter (18.35 ± 1.51 µg C l-1 d-1) and spring (18.54± 3.54 µg C l-1 d-1) and 

higher ones in autumn (20.44 ± 3.25 µg C l-1 d-1). The same trend is observed for DOC excretion, 

even if with lower values: the maximum is in summer with 11.34 ± 5.32 µg C l-1 d-1, the minimum in 

winter with 3.17 ± 1.51 µg C l-1 d-1, similar value in spring (3.27 ± 3.54 µg C l-1 d-1) and a higher 

value in autumn (4.72 ± 2.25 µg C l-1 d-1). The same can be said for the respiration flux, detritus flux 

and the fluxes to the growth compartment. Respiration flux and growth flux have similar values in 

summer, 7.78 ± 3.74 µg C l-1 d-1 and 8.6 ± 0.74 µg C l-1 d-1, while detritus flux is higher with 10.31 ± 

7.08 µg C l-1 d-1. Winter detritus flux is equal to winter growth flux, with 1.59 ± 1.30 µg C l-1 d-1, 

while in spring values are similar (1.76 ± 1.56 µg C l-1 d-1 and 1.82 ± 1.58 µg C l-1 d-1). Similar values 

are shared by the respiration flux in spring (3.62 ± 1.7 µg C l-1 d-1) and autumn (3.59 ± 1.68 µg C l-1 

d-1), detritus flux and growth flux in autumn (4.25 ± 2.98 µg C l-1 d-1 and 4.03 ± 2.97 µg C l-1 d-1). 

Respiration flux is the lowest in winter with 2.46 ± 1.20 µg C l-1 d-1. Predation fluxes obtained by the 

MCMC are those by MEZ in summer and autumn,0.85 ± 0.74 µg C l-1 d-1 and 0.59 ± 0.0.48 µg C l-1 

d-1 respectively as the others, both by MIZ and MEZ, were defined by laboratory experiments. 
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Figure 15: MP Carbon Fluxes MCMC 2001 in µg C l-1 d-1. 

MP fluxes (Figure 15) during the year are characterized by maximum values in winter followed by 

summer ones. MP gross primary production is defined by comparable values in spring and autumn 

with 7.4 ± 1.69 µg C l-1 d-1 and 11.69 ± 2.12 µg C l-1 d-1, while the maximum value is in winter, 

162.17 ± 11.69 µg C l-1 d-1, followed by 69.44 ± 13.63 µg C l-1 d-1 in summer. Similar values are 

depicted in spring for the DOC excretion, respiration, detritus and growth fluxes with 1.67 ± 0.88 µg 

C l-1 d-1, 1.30 ± 0.64 µg C l-1 d-1, 1.31 ± 1.06 µg C l-1 d-1 and 1.30 ± 1.06 µg C l-1 d-1 respectively. 

Similar values are obtained in summer between DOC excretion flux (16.80 ± 8.48 µg C l-1 d-1), 

detritus flux (15.29 ± 10.72 µg C l-1 d-1) and growth flux (16.49 ± 11.03 µg C l-1 d-1), while respiration 

flux is lower (11.44 ± 5.41 µg C l-1 d-1). In winter, fluxes vary a lot, from 40.82 ± 19.72 µg C l-1 d-1 

of DOC excretion and 38.31 ± 32.11 µg C l-1 d-1 of growth flux to 51.13 ± 34.54 µg C l-1 d-1 of detritus 

one and 27.16 ± 13.18 µg C l-1 d-1 of respiration. In autumn fluxes are very low and similar, with 

small differences between excretion flux (2.68 ± 1.33 µg C l-1 d-1), detritus flux (2.31 ± 1.83 µg C l-1 

d-1), growth flux (2.33 ± 1.83 µg C l-1 d-1) and respiration flux (1.91 ± 0.92 µg C l-1 d-1). MIZ predation 

on MP has similar values in winter and autumn with 2.69 ± 1.94 µg C l-1 d-1 and 2.19 ± 1.77 µg C l-1 
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d-1 similar to MEZ predation in winter with 2.05 ± 1.38 µg C l-1 d-1, while it is lower in summer (0.86 

± 0.74 µg C l-1 d-1) and autumn (0.55 ± 0.45 µg C l-1 d-1). 

 

Figure 16: HB Carbon Fluxes MCMC 2001 in µg C l-1 d-1. 

HB compartment (Figure 16) is the most constrained by in situ and laboratory measurements, as 

growth fluxes and predation ones are known. DOC uptake by HB is the flux that has the highest 

values during the year: the maximum is in summer with 342.25 ± 22.27 µg C l-1 d-1, decreasing to 

140.01 ± 26.71 µg C l-1 d-1 and 107.94 ± 18.11 µg C l-1 d-1 in spring and autumn, and it reaches the 

minimum in winter with 97.06 ± 18.58 µg C l-1 d-1. Respiration flux has similar values in autumn 

(46.65 ± 17.28 µg C l-1 d-1) and winter (41.08 ± 15.87 µg C l-1 d-1), it increases in spring with 57.49 

± 20.71 µg C l-1 d-1 reaching the maximum in summer (117.66 ± 34.93 µg C l-1 d-1). Predation fluxes 

estimated through the MCMC are those detected in spring by HNF with 12.70 ± 8.9 µg C l-1 d-1 and 

by MIZ with 2 ± 1.71 µg C l-1 d-1. DOC excretion is maximum in summer with 66.70 ± 33.89 µg C l-

1 d-1, it decreases in spring (29.92 ± 19.28 µg C l-1 d-1) reaching lower values in winter (20.84 ± 14.32 

µg C l-1 d-1) and autumn (21.93 ± 13.51 µg C l-1 d-1). Fluxes to detritus have nearly the same values 
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in summer and autumn with 14.53 ± 10.51 µg C l-1 d-1 and 14.51 ± 9.41 µg C l-1 d-1 respectively, they 

become higher in winter with 17.98 ± 9.46 µg C l-1 d-1, reaching the maximum level in spring with 

21.59 ± 14.17 µg C l-1 d-1. 

 

Figure 17: HNF Carbon Fluxes MCMC 2001 in µg C l-1 d-1. 

Heterotrophic nano flagellates fluxes (Figure 17) are characterized by the highest values in summer 

except for the growth fluxes, for which the maximum value is reached in spring with 11.40 ± 4.65 µg 

C l-1 d-1 and the detritus ingestion by HNF for which the highest value is in spring with 23.28 ± 11 

µg C l-1 d-1. In summer respiration flux is about 16.07 ± 0.61 µg C l-1 d-1, decreasing to 9.34 ± 1.65 

µg C l-1 d-1 in spring, 4.40 ± 0.60 µg C l-1 d-1 in autumn and 2.63 ± 1.09 µg C l-1 d-1 in winter. In 

winter Doc excretion and the flux to detritus have similar values, 1.42 ± 0.66 µg C l-1 d-1 and 1.75 ± 

0.93 µg C l-1 d-1 respectively, while in autumn they differ a little more, with 2.94 ± 0.85 µg C l-1 d-1 

and 4.01 ± 1.66 µg C l-1 d-1. The highest level of detritus flux is in summer with 28.29 ± 2.63 µg C l-

1 d-1 decreasing to 8.66 ± 3.84 µg C l-1 d-1 in spring, similar to DOC excretion flux trend: 11.69 ± 2.48 

µg C l-1 d-1 in summer and 6.21 ± 2 µg C l-1 d-1 in spring. Predation by MIZ is higher in summer with 

8.63 ± 0.14 µg C l-1 d-1 and it has similar lower values in spring and autumn with 2.10 ± 1.75 µg C l-
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1 d-1 and 3.36 ± 2.24 µg C l-1 d-1. Detritus ingestion has similar values in winter (5.32 ± 2.72 µg C l-1 

d-1) and autumn 6.70 ± 3.11 µg C l-1 d-1) and decreases drastically in summer with 0.38 ± 0.37 µg C 

l-1 d-1 only. 

 

Figure 18: MIZ Carbon Fluxes MCMC 2001 in µg C l-1 d-1. 
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than 22.9 ± 0.7 µg C l-1 d-1, 22.20 ± 1.04 µg C l-1 d-1 and 17.02 ± 3.52 µg C l-1 d-1 of respiration, MEZ 

predation and Doc excretion flux respectively. Autumn is characterised by a low level of predation 

by MEZ (0.64 ± 0.50 µg C l-1 d-1), a similar level of detritus and growth fluxes (10.35 ± 2.89 µg C l-

1 d-1 and 11.60 ± 3.31 µg C l-1 d-1). Respiration flux is about 8.78 ± 1.29 µg C l-1 d-1 and the flux to 

DOC is about 5.71 ± 1.65 µg C l-1 d-1.  

 

Figure 19: MEZ Carbon Fluxes MCMC 2001 in µg C l-1 d-1 

Except for detritus ingestion flux, the maximum values reached by MEZ fluxes are observed in 

summer (Figure 19). In winter the majority of fluxes have similar values, ranging from 2.65 ± 1.13 

µg C l-1 d-1 of growth flux, to 1.22 ± 0.34 µg C l-1 d-1 of the flux to DOC compartment. Detritus flux 

(2.24 ± 0.59 µg C l-1 d-1) has similar values of the detritus ingestion flux (2.11 ± 1.4 µg C l-1 d-1), 

while the respiration one is lower (1.85 ± 0.24 µg C l-1 d-1). In spring the major fluxes are the flux to 

detritus (3.10 ± 0.64 µg C l-1 d-1) and the flux to growth compartment (3.65 ± 1.18 µg C l-1 d-1), 

followed by respiration flux (2.42 ± 0.16 µg C l-1 d-1), the flux to DOC (1.66 ± 0.38 µg C l-1 d-1); the 

last one is the detritus ingestion flux (1.07 ± 0.65 µg C l-1 d-1). Summer fluxes are the highest in the 

whole year: growth flux is 8.48 ± 1.75 µg C l-1 d-1, detritus flux is 7.22 ± 1.43 µg C l-1 d-1 and 
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respiration one is 5.35 ± 0.24 µg C l-1 d-1. The lowest value in summer is the detritus ingestion flux 

with 0.89 ± 0.76 µg C l-1 d-1. Autumn is characterised by the lowest values in term of fluxes of the 

year. The highest value registered is 1.19 ± 0.77 µg C l-1 d-1 (Growth flux), while the lower one is 

0.37 ± 0.10 µg C l-1 d-1 (Doc flux). The other fluxes range from 0.68 ± 0.18 µg C l-1 d-1 (detritus flux) 

to 0.56 ± 0.07 µg C l-1 d-1 (respiration flux). Growth flux is similar to the summer one, with 0.64 ± 

0.5 µg C l-1 d-1. 

As it can be seen in figure 20, carbon fluxes values varied a lot during the year 2001. 

In the autotrophic compartments, higher values are related to primary production fluxes, generally 

followed by dissolved organic carbon, detritus and predatory fluxes. In the heterotrophic 

compartments higher values are related to respiration, detritus and ingestion terms. 

During summer the compartment with highest carbon fluxes are Bacteria compartments, autotrophic 

as well as heterotrophic ones, followed by MIZ compartment. Autumn and spring are characterised 

by HB and HNF compartment carbon fluxes. Winter is characterised by MP and HB compartments 

in term of carbon values. 
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Figure 20: MCMC Food Web Carbon fluxes 2001 in µg C l-1 d-1 

0

50

100

150

200

250

300

350

C
O

2
_C

B

C
B

_D
O

C

C
B

_C
O

2

C
B

_D
ET

C
B

_H
N

F

C
B

_M
IZ

C
B

_G
R

C
O

2
_A

N

A
N

_D
O

C

A
N

_C
O

2

A
N

_D
ET

A
N

_M
IZ

A
N

_M
EZ

A
N

_G
R

C
O

2
_M

P

M
P

_D
O

C

M
P

_C
O

2

M
P

_D
ET

M
P

_M
IZ

M
P

_M
EZ

M
P

_G
R

H
B

_C
O

2

H
B

_D
O

C

H
B

_D
ET

H
B

_H
N

F

H
B

_M
IZ

H
B

_G
R

H
N

F_
C

O
2

H
N

F_
D

O
C

H
N

F_
D

ET

H
N

F_
M

IZ

H
N

F_
G

R

M
IZ

_
C

O
2

M
IZ

_
D

O
C

M
IZ

_
D

ET

M
IZ

_
M

EZ

M
IZ

_
G

R

M
EZ

_C
O

2

M
EZ

_D
O

C

M
EZ

_D
ET

M
EZ

_G
R

D
ET

_
H

N
F

D
ET

_
M

IZ

D
ET

_
M

EZ

D
O

C
_H

B

µ
g 

C
 l-1

d
-1

MCMC Food web Fluxes 2001

MCMC_M_W MCMC_M_SP MCMC_M_SU MCMC_M_A



Discussion 

46 

5. DISCUSSION 

 

The inverse modelling technique applied to the Gulf of Trieste gives a lot of interesting results. The 

LIM – MN and the LIM – MCMC produce different results starting from the same information. It 

happened because of the philosophy that is beyond the two different way of calculating the final 

solution.  

The LIM – MN was created to better investigate the food web property in the late 80s, in order to 

help scientists in handling the insufficient and not organized information about the marine food webs. 

In particular, Platt (1988) applied a methodology that permits the users to directly compare different 

food webs in the world: searching the solution that represents the ‘‘best’’ (or most likely) set of flow 

values, assuming a certain food web topology and given an empirical data (Van Oevelen et al., 2010) 

minimising all the fluxes, as it minimizes the squared sum of all the set fluxes. It has a theoretical 

basis: the Ockham razor, ‘multiplicity ought not to be posited without necessity’ (Legendre & 

Legendre 1998; Niquil et al. 1998): based on the law of parsimony, it detects the simplest solution. 

This method permits to obtain solutions that could be easily compared universally, as they are based 

on the same mathematical principle. As reported in many papers, this way of thinking was 

revolutionary, as it permits to detect food web characteristics starting from poor data (obtained by in 

situ measurement) based on a rigorous mathematical construct (Van Oevelen et al., 2010). Fluxes are 

determined starting from other fluxes and a pre-determined model: that’s why it is called inverse 

modelling. This methodology permits to give reasonable values to many unknown carbon exchanges 

inside food webs. Brigolin et al., (2011) reported that inverse modelling has been widely used in 

ecosystem modelling during the last years, as they permit to consistently estimate a large number of 

unknown flows from a relatively small number of observations (Leguerrier et al., 2003; Vézina et al., 

2004; Savenkoff et al., 2007a,b). It was also very important to understand that the method mixes in 

situ measurement with an a priori knowledge of the food web, giving a focus to real data and to 

models at the same time. It is a combination of scientific knowledge and the reality that one could 

touch taking experiments in that study site.  

Starting from the parsimony approach, in the last decade scientists have tried to find new way of 

applying the LIM with new algorithm, trying to overtake some of criticism of the LIM – MN. The 

main critique is about the possibility that the parsimony principle could be used to represent the 

ecological laws in the marine food web in a proper way. Energy minimisation is one of the nature 

laws but can it be applied also in the sea, too? Could it be representative of the marine food web 

exchanges? Minimising fluxes is an arbitrary decision that simplifies the mathematical problem but 
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there is no evidence that it is correct. Vezina et al. (2004) reported that this MN inversion is 

increasingly used in comparative analyses of aquatic ecosystems (Leguerrier et al., 2003; Niquil et 

al., 1998; Olsen et al., 2001), even though it is recognized that this norm does not necessarily reflect 

how ecosystems are organized structurally (Jackson & Eldridge,1992). That’s why scientists focused 

on a new way, which was the an LIM - MCMC that could sample the solution space in a proper 

manner. The main idea was to get a range of values as possible solutions represented by a mean with 

standard deviation. It could not be the best or the optimum solution, but among all the infinite 

solutions, the algorithm gives back a range that undergoes the constraints and the law imposed in the 

model. From an ecological point of view, we have to look at at this range as the probability that we 

will find the true possibility of the natural behaviour of the food web inside the solution selected.  

Our first goal was to use the LIM technique to reconstruct the possible carbon exchanges in the North 

Adriatic Sea, using some in situ data coming from one of the most important ecological time series 

in the Mediterranean Sea.  

The structure of the food web was depicted maintaining the compartments investigated in the 

experiments and the analysis scientists used to take in the gulf of Trieste: we maintained the a priori 

knowledge. Based also on literature, we imposed universal constrains for each compartment. We’d 

like to focus on this topic, the “universal” inequalities, because we decided to apply the a priori 

knowledge found in literature. We are conscious that there are equalities and inequalities that derive 

from worldwide experiments and studies. Some of the studies come from Mediterranean sites, and in 

some way, they could represent the Adriatic Sea in a proper way. Richardson et al. (2003) referred 

that the vast majority of constraints were based on relationships derived for temperate ecosystems 

(Vézina and Platt, 1988; Vézina and Pace, 1994; Vézina et al., 2000): the validity of the assumption 

to use the constraints for all ecosystems is not known.  This means that they are universal but not 

specific to our case and that we don’t know how deeply they could influence the solution. We are 

conscious that this fact may impact on the goodness of the solution, but future works coupled with in 

situ experiments could be carried out to bypass this type of problem. For this work we decided to 

focalize on the classical way to apply the LIM. 

From a data perspective, it is important to say that they could be categorized as fluxes in term of 

concentrations of liter per day (µg C l-1 d-1 equivalent to mg C m-3 d-1): they represent changes of 

concentrations. We didn’t transform data in term of µg C m-2 d-1, dividing them by the depth of the 

in situ measurement, because we wanted to maintain the data intrinsically the same as those in the 

manuscript where the data were kept to maintain a sort of continuum with the previous literature of 

the Gulf of Trieste.  
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Before starting to discuss the results, we want to focus our attention on a particular compartment: the 

growth compartment. It is a mathematical artefact that we implemented for the first time in literature 

to take into account the possibility that model compartments are growing during the study, as the food 

web is depicted in a static snapshot of the moment in which experimental data were collected. Taking 

a step back, we know that inverse modelling approach is solved in a steady state way, meaning that 

inflows are equal to outflows in each compartment. Daniels et al. (2006) reported that inverse 

solutions have tended to assume steady state due to the frequent use of snapshots of data.  Furthermore 

Belgrano et al. (2005) referred that steady state food web models are often applied to coastal 

ecosystems to quantify mass and energy fluxes associated with trophic interactions between different 

compartments of a food web. These models generate a snapshot of the trophic network at one moment 

in time, which is consistent with the set of input data (Brigolin et al., 2011). Solving the system in 

this way does not contemplate the possibility that a compartment is gaining biomass, as the system is 

depicted in term of flows and not in term of biomasses. The gaining of biomass could be seen as the 

energy that is used to grow. From a metabolic/flux point of view it is the energy that is used for 

accretion, once metabolic requests are satisfied, if is not completely burned. The energy that a creature 

needs to live comes from primary production for autotrophs and ingestion for heterotrophs: 

mixotrophy is not yet implemented in this type of food webs analysed with LIM (Donali et al. 1999). 

As in the LIM technique we can’t measure a flow that recirculate in the same compartment, we added 

a new compartment inside the food web that is a “ghost” compartment, that permits us to calculate 

the energy spent for the compartment growth. The compartment is considered as other external 

compartments and therefore has no mass balance equation. As it is the first time that it is implemented, 

we do not have any inequalities coming from literature on this type of flow, but we defined it in a 

strong way. It can be defined as what remains, in term of carbon, from PP/ingestion and has to be 

major or equal than 0, as the ≥ 0 is a request for all the fluxes. It is important to understand that all 

fluxes have to be major or equal to zero, as each flux has to be seen as a mathematical vector, for 

which the directions carried out some information. The directions explained for the flux considered, 

which are the source and sink compartments. A flux inferior than zero switches the source and sink 

compartments, leading to a nonsense from an ecological point of view (mathematically is accepted). 

Coming back to growth fluxes, we are conscious that we inserted new unknowns in a model that is 

already highly undermined, but some of these fluxes are known, as secondary HB, HNF and MIZ 

secondary production. As these fluxes are known, we imposed some new fix points inside the space 

of solution: the final total solution will be better constrained. From a mathematical point of view, 

with growth fluxes, we also inserted some degrees of freedom that can permit the model to have some 

“blank space of manoeuvre” in order to force the solution in a proper way (the tolerance needed for 
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the solution) similar to the detritus compartment in the Ecopath model (Christensen and Pauly, 1998). 

Richardson et al. (2003) allowed for the possibility of non steady state flow in his work. He used 

residual flows, as the possibility of non steady-state conditions was allowed. This is to remark our 

opinion about the use of the growth compartment: it is an artefact that can be used in studying food 

webs. Moreover in certain situations, which we will encounter during the discussion, i.e. diatoms 

blooms, it is important to identify the capability of the compartment to grow. Daniels et al. (2006) 

defined phytoplankton blooms as emblematic of non-steady-state plankton systems. Vezina and 

Pahlow’s (2003) results imply that inverse solutions for phytoplankton blooms are not a priori likely 

to be in great error, just because they are not near a steady state (Daniels et al., 2006). 

From literature we assume that the better we constrain the LIM the better the solution and the food 

web will be depicted. Biological constraints, such as respiration and assimilation efficiency were used 

to keep the unknown flows within reasonable ecological and physiological boundaries (Jackson and 

Eldridge, 1992; Vezina and Platt, 1988). We drew all the inequalities constrains from literature as 

reported in the previous chapters, except for GPP. As we didn’t have GPP data, we chose to define a 

maximum of GPP for each compartment applying the equalities explained in the material and method 

chapter. We don’t want to define a specific value from an a priori knowledge, but we want to put an 

upper limit for each compartment GPP to better constrain the solution. Imposing a maximum, we 

don’t radically influence the algorithm, but we do not leave the upper part of the hyperplane solution 

related to GPP open: we close the solution space permitting the algorithm to work better, in the case 

of the MCMC. For what the LIM it concerned, the maximum permits to have an upper limit that is 

fundamental to constrain the solution. In literature, as far as we know, in LIM procedures authors 

have always declared the PP fluxes data, as it is one of the most important fluxes in the food web, 

from an ecology and mathematical point of view. Stukel et al. (2012) referred that they have not found 

a case for the inverse models of pelagic ecosystems where it is not be a measured input. From an 

ecology point of view it defines the inputs to our systems, while from a mathematical point of view 

it defines the upper part of our food web and as starting point for algorithms.  

We now begin to discuss the results obtained. 

Comparing the solutions obtained from the two ways of solving the LIM (Figure 21), we clearly see 

a difference: 0 fluxes. Zero fluxes are those fluxes that in the LIM – MN technique are settled to 0, 

in contrast to LIM- MCMC where no fluxes are settled to zero. Total 0 fluxes – fluxes for which the 

solution is always 0 during the year - are the fluxes related to detritus, to growth compartment and 

some predation terms. Detritus ingestion terms by heterotrophs are all settled to 0 together with HB 

flux to detritus.
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Figure 21: 2001 Gulf of Trieste food web fluxes in µg C l-1 d-1.

0

50

100

150

200

250

300

350

C
O

2
_C

B

C
B

_D
O

C

C
B

_C
O

2

C
B

_D
ET

C
B

_H
N

F

C
B

_M
IZ

C
B

_G
R

C
O

2
_A

N

A
N

_D
O

C

A
N

_C
O

2

A
N

_D
ET

A
N

_M
IZ

A
N

_M
EZ

A
N

_G
R

C
O

2
_M

P

M
P

_D
O

C

M
P

_C
O

2

M
P

_D
ET

M
P

_M
IZ

M
P

_M
EZ

M
P

_G
R

H
B

_C
O

2

H
B

_D
O

C

H
B

_D
ET

H
B

_H
N

F

H
B

_M
IZ

H
B

_G
R

H
N

F_
C

O
2

H
N

F_
D

O
C

H
N

F_
D

ET

H
N

F_
M

IZ

H
N

F_
G

R

M
IZ

_
C

O
2

M
IZ

_
D

O
C

M
IZ

_
D

ET

M
IZ

_
M

EZ

M
IZ

_
G

R

M
EZ

_C
O

2

M
EZ

_D
O

C

M
EZ

_D
ET

M
EZ

_G
R

D
ET

_
H

N
F

D
ET

_
M

IZ

D
ET

_
M

EZ

D
O

C
_H

B

µ
g 

C
 l-1

d
-1

GULF OF TRIESTE FOOD WEB FLUXES 2001

LSEI_W MCMC_MEAN_W LSEI_SP MCMC_MEAN_SP LSEI_SU MCMC_MEAN_SU LSEI_A MCMC_MEAN_A



Discussion 

51 

For what concerned the other 0 fluxes, the percentage of the zero solution for each flux, in which 0 is 

the solution, varies from 25% to 50%. Growth fluxes and Detritus ingestion ones are those which are 

less constrained and therefore we expect that the LIM – MN chooses the easiest and lowest solution 

(= 0). We expected that some of the lower fluxes, in term of importance and numbers, will be settled 

to 0 as this is well known in literature. As reported, LIM – MN tends to zero minor flows (Vezina 

and pace, 2004), it sets biological constraints to maximum or minimum allowed values (Stukel and 

Landry, 2010). In  practical terms, this means that many flows can be underestimated or overestimated 

(those which exit the system quickly) (Leguerrier et al., 2003), and set to zero fluxes that are not 

fundamental for the mass balanced (Stukel et al, 2012). Furthermore, Van Oevelen et al. (2006) 

underlined that some flows may be set to zero (Vezina et al., 2004; Kones et al., 2006), many flows 

are close to the lower bound of their ranges, which should be considered extreme values rather than 

likely ones (Diffendorfer and others 2001; Kones and others 2006; Steele 2009). Our results are 

perfectly in agreement with those reported in literature, underling that those fluxes are not very 

important in the whole structure of the food web according to LIM – MN. Furthermore, from an 

ecological point of view, setting to 0 fluxes to detritus, is equivalent to say that those compartments 

in such occasions are completely predated, and no carbon is channelled to the detritus compartment. 

Furthermore, in the LIM – MN solution, detritus is not characterized as one of the important food 

opportunity for the heterotrophic compartments, as its ingestion is always set to 0, in contrast to what 

is allowed in LIM studies: all of the grazers were allowed to consume detritus (Daniels et al., 2006). 

Comparing the two methods solutions, fluxes values are comparable in most of the cases in term of 

values magnitude, but it is evident how LIM – MCMC values are higher than LIM – MN ones. In the 

next pages we will discuss the main differences season by season. 

In winter, there is a great difference between the two method solutions (Figure 22). The main 

differences are reported in the MP compartment. According to LIM – MCMC MP fluxes are higher 

and more structured than those predicted by the LIM – MN. The main evidence is about MP 

compartment. The extreme case is represented by GPP: LIM – MCMC GPP is three magnitude order 

higher than LIM – MN value. It seems that LIM – MN deeply underestimates the MP compartment 

fluxes, creating an important gap between reality and model prediction. Furthermore, this fact 

highlights an important limit of the LIM – MN method: it is not linked to biomasses data. MP 

compartment is the biggest autotrophs group in term of biomass in winter and cannot have lower GPP 

values than other autotrophs. Running a quick sensitivity analysis on biomasses variation input, we 

find a very low flux variation (less than 3%) with a strong variation in biomasses terms (30%) that 

confirms our opinion.  
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Figure 22: Winter fluxes in µg C l-1 d-1.
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LIM – MN underestimates GPP fluxes too, as also CB and AN GPP are very low if compared to those 

of LIM – MCMC. Both solutions depict HB compartment in a proper way, i.e. fluxes are relevant and 

structured, showing how HB group is important in channelling carbon inside the food web. This idea 

is confirmed by DOC uptake values that are high, if compared to those of GPP. MIZ fluxes have a 

similar trend in both the solution methods, maybe because they are the direct and major predators of 

bacteria compartments. LIM – MCMC results regarding the MP compartment are in agreement with 

the Gulf of Trieste knowledge: in late winter the gulf of Trieste is characterised by intense diatoms 

blooms (Umani et al.,2012; Mozetic et al., 1998; Harding et al., 1999), that correspond in high values 

in the LIM – MCMC MP group. In addition, Umani et al. (2012) reported that big diatoms that cannot 

be efficiently predated by MIZ and MEZ groups, mainly constituted the flux to detritus (observing 

sedimentation traps contents). Our results are in agreement with what was said previously: MP_DET 

represents the 57% of the total fluxes to detritus, followed by MIZ_DET with the 9%. MIZ (MP_MIZ) 

and MEZ (MP_MEZ) has similar low levels of predation, showing the scarce capacity of the two 

groups to feed on MP (Umani et al., 2012). Furthermore, Marquis et al. (2007) reported that the high 

sedimentation rate was mainly due to the downward flows of microphytoplankton material (55% and 

36% of total detritus production made up by large phytoplankton) as it is usually observed after a 

strong bloom of diatoms in the absence of grazers (e.g. Savidge et al., 1992; Valiela, 1995). Legendre 

and Rassoulzadegan (1996) described this specific situation as corresponding to a rapid stabilization 

of the water column after a long period of mixing: it could be similar to the late winter situation of 

the Gulf of Trieste, where after a period of mixing (winter) the water column tends to stabilize (late 

winter). Our results are in agreement with those of Umani et al. (2012) for what the growth of the 

MIZ group is concerned too. MIZ growth is enlighted by the flux to the growth compartment in both 

solutions, with highest flux according to the LIM – MCMC (5.02 µg C l-1 d-1 vs 8.71 ± 2.11 µg C l-1 

d-1). 

In spring the two solutions show similar trend regarding gross primary production fluxes (Figure 23). 

For what CB and AN compartment is concerned, MCMC values are higher than MN, but they assume 

the same value inside each solution. MP GPP is higher in the LIM – MN than LIM - MCMC, and 

corresponds to the maximum value allowed by the inequalities. Autotrophs fluxes are comparable in 

the values between the two solutions. The break between the two solutions appears in the HB and 

HNF compartment. In the LIM – MN solution three of the HB compartment fluxes (two predation 

fluxes and the flux to detritus) are set to zero while they are characterised by important values in the 

LIM – MCMC solution. It is important to say that HB secondary production (HB_GR) is an 

experimental measured data, suggesting that the LIM – MN deeply minimized HB flows.In the LIM 

– MN solution, HB mass balance is obtained by only four fluxes (DOC_HB – HB_CO2 – HB_DOC  
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Figure 23: Spring fluxes in µg C l-1 d-1  
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– HB_GR) setting the others to 0. It seems that, starting from a known data, LIM – MN tries to respect 

the mass balance in the easiest way, with the minor number of fluxes and preferring the smallest way 

carbon can leave the compartment. Our thoughts are in agreement with Niquil et al. (1998) who 

referred that the shortest pathway of carbon from one compartment to another is favoured when 

several pathways are of the same length. Furthermore when an element is not required to satisfy the 

constraints of the system (through the equations and inequalities), it will disappear from the system 

(Niquil et al., 1998). DOC uptake is the highest flux in winter in both the solutions and it is more 

important than GPP fluxes, suggesting that HB compartment has the leading role in channelling 

carbon inside the food web. Our suggestion is in agreement with Umani et al. (2012), who suggest 

that winter-spring DOC can sustain a high and active bacterial biomass, that becomes the most 

important source of energy for the whole system. Increasing of DOC uptake and therefore in bacterial 

carbon production is better described by the LIM – MCMC solution, in which DOC uptake goes from 

97.07 ± 18.59 µg C l-1 d-1 to 140.02 ± 26.71 µg C l-1 d-1. Umani et al. (2012) highlighted the coupling 

between bacterial carbon production and DOC uptake, and the same did De Laender et al. (2010) who 

referred that bacterial production, essentially a reflection of DOC production, because of the strong 

coupling, was of comparable importance as primary production to fulfil carbon requirements of 

protozoa. In the LIM – MN solution DOC uptake flux decreases from 34.34 µg C l-1 d-1 in winter to 

32.64 µg C l-1 d-1 in spring, showing once again a worse level of prediction than LIM – MCMC. HNF 

compartment fluxes are underestimated by the LIM – MN too. While LIM – MN set nearly to 0 most 

of the HNF fluxes, near to the minimum bound, LIM – MCMC solution depicts a certain activity by 

the HNF group. Umani et al. (2012) reported that HNF secondary production was particularly relevant 

in spring: our results are in agreement with this statement as HNF_GR flux is quite high during spring 

(11.41 ± 4.66 µg C l-1 d-1) in the LIM – MCMC solution, while in the LIM – MN is set to 0.12 µg C 

l-1 d-1.  

In summer, bacterial groups are the dominant ones inside the food web (Figure 24). In both solutions, 

CB are characterized by high level of GPP, representing the 78% and 71% of total GPP in the LIM – 

MN and LIM – MCMC respectively. GPP LIM – MCMC values are four times higher than LIM – 

MN for the three autotrophs compartment, showing a similar pattern in both solutions with the 

capability by the LIM – MCMC to explore the solution space better. Autotrophs fluxes, different from 

GPP ones, are deeply underestimated by the LIM – MN solution: this fact is evident in the CB 

compartment more than others are. It is important to say that predation fluxes on CB group are known 

by laboratory experiments, proving again how LIM – MN algorithm is not capable to determine a 

comprehensive solution of all fluxes, as starting from fix values try to find the easiest solution with 

the fastest pathway to exit the compartment. 
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Figure 24: Summer fluxes in µg C l-1 d-1.
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HB compartment is characterized by a high level of DOC uptake in both solutions. HB respiration 

flux is higher in the LIM – MCMC while flux to DOC is higher in the LIM – MN (predatory fluxes 

are known by laboratory experiments). HB growth flux (whose value derived from in situ 

experiments), which represents the bacterial carbon production, permits us to explain the high level 

of DOC uptake registered by the two solutions. High level of secondary production can be explained 

by the coupling with high values of DOC uptake. Our results are in agreement with Umani et al. 

(2012) who referred how the system was mostly supported by picoplankton biomasses, which fuelled 

and were respired within the microbial part of the food web. Highest DOC concentrations permitted 

highest DOC uptake values in the whole year. Moreover, DOC produced by all processes was 

consumed by bacteria because it is the only sink of DOC: such a tight control of the DOC stock by 

bacteria is realistic in marine ecosystems (Vargas et al. 2007). MIZ compartment has discrete fluxes 

values, showing high predation activity. In agreement with Umani et al. (2012), MIZ predation fluxes 

on lower classes are higher than MEZ predation activity, showing that MIZ predates more efficiently 

than MEZ. Watching MEZ predation activity, we see that this group preferably feed on MIZ with 

similar values in both the solution, in agreement with Umani et al. (2012): bacterial biomass fuels 

microzooplankton and HNF and the former were actively predated by mesozooplankton in summer. 

Detritus ingestion by heterotrophs groups are settled to zero by the LIM - MN and are nearly zero 

with high standard deviation in the LIM – MCMC solution. Heterotroph groups do not need detritus 

support in their diet as they feed efficiently on lower classes, in agreement with the solution values 

that are similarly low.  

Autumn is characterised by low levels of activity by all groups if compared to summer (Figure 25). 

GPP is splitted nearly equally between the three autotrophs group according to LIM – MN solution, 

while in LIM – MCMC solution MP_GPP was lower than the other groups. Figuring out which could 

be the motivation of this differences, we looked at the possible ranges of our solution, and we realize 

that LIM – MN puts MP_GPP on the maximum bound allowed by the inequalities, while in the LIM 

– MCMC GPP was lower than the maximum value allowed by inequalities. Autotrophs fluxes were 

generally low and lower than summer in both solutions: biomasses values are low too. HB 

compartment is the only one with a certain activity coupled with MIZ. Umani et al. (2012) described 

the importance of this compartment in the autumn period, although bacterial carbon production is 

lower than in the summer period. Our results are in agreement with what concerns HB DOC uptake 

values: uptake value is similar to the one in winter and it seems that HB are not capable to uptake 

more due to the refractory characteristics of autumn DOC itself (Umani et al., 2012). In agreement 

with Umani et al. (2012), data describe lower levels in all the secondary productions. Between MIZ 

and MEZ compartment, MIZ is the compartment which is more active in term of predation. 
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Figure 25: Autumn fluxes in µg C l-1 d-1  
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In agreement with Umani et al. (2012) we found MIZ high preference on HB, feeding also not 

efficiently on MP and CB according to the LIM – MCMC solution. In the LIM – MN one, MIZ seems 

to feed nearly exclusively on HB (that is the only flux value known by laboratory experiments), less 

on AN and doesn’t feed on MP. Again, the MCMC seems to predict better real fluxes than LIM – 

MN.  

 

Figure 26:   Total GPP, R, detritus and carbon total fluxes in µg C l-1 d-1. 

Total fluxes values (Figure 26) reflect what we discussed in the previous pages. LIM – MCMC fluxes 

are generally higher than those of the LIM – MN. The total carbon flux we present here is the total 

systems throughput (TST) of the food web, which is the sum of all flows in the model (Heymans et 
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MCMC TST are nearly double than LIM – MN ones, in particular in the winter and spring cases. TST 
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– MN, while in the LIM – MCMC solutions values range from 6886.33 mg C m-2 d-1 in autumn to 
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due to GPP rates, which are less constrained on the top boundary, and HB DOC uptakes fluxes, that 

remark the important part of heterotrophic bacteria in the food web.  

 

Figure 27: Total GPP and TST fluxes in mg C m-2 d-1. 
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didn’t impose nutrient limitation and we used mean day light hours. Initially, we started working with 

a realistic value of GPP found in literature, that gives an upper bound to GPP. We had to change this 

settlement because in most of the runs we found out that this solution was problematic, as GPP had 

to be divided into three compartments, thus allowing too much freedom to algorithms in order to find 

a proper solution (the algorithm doesn’t know how to divide total GPP value in the three different 

groups). We saw GPP uncertainty from MCMC algorithm: the algorithm did not converge to a fix 

range, never reaching the plateau. We then changed the way of constraining GPP fluxes. We searched 

into the world of biogeochemical model for a Mediterranean biogeochemical model that was similar 

to ours. We chose the biogeochemical flux model, BFM (Vichi et al. 2013). We used the parameters 

found in the manual to adjust the GPP equation to our interests. In particular, it permitted us to give 

a maximum GPP bound to each of the autotrophic compartments. This allowed us to defeat the 

algorithm instability due to a great solution space.  

The study of the stability of the solution was different for the two methods. In the LIM – MN, we 

controlled the stability of the solution by repeating the solution calculation of a lot of times, being 

sure that the solution didn’t change: solution changes were eliminated thanks to the upper bounds in 

the GPP fluxes. In the MCMC facts were different.  

MCMC is a much newer technique (Stukel et al., 2012) and there is not a sort of good guide to use it. 

The method relies on some parameters that can be controlled by the user. First of all the jump length. 

Van de Meerche et al. (2009) suggested that a suitable jump length is often in the same order of 

magnitude as the ranges of the unknowns when sampling the feasible region uniformly. Starting from 

the suggestion of Van de Meerche et al. (2009), we decided to look for the best jump: we tested jump 

parameters for different values, from 0.001, 0.01, 0.1, 1, 10 to 100. We ran the MCMC for each 

season, for each jump. Jump parameter is very important as it determines the “jump” in the hyperplane 

of solution from one point to the next one. These jump lengths have a significant influence on the 

efficiency of the mirror algorithm, as they define the distance covered within the solution space in 

one iteration, but also the number of reflections in the solution boundaries (Van de Meerche et al., 

2009). A small jump can collapse the algorithm in a local minimum, while a bigger one could not 

represent the solution space in a proper manner and can block the algorithm if it continually falls out 

of boundary constraints (that are the wall of the hyperplanes solution space): both happened. We 

noticed that jump under 0.1 were too small to permit the MCMC solution to reach a convergence 

value in a reasonable time, while jump over 0.1 created some problems during the runs, beacaue we 

have fluxes that have different value ranges. Fluxes have dimensional ranges which are very different 

between each other, reaching in certain cases two order of dimension diversity. Dimension number 

of fluxes was also referred by Van Ovelen et al. (2010), reporting that in the recent years food web 
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ecologists have realized that the values of food web flows can differ over order of magnitudes. That 

was a problem, as we have to find a jump that works efficiently in all cases. After lots of algorithm 

test runs, we choose the jump = 0.1. Once selected the jump length, we had choose the number of 

iterations. In literature, iterations numbers vary a lot: Raftery and Lewis (1996) suggested a minimum 

of 3000 iterations to reach the extremes, Van de Meerche et al. (2009) used 3000 iterations, Luonget 

et al. (2014) used 5000 iterations, Kones et al. (2009) used 25000 and 100000 iterations in two 

different cases and Stukel et al. (2012) used 10000 iterations. We decided to test the number of 

iterations season by season incrementally varying the number of iterations. We started from 5*10^2, 

5*10^3, 5*10^4, 5*10^5, 5*10^6, 15*10^6, 25*10^6 and finally 50*10^6. All these tests were made 

season by season and, to be certain of results, with 0.1 and 1 as a length jump, doubling the cases. 

We check the convergence of the solution plotting each MCMC run, sample by sample, with iterative 

mean, iterative standard deviation and model error. As proposed by Kones et al. (2009), we visually 

verified the convergence of the MCMC sampling from the graphs. When convergence is reached, the 

sample-by-sample graph reached a plateau, the iterative mean and iterative standard deviation 

stabilized on low ranges values. After all these runs, we decided to take 15*10^6 iterations as fix 

parameters for our LIM – MCMC. We noted that certain fluxes stabilized very soon and others 

stabilised later. The most problematic ones were the GPP fluxes (especially in summer) and HB DOC 

uptake ones, as those fluxes were the ones with the bigger ranges and therefore uncertainty. Other 

fluxes which were problematic to stabilise were the detritus fluxes and growth fluxes due to the 

absence of an upper limit/boundary. We suggested to use this way of identifying critical fluxes as a 

sort of sensitivity analysis: it does not give the range of changes but denotes key fluxes and their 

uncertainties. The final representation, at jump = 0.1 and 15*10^6 number of iterations is reported 

from figure 28 to figure 31. In order to handle such a great number of iterations, we worked on 

clusters, using R from remote with 1 cpu and 120 gb of ram. Managing graphs with high numbers of 

data was difficult, so we decided to sample solutions every 100 samples in order to get a good 

representation. 

From figures 28 to figure 31 we represented the sampling iterative process solution of each flux by 

the MCMC (solid grey line), the iterative mean (dashed line), the iterative standard deviation (dotted 

line), the iterative model error (dark line) and the single value of the Lsei solution (red dot). In the 

graphs, we can see all the fluxes, starting from the first one in the higher left corner corresponding to 

the first flux in the calculation (CO2_CB). Flux correspondence is going from left to right 

incrementally: the second flux in the first row is the second flux in the calculation (CB_DOC) and so 

on. From these graphs it is possible to denote fluxes which are more stable and less problematic in 

the samples routine.  
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Figure 28: Winter case study fluxes in µg C l-1 d-1 (y axis) and number of iterations (x axis). 

 

Figure 29: Spring case study fluxes in µg C l-1 d-1 (y axis) and number of iterations (x axis). 



Discussion 

64 

 

Figure 30: Summer case study fluxes in µg C l-1 d-1 (y axis) and number of iterations (x axis). 

 

Figure 31: Winter case study fluxes in µg C l-1 d-1 (y axis) and number of iterations (x axis). 
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It is clear how the iterative solution converges to a stable value reaching the plateau, underlined by 

the stabilization of the iterative mean and standard deviation values. In the first part of each sub graph 

we clearly see how the iterative solution grows to reach the plateau in the initial part of the sample 

routine. In some graphs, the graph seems to be cut: obviously, it is not cut but it shows the evidence 

that the iterative solution is blocked in the upper values by the inequality constraints. 

The last important part to define for the MCMC is the initialisation of the MCMC itself. Van de 

Meerche et al. (2009), in defining the initialisation points for the MCMC, suggested two solutions: 

the Lsei solution and the 0 solution (trivial). The 0 solution is the base one, as all the fluxes have 0 as 

lower bound and therefore it is the lowest solution possibility. The Lsei solution was suggested to 

favour the algorithm in reaching the plateau: it is the minimum solution valid for the MCMC. In 

literature, Soetart et al. 2009 used the Lsei solution when other particular ones are not provided. We 

tested both the 0 and the Lsei solution as initial MCMC points, season by season, with the jump and 

number of iteration chosen before. We decided to use the Lsei solution to initialise the MCMC as the 

convergence to the plateau is more rapid.  

MCMC gives a wide number of solutions as a result: those that fall inside the constraint ranges. The 

last decision is how to establish the way to represent all the possible solutions. Van Ovelen et al. 

(2010) demonstrate that the calculation of the mean involves a linear operation on the solution set, 

which in turn gives a valid solution, and that the mean flow values always closely approximate the 

medians, and therefore, the mean flow vector seems to provide a good central estimate that is 

consistent with the LIM. He also showed how the mean of each set of solutions, e.g. the mean of each 

probability density function - being a linear operation - could be used to generate a mass balanced 

solution that fits all the constraints (Van Oevelen et al.,2010). Stukel and Laundry (2010) reported 

that the mean solution set by averaging each flow from a random compilation of all vectors that solve 

both the equality and the inequality constraints, may consequently provide a simpler and perhaps 

more ecologically relevant answer to the under constrained ecosystem model. Furthermore, we 

compared the median and the mean of MCMC samples: we chose the mean of the fluxes samples as 

the final solution for the MCMC. 

Finally, we compared the two different solutions, the LIM – MN vs the LIM – MCMC. Following 

the idea of Kones et al. (2006), the comparison on the differences between the mean and parsimonious 

solutions was based on the non-parametric Wilcoxon signed ranks test. We used non-parametric 

Wilcoxon test because solutions are not normal, dependent and therefore paired. In contrast with 

Kones et al. (2006) we found out that the two solutions are very different between each other. The 

solutions that differ the most are winter ones with a p-value = 1.1e-06 and the spring ones that have a 
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p-value = 4.07e-05. Summer and autumn solutions are more similar but significantly different at the 

same time, with a p-value = 0.0004203 and a p-value = 0.0007598 respectively. We expected such 

results, especially for winter and spring solutions that are completely different in term of values and 

compartment size. Furthermore, to compare the two solutions we plotted the LIM – MCMC and the 

LIM – MN fluxes, first in a boxplot graph (Figure 32) and then in frequency histograms season by 

season (Figure  33 to Figure 36). 

 

Figure 32: Box plot graphs of 2001 fluxes in µg C l-1 d-1. 

In figure 32, dark box plots are the representation of the LIM – MCMC solution, while red spots are 

the LIM – MN solution. In the graphs we can see all the fluxes, starting from the first one in the 

higher left corner corresponding to the first flux in the calculation (CO2_CB). Flux correspondence 

is going from left to right incrementally: the second flux in the first row is the second flux in the 

calculation (CB_DOC) and so on. From the boxplots graphs, we can clearly see how the LIM – MN 

solution is settled in the lower part of the LIM – MCMC solution, except for some rare cases.  
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Figure 33: Winter frequency histograms of LIM – MCMC and LIM – MN solution in µg C l-1 d-1 (x axis). 

 

Figure 34: Spring frequency histograms of LIM – MCMC and LIM – MN solution in µg C l-1 d-1 (x axis). 
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Figure 35: Summer frequency histograms of LIM – MCMC and LIM – MN solution in µg C l-1 d-1 (x axis). 

 

Figure 36: Autumn frequency histograms of LIM – MCMC and LIM – MN solution in µg C l-1 d-1 (x axis). 
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In particular LIM – MN values are settled in the boxplot part corresponding to outliers and minimum 

values of LIM – MCMC: it gives an idea of how the LIM – MN technique underestimates fluxes 

value. From the graph, we can also see the possible ranges of the MCMC solutions, which are very 

large sometimes.  

From figure 33 to figure 36, we represented all the histogram frequency of the LIM – MCMC 

solutions season by season, compared with the single value of the LIM – MN solution (red dot). In 

the graphs, we can see all the fluxes, starting from the first one in the higher left corner corresponding 

to the first flux in the calculation (CO2_CB). Flux correspondence is going from left to right 

incrementally: the second flux in the first row is the second flux in the calculation (CB_DOC) and so 

on.  

From the graphs, it is clear that most of the times the Lsei solution corresponds to the frequency 

histogram less represented in the MCMC solution. It is also possible to see how the solutions are not 

normal and how most of the solutions distributions correspond to a skewed truncated Gaussian curve. 

Sometimes the graphs seem to be cut in a different way. This is the effect of constraint planes of 

inequalities as reported by Niquil et al. (2010): probability density function could be not normal, 

sometimes truncated by the inequality constraints and sometimes uniform if the model and data are 

not sufficient to constrain the value of a flow. 

In order to better evaluate the algorithm, we calculated the algorithm error (ɛ) on the solutions. The 

error was obtained through the following procedure. We multiplied each vector solution for the matrix 

A ( A x - b = ɛ), obtaining an error vector with seven rows, each of them corresponding to its equation. 

Subsequently, we squared each row and summed up all the values. Then we divided for seven, and 

finally we square rooted the value, obtaining the mean model error. LIM – MCMC error values are 

higher than the LIM – MN ones. Values are reported in table 5. 

 E LIM - MN  E LIM - MCMC 

W 6.8 e-15 0.56 

SP 9.25 e-15 0.78 

SU 3.56 3.73 

AU 2.31 e-14 0.2 

Table 5: LIM –MN and LIM – MCMC mean square root error. 

Error values are near to zero for the LIM – MN solution and low for the LIM – MCMC one. Both 

solutions are not constrained well in summer, when the fluxes registered higher values. Our opinion 

is that the LIM – MN is the lowest biased solution as it minimises all the fluxes minimising the 

squared error -  ||A x – b||2, e.g. ∑ε2 . Therefore error values should be lower than the LIM – MCMC. 

Error values in the LIM – MCMC are very low if compared to fluxes values and so they are 
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satisfactory. It is the first time, as far as we know, that model errors are compared between the two 

solutions. 
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6. CONCLUSIONS 

 

A complete measurement of all food web flows is generally not possible in natural complex food 

webs. Therefore, we studied the planktonic food web of the Gulf of Trieste using linear inverse 

modelling. We mixed the a priori knowledge (the food web design), some in situ data and literature 

knowledge, using a modellistic approach. The methodology we used permitted us to depict all the 

fluxes inside the planktonic food web. We obtained two solutions that were compared and analyzed. 

Both LIM methods give back reasonable solutions, which are obtained by different arbitrary choices. 

The LIM – MN selects the best solution minimizing the sum of squared flows, while the LIM – 

MCMC selects the solution through an exhaustive sampling of the solution space. Both solutions 

respect the inequalities and all the ecological requests and therefore are valid. The LIM- MN usually 

underestimates all the fluxes, while the LIM – MCMC gives a good representation of the flows ranges, 

rarely overestimating not very well bounded fluxes. Growth fluxes behave well, especially the LIM 

– MCMC ones, and give a good response as they are in agreement with the scientific knowledge of 

the Gulf of Trieste. Implementing this type of compartment could be a good compromise in using a 

steady state condition. 

It is our opinion that LIM – MCMC solution is the best way to depict all the planktonic food web 

fluxes of the Gulf of Trieste. Values of fluxes are the best representation of what is the a priori 

ecological knowledge found in the literature. In particular, the solution explains the important role of 

bacterial compartments that are fundamental for the Gulf of Trieste marine life, as they channelled 

most of the carbon inside the food web. The so-called microbial loop is very strong, and sets the 

microzooplankton as the main actor in channelling carbon from lower ecotrophic levels to higher 

ones, including fishes. Moreover, thanks to the values found in this study, the Gulf of Trieste 

planktonic ecosystem could be compared with more productive ecosystems on a world scale. 

Future works may focus on identifying more stringent and in situ dedicated equalities and inequalities, 

coupling the modellistic approach with some experimental studies. Moreover, the depicted ecosystem 

could be expanded including higher ecotrophic levels, trying to determine the carry capacity of the 

ecosystem in order to prevent exploitations by human activity. Moreover, the linear inverse modelling 

could be applied to all the Adriatic Long Term Ecological Research (LTER) data, studying the 

changes that are happening in the ecosystem in a more focused way. Scientific research could then 

be coupled with future actions by stake holders, in order to prepare a good planning for the coastal 

ecosystem management. 
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R CODE 

In this section, we report an example of the code to implement the LIM. 

12/2/2001 case study: 

## COMPARTMENTS 

 

#AUTOTROPHS 

 

CB = CB_biomass # Cyanobacteria # Autotrophic Picoplankton 

AN = AN_biomass # Nanoplankton  # Autotrophic Nanoplankton 

MP = MP_biomass # Microphytoplankton 

 

#HETEROTROPHS 

 

HB = HB_biomass  # Bacteria # Hetererotrophic-Pikoplankton 

HNF = HNF_biomass # Heterotrophic_Nanoplankton 

MIZ = MIZ_biomass # Microzooplankton 

MEZ = MEZ_biomass # Mesozooplankton 

 

## END COMPARTEMENTS 

 

##EXTERNALS 

 

CO2 #= Respiration + GPP 

DOC #= DOC_stock # Dissolved #organic carbon 

DET #= DET_stock # DETRITUS # 

GROWTH #= C to growth 

 

##END EXTERNALS 

 

##PARAMETERS 

 

#Biomasses  

 

CB_biomass = 8.24 

AN_biomass = 6.61 

MP_biomass = 151 

 

HB_biomass = 25 

HNF_biomass = 1.33 

MIZ_biomass = 4.40 

MEZ_biomass = 13.52 

 

# Constrained parameters 

 

#T = 10.27 

#T_eff = exp(0.0693*(T-20))  #T effect 

T_eff = 0.5095186 

 

#W of each compartment in pg C cell-1 

 

W_CB = 0.200 # Umani et al. 2012 

W_HB = 0.020 # Umani et al. 2012 
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W_HNF = 5.63 # Vezina et al. 2000 

W_MIZ = 582.96 # Vezina et al. 2000 

W_MEZ = 3800000 # Richardson et al., 2006 

 

# Respiration 

   

min_CB_CO2 = 0.05 # 5% of gpp 

max_CB_CO2 = 0.3 # 30% of gpp 

min_AN_CO2 = 0.05 # 5% of gpp 

max_AN_CO2 = 0.3 # 30% of gpp 

   

min_MP_CO2 = 0.05 # 5% of gpp 

max_MP_CO2 = 0.3 # 30% of gpp 

 

min_HB_CO2 = 0.2 # # 20% of DOC uptake or total ingestion 

#max_HB_CO2 = 3.6*(W_HB^-0.25)*T_eff  # maximum specific ingestion term*biomass 

max_HB_CO2 = 4.877587 

 

min_HNF_CO2 = 0.2 # 20% of total ingestion 

#max_HNF_CO2 = 14*(W_HNF^-0.25)*T_eff  # maximum specific ingestion term*biomass 

max_HNF_CO2 = 4.630852 

 

min_MIZ_CO2 = 0.2 # 20% of total ingestion 

#max_MIZ_CO2 = 14*(W_MIZ^-0.25)*T_eff  # maximum specific ingestion term*biomass 

max_MIZ_CO2 = 1.451705 

 

min_MEZ_CO2 = 0.2 # 20% of total ingestion 

#max_MEZ_CO2 = 14*(W_MEZ^-0.25)*T_eff  # maximum specific ingestion term*biomass 

max_MEZ_CO2 = 0.1615631 # 

 

# Exudation (Excretion) of DOC 

   

min_CB_DOC = 0.1  # 10 % of NPP (Net primary production) 

max_CB_DOC = 0.55 # 55 % of NPP   

 

min_AN_DOC = 0.1  # 10 % of NPP (Net primary production) 

max_AN_DOC = 0.55 # 55 % of NPP 

   

min_MP_DOC = 0.1  # 10 % of NPP (Net primary production) 

max_MP_DOC = 0.55 # 55 % of NPP 

 

min_HNF_DOC = 0.1 # 10 % of total ingestion 

max_HNF_DOC = 1   # >equal to their respiration 

 

min_MIZ_DOC = 0.1 # 10 % of total ingestion 

max_MIZ_DOC = 1   # >equal to their respiration 

 

min_MEZ_DOC = 0.1 # 10 % of their ingestion 

max_MEZ_DOC = 1   # >equal to their respiration 

 

#HB uptake of DOC or total ingestion 

 

#max_HB_UPT = 3.6*(W_HB^-0.25)*T_eff # max uptake of DOC term*biomass 

max_HB_UPT = 4.877587 # max uptake of DOC term*biomass 

 

# Net Production efficiency  
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min_HB_NPEF = 0.50 # 50% of DOC uptake 

max_HB_NPEF = 0.75 # 75% of DOC uptake 

 

# Gross Production efficiency   

   

min_HNF_GPEF = 0.50 # 50% of Total Ingestion 

max_HNF_GPEF = 0.75 # 75% of Total Ingestion 

   

min_MIZ_GPEF = 0.50 # 50% of Total Ingestion 

max_MIZ_GPEF = 0.75 # 75% of Total Ingestion 

   

min_MEZ_GPEF = 0.50 # 50% of Total Ingestion 

max_MEZ_GPEF = 0.75 # 75% of Total Ingestion   

   

#Ingestion  

   

#max_HNF_ING = 63*(W_HNF^-0.25)*T_eff # max Ingestion term*biomass 

max_HNF_ING = 20.83884 # 

 

#max_MIZ_ING = 63*(W_MIZ^-0.25)*T_eff # max Ingestion term*biomass 

max_MIZ_ING = 6.532672 # 

   

#max_MEZ_ING = 63*(W_MEZ^-0.25)*T_eff # max Ingestion term*biomass 

max_MEZ_ING = 0.7270339 # 

   

#Assimilation efficiency 

   

min_HNF_ASSEFF = 0.1 #of total ingestion  

max_HNF_ASSEFF = 0.5 #of total ingestion 

 

min_MIZ_ASSEFF = 0.2 #of total ingestion 

max_MIZ_ASSEFF = 0.5 #of total ingestion 

 

min_MEZ_ASSEFF = 0.2 #of total ingestion 

max_MEZ_ASSEFF = 0.5 #of total ingestion 

 

##END PARAMETERS 

 

##VARIABLES 

 

#R 

 

CO2_micro = Flowto(CO2) - MEZ_CO2 

 

#PP and NPP 

 

NPP_CB = CO2_CB - CB_CO2 

NPP_AN = CO2_AN - AN_CO2 

NPP_MP = CO2_MP - MP_CO2 

 

GPP = CO2_CB + CO2_AN + CO2_MP 

NPP = NPP_CB + NPP_AN + NPP_MP 

 

#Total ingestion terms 
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TOT_ing_HNF = CB_HNF + HB_HNF + DET_HNF # Total Ingestion of Heterotrophic nanoplankton 

TOT_ing_MIZ = CB_MIZ + AN_MIZ + MP_MIZ + HB_MIZ + HNF_MIZ + DET_MIZ   # Total #ingestion 

of Microzooplankton 

TOT_ing_MEZ = AN_MEZ + MP_MEZ + MIZ_MEZ + DET_MEZ                     # Total #ingestion of 

Mesozooplankton 

 

#GROWTH 

 

CB_GR = CO2_CB - CB_DOC - CB_CO2 - CB_DET - CB_HNF - CB_MIZ 

AN_GR = CO2_AN - AN_DOC - AN_CO2 - AN_DET - AN_MIZ - AN_MEZ 

MP_GR = CO2_MP - MP_DOC - MP_CO2 - MP_DET - MP_MIZ - MP_MEZ 

HB_GR = DOC_HB - HB_CO2 - HB_DOC - HB_DET - HB_HNF - HB_MIZ 

HNF_GR = TOT_ing_HNF - HNF_CO2 - HNF_DOC - HNF_DET - HNF_MIZ 

MIZ_GR = TOT_ing_MIZ - MIZ_CO2 - MIZ_DOC - MIZ_DET - MIZ_MEZ 

MEZ_GR = TOT_ing_MEZ - MEZ_CO2 - MEZ_DOC - MEZ_DET  

 

##END VARIABLES 

   

##FLOWS 

   

##CB # Cyanobacteria # Autotrophic Picoplankton 

 

CO2_CB : Flow(CO2,CB)   ## GPP 

CB_DOC : Flow(CB,DOC)   ## Exudation 

CB_CO2 : Flow(CB,CO2)   ## Respiration 

CB_DET : Flow(CB,DET)   ## To POC  

CB_HNF : Flow(CB,HNF)   ## Predation by HNF 

CB_MIZ : Flow(CB,MIZ)   ## Predation by MIZ 

CB_GR  : Flow(CB,GROWTH)  # NET primary production 

 

##AN # Nanoplankton  # Autotrophic nanoplankton 

 

CO2_AN : Flow(CO2,AN)   ## GPP 

AN_DOC : Flow(AN,DOC)   ## Exudation 

AN_CO2 : Flow(AN,CO2)   ## Respiration   

AN_DET : Flow(AN,DET)   ## To POC 

AN_MIZ : Flow(AN,MIZ)   ## Predation by MIZ 

AN_MEZ : Flow(AN,MEZ)   ## Predation by MEZ 

AN_GR  : Flow(AN,GROWTH)    # NET primary production 

 

##MP # Microphytoplankton 

 

CO2_MP : Flow(CO2,MP)   ## GPP 

MP_DOC : Flow(MP,DOC)   ## Exudation 

MP_CO2 : Flow(MP,CO2)   ## Respiration 

MP_DET : Flow(MP,DET)   ## To POC 

MP_MIZ : Flow(MP,MIZ)   ## Predation by MIZ 

MP_MEZ : Flow(MP,MEZ)   ## Predation by MEZ 

MP_GR  : Flow(MP,GROWTH)    # NET primary production 

 

##HB  # Bacteria # Hetererotrophic pikoplankton 

 

HB_CO2  : Flow(HB,CO2)   ## Respiration 

HB_DOC  : Flow(HB,DOC)   ## Exudation 

HB_DET  : Flow(HB,DET)   ## To POC 

HB_HNF  : Flow(HB,HNF)   ## Predation by HNF 
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HB_MIZ  : Flow(HB,MIZ)   ## Predation by MIZ 

HB_GR : Flow(HB,GROWTH) #Secondary production 

 

##HNF # Heterotrophic nanoplankton 

 

HNF_CO2 : Flow(HNF,CO2)    ## Respiration 

HNF_DOC : Flow(HNF,DOC)    ## Exudation 

HNF_DET : Flow(HNF,DET)    ## To POC 

HNF_MIZ : Flow(HNF,MIZ)    ## Predation by MIZ 

HNF_GR : Flow(HNF,GROWTH) #Secondary production 

 

## MIZ # Microzooplankton 

 

MIZ_CO2 : Flow(MIZ,CO2)      ## Respiration 

MIZ_DOC : Flow(MIZ,DOC)      ## Exudation and sloppy feeedings 

MIZ_DET : Flow(MIZ,DET)      ## To POC (sloppy feeding, fecal pellets) 

MIZ_MEZ : Flow(MIZ,MEZ)      ## Predation by MEZ 

MIZ_GR : Flow(MIZ,GROWTH)  #Secondary production 

 

## MEZ # Mesozooplankton 

 

MEZ_CO2 : Flow(MEZ,CO2)      ## Respiration 

MEZ_DOC : Flow(MEZ,DOC)      ## Exudation and sloppy feedings 

MEZ_DET : Flow(MEZ,DET)      ## To POC (sloppy feeding, fecal pellets) 

MEZ_GR : Flow(MEZ,GROWTH)  #Secondary production 

 

## DET # Detritus 

 

DET_HNF : Flow(DET,HNF)      ## Ingestion by HNF 

DET_MIZ : Flow(DET,MIZ)      ## Ingestion by MIZ 

DET_MEZ : Flow(DET,MEZ)      ## Ingestion by MEZ 

 

# DOC  

 

DOC_HB : Flow(DOC,HB)        ## DOC uptake 

 

##END FLOWS 

 

##EQUATIONS 

 

AN_MIZ = 6.46 

HNF_MIZ = 0.77 

HB_MIZ = 9.83 

CB_MIZ = 3.02 

AN_MEZ = 3.56 

MP_MEZ = 47.08 

MIZ_MEZ = 0.22 

HB_HNF = 2.54 

CB_HNF = 0.38 

 

HNF_GR = 0.24 

HB_GR = 4.80 

 

##END EQUATIONS  

   

## INEQUALITIES 
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# Respiration 

 

#min_CB_CO2*CO2_CB < CB_CO2  

#CB_CO2 < max_CB_CO2*CO2_CB   

 

CB_CO2 = [min_CB_CO2,max_CB_CO2]*CO2_CB 

 

min_AN_CO2*CO2_AN < AN_CO2  

AN_CO2 < max_AN_CO2*CO2_AN   

 

min_MP_CO2*CO2_MP < MP_CO2  

MP_CO2 < max_MP_CO2*CO2_MP  

 

min_HB_CO2*DOC_HB < HB_CO2  

HB_CO2 < max_HB_CO2*HB_biomass   

 

min_HNF_CO2*TOT_ing_HNF < HNF_CO2 

HNF_CO2 < max_HNF_CO2*HNF_biomass 

 

min_MIZ_CO2*TOT_ing_MIZ < MIZ_CO2  

MIZ_CO2 < max_MIZ_CO2*MIZ_biomass 

 

min_MEZ_CO2*TOT_ing_MEZ < MEZ_CO2  

MEZ_CO2 < max_MEZ_CO2*MEZ_biomass 

 

# Exudation/Excretion of DOC 

 

min_CB_DOC*NPP_CB < CB_DOC  

CB_DOC < max_CB_DOC*NPP_CB   

 

min_AN_DOC*NPP_AN < AN_DOC  

AN_DOC < max_AN_DOC*NPP_AN   

 

min_MP_DOC*NPP_MP < MP_DOC  

MP_DOC < max_MP_DOC*NPP_MP   

 

min_HNF_DOC*TOT_ing_HNF < HNF_DOC  

HNF_DOC < max_HNF_DOC*HNF_CO2  

 

min_MIZ_DOC*TOT_ing_MIZ < MIZ_DOC  

MIZ_DOC < max_MIZ_DOC*MIZ_CO2  

 

min_MEZ_DOC*TOT_ing_MEZ < MEZ_DOC  

MEZ_DOC < max_MEZ_DOC*MEZ_CO2   

 

# max uptake DOC by HB 

 

DOC_HB < max_HB_UPT*HB_biomass 

 

#Net production efficiency   

 

min_HB_NPEF*DOC_HB < HB_CO2 + HB_DOC 

HB_CO2 + Hb_DOC < max_HB_NPEF*DOC_HB 
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#Gross production efficiency 

 

min_HNF_GPEF*TOT_ing_HNF < HNF_CO2 + HNF_DOC + HNF_DET 

HNF_CO2 + HNF_DOC + HNF_DET < max_HNF_GPEF*TOT_ing_HNF 

 

min_MIZ_GPEF*TOT_ing_MIZ < MIZ_CO2 + MIZ_DOC + MIZ_DET 

MIZ_CO2 + MIZ_DOC + MIZ_DET < max_MIZ_GPEF*TOT_ing_MIZ 

 

min_MEZ_GPEF*TOT_ing_MEZ < MEZ_CO2 + MEZ_DOC + MEZ_DET 

MEZ_CO2 + MEZ_DOC + MEZ_DET < max_MEZ_GPEF*TOT_ing_MEZ 

 

#Ingestion 

 

TOT_ing_HNF < max_HNF_ING*HNF_biomass 

 

TOT_ing_MIZ < max_MIZ_ING*MIZ_biomass 

 

TOT_ing_MEZ < max_MEZ_ING*MEZ_biomass 

 

#Assimilation efficiency 

   

min_HNF_ASSEFF*TOT_ing_HNF < HNF_DET 

HNF_DET < max_HNF_ASSEFF*TOT_ing_HNF 

 

min_MIZ_ASSEFF*TOT_ing_MIZ < MIZ_DET 

MIZ_DET < max_MIZ_ASSEFF*TOT_ing_MIZ 

 

min_MEZ_ASSEFF*TOT_ing_MEZ < MEZ_DET 

MEZ_DET < max_MEZ_ASSEFF*TOT_ing_MEZ 

 

#GPP 

 

CO2_CB < 29.38482 

CO2_AN < 20.18485 

CO2_MP < 197.1707 

 

##END INEQUALITIES 

 

GPP CALCULATION 

 

Example with 12/2/2001 data 

CB-autotrophic picoplankton - P3 group in BFM 

 

r0p<-3.5 # growth parameter 

pc<- 8.24   # CB autotroph biomass 

q10<-2.00 

T<-10.27 

fpt<-q10^((T-10)/10) 

Epar<- 1756.24 * 37800 ##winter: February 10.5*3600 = 37800, 

                      ##spring: May 15*3600 = 54000 

                      ##summer: August 14*3600 = 50400 

                      ##autumn: November 9*3600 = 32400 

pl<- 0.45 

alpha<- 1.52*(10^-5) 

fpe<- (1 - exp(- ((alpha*Epar*pl)/(r0p*pc)))) 
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fpp<-1 # No nutrient limitation as we use GPP as a maximum value 

CO2_CB<- fpt*fpe*fpp*pc*r0p 

 

AN-auototrophic nanoplankton - P2 group in BFM 

 

r0p<-3.0 ## growth parameter 

pc<- 6.61   ##AN autotroph biomass 

q10<-2.00 

T<-10.27 

fpt<-q10^((T-10)/10) 

Epar<- 1756.24 * 37800 ##winter: february 10.5*3600 = 37800, 

##spring: May 15*3600 = 54000 

##summer: August 14*3600 = 50400 

##autumn: November 9*3600 = 32400 

pl<- 0.45 

alpha<- 0.46*(10^-5) 

fpe<- (1 - exp(- ((alpha*Epar*pl)/(r0p*pc)))) 

fpp<-1 # No nutrient limitation as we use GPP as a maximum value 

CO2_AN<- fpt*fpe*fpp*pc*r0p 

 

MP-Microphytoplankton - P1&P4 group in BFM (we use average values) 

 

r0p<-2.0 ## growth parameter - mean between P1 2.5 and P4 1.5 

pc<- 151    ## MP autotroph biomass 

q10<-2.00 

T<-10.27 

fpt<-q10^((T-10)/10) 

Epar<- 1756.24 * 37800 ##winter: february 10.5*3600 = 37800, 

##spring: May 15*3600 = 54000 

##summer: August 14*3600 = 50400 

##autumn: November 9*3600 = 32400 

pl<- 0.45 

alpha<- 1.035*(10^-5) ## mean between 1.38 P1 and 0.68 P4 

fpe<- (1 - exp(- ((alpha*Epar*pl)/(r0p*pc)))) 

fpp<-1 # No nutrient limitation as we use GPP as a maximum value 

CO2_MP<- fpt*fpe*fpp*pc*r0p 

 


