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Introduction 
Cell homeostasis depends on the balance between the 
production and destruction of macromolecules and 
organelles. There are two major systems in eukaryotic 
cells that degrade cellular components: the ubiquitin 
proteasome system (UPS) and the lysosome. The UPS 
only degrades proteins, mainly short-lived proteins that 
have to be tagged by ubiquitin to be recognized by the 
proteasome (Ciechanover et al., 2000). The lysosomal 
system is responsible for degrading macromolecules, 
including proteins, and for the turnover of organelles 
by autophagy (Mizushima et al., 2008). Recent 
evidence demonstrates that cross-talk and cooperation 
exist between the UPS and autophagy (Korolchuk et 
al., 2009; Lamark and Johansen, 2009; Nedelsky et al., 
2008). The term "autophagy" was coined by Christian 
de Duve soon after his discovery of lysosomes (see 
reference Klionsky, 2007 for an historical view of 
autophagy). The seminal discovery of ATG 
(AuTophaGy) genes, originally in yeast and 
subsequently in multicellular organisms, has provided 
an important breakthrough in the understanding of 
macroautophagy and of its functions in physiology and 
diseases (Klionsky et al., 2003; Nakatogawa et al., 
2009). However the term "autophagy" also embraces 
microautophagy and chaperone-mediated autophagy 
(Klionsky, 2007) that we will briefly describe here. In 
contrast to macroautophagy, which starts with the 
formation of a vacuole, known as the autophagosome, 
that sequesters cytoplasmic components, 
microautophagy consists of the direct uptake of 
fractions of the cytoplasm by the lysosomal membrane. 
Macro- and microautophagy are conserved from yeast 
to humans. These processes were originally described 
as bulk degradation mechanisms. However, selective 

forms of macroautophagy and microautophagy target 
organelles (mitophagy, pexophagy, ribophagy, 
ERphagy, piecemeal microautophagy of the nucleus), 
protein aggregates (aggrephagy), lipid droplets 
(lipophagy), glycogen and microorganisms that invade 
the intracellular milieu (xenophagy) (Beau et al., 2008; 
Kraft et al., 2009; van der Vaart et al., 2008). 
Microautophagy is dependent on GTP hydrolysis and 
on calcium (Uttenweiler and Mayer, 2008). However 
the molecular regulation of microautophagy remains to 
be unraveled. Bulk microautophagy does not seem to 
be dependent on Atg proteins, whereas selective forms 
of microautophagy require different sets of Atg 
proteins (Beau et al., 2008; Kraft et al., 2009; van der 
Vaart et al., 2008). Chaperone-mediated autophagy 
(CMA) is a selective form of autophagy that has so far 
only been described in mammalian cells (Cuervo, 
2009). Substrates for CMA contain a KFERQ-related 
motif in their amino acid sequence. This motif is 
recognized by the cytosolic constitutive chaperone 
hsc70 (heat shock cognate of the Hsp70 family). This 
recognition allows the lysosomal delivery of CMA 
substrates to occur. The lysosomal membrane protein, 
LAMP-2A, serves as a receptor in the translocation of 
unfolded polypeptides across the lysosomal membrane. 
KFERQ-like motifs are found mainly in cytosolic 
proteins, and it is estimated that about 30% of cytosolic 
proteins contain this motif. CMA performs several 
general functions, such as the elimination of oxidazed 
proteins and the removal of misfolded proteins, and 
also provides amino acids during prolonged periods of 
starvation. It is interesting to note that cross-talk occurs 
between macroautophagy and CMA during starvation 
(Kaushik et al., 2008; Massey et al., 2006). When CMA 
is stimulated, macroautophagy is first induced and then 
declines. The molecular basis for this switch remains to 
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be identified. Prevention of the age-related decline of 
CMA is beneficial for the homeostasis of organs and 
function (Zhang and Cuervo, 2008). This observation is 
indicative of the potential importance of CMA and 
macroautophagy, as we discuss below, as possible anti-
aging mechanisms. CMA is also involved in more 
specific functions, such as antigen presentation by 
MHC class II molecules, neurone survival, and kidney 
growth (Cuervo, 2009). 

Molecular and cellular aspects of 
macroautophagy 
Autophagosome formation. Autophagy is initiated by 
the formation of a double membrane-bound vacuole 
known as the autophagosome. The size of this vacuole 
can range from 300 to 900 nm. Autophagosomes are 
non-degradative vacuoles that sequester cytoplasmic 
material. The boundary membrane arises from a single 
membrane, known as the phagophore or isolation 
membrane (reviewed in Yang and Klionsky, 2010) 
(Figure 1). Once completed, autophagosomes receive 
inputs from the endocytic pathway, and thus acquire 
acidic and degradative capacities. These acidic and 
degradative vacuoles form single-membrane 
compartments known as amphisomes (reviewed in 

Yang and Klionsky, 2010). The last stage of autophagy 
is the fusion of the amphisomes with lysosomes to 
degrade their autophagic cargoes and to recycle 
nutrients (to meet the metabolic demand) and 
membranes (to permit ongoing lysosomal function). 
Whereas the mobility of autophagic vacuoles is 
dependent on microtubules, fusion events between 
autophagic vacuoles and lysosomes seem to be 
independent of cytoskeletal elements. A long-standing 
question regarding autophagy was to identify the origin 
of the phagophore and to decipher the molecular basis 
of the biogenesis of autophagosomes. The discovery of 
ATG genes in yeast was a major milestone in our 
understanding of autophagy (Nakatogawa et al., 2009). 
More than 15 Atg proteins, plus class III PI3K or 
hVps34, are required to construct the autophagosome. 
These Atg proteins are hierarchically recruited at the 
PAS (Nakatogawa et al., 2009). The formation of the 
autophagosome is a multistep process that includes the 
biogenesis of the isolation membrane, followed by its 
elongation and closure. The process also requires the 
shuttling of Atg9, the only transmembrane Atg, 
between a peripheral site and the isolation membrane 
(Nakatogawa et al., 2009) (Figure 2). 

 
Figure 1. Schematic view of the autophagic pathway. Autophagy is initiated by the nucleation of an isolation membrane or 
phagophore. Several different membrane pools contribute to the formation of the phagophore. This membrane then elongates and closes 
on itself to form an autophagosome. In most cases, once the autophagosome has been formed it receives input from the endocytic 
pathway (early and late endosomes and multivesicular bodies-MVB). These steps are collectively termed maturation. The amphisomes 
that result from the fusion of autophagosomes with late endosomes/MVB are acidic and hydrolytic vacuoles. 
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Figure 2. Regulation of autophagy and its relationship with signaling molecules and apoptotic mediators. In the presence of 
amino acids, growth factors and energy, the mTOR complex 1 (mTORC1) represses autophagy by inhibiting the kinase activity of ULK1. 
In contrast, in the absence of amino acids and growth factors, or in response to an increase in the AMP/ATP ratio (via activation of 
AMPK), mTORC1 is inhibited and autophagy is initiated by the ULK1 complex. In this complex, Atg13 and FIP200 are substrates for 
ULK1 kinase activity. We do not know whether ULK1 has any other substrates. During starvation, c-JUN N-terminal kinase 1 (JNK1) is 
activated. By phosphorylating Bcl-2, JNK1abolishes its inhibitory effect on the activity of the Beclin 1:hVps34:Atg14 complex. The 
phosphorylation of Beclin 1 by Death-associated protein kinase (DAPK) also triggers the dissociation of Bcl-2 from Beclin 1. Not shown in 
the Figure, BH3-containing proteins can dissociate the Beclin 1:Bcl-2 interaction by competing with the Beclin 1 BH3 domain 
independently of the modification of the phosphorylation status of the proteins in the complex. The activity of the Beclin 1:hVps34:Atg14 
complex is important for the nucleation of the autophagosomal membrane. The functional relationship between the ULK1:Atg13:FIP200 
(initiation) and Beclin 1:hVps34:Atg14 (nucleation) complexes remains to be determined. Production of PtdIns3P by hVps34 in the Beclin 
1:hVps34:Atg14 complex allows the recruitment of WIPI-1 and Atg2 to occur. The expansion and closure of the autophagosomal 
membrane are dependent on the Atg12 and LC3 conjugation systems. The Atg12-Atg5 conjugate associated with Atg16 contributes to 
the stimulation of the conjugation of LC3-I to phosphatidylethanolamine (PE) to generate LC3-II. Expansion of the autophagosomal 
membrane is probably dependent on the supply of lipids by Atg9 that cycles between a peripheral pool and the growing isolation 
membrane or phagophore. The anti-apoptotic protein FLIP inhibits autophagy by interacting with Atg3. In this Figure, protein kinases with 
substrates in the autophagic machinery are boxed in rectangles. Mediators of apoptosis are boxed in orange. These mediators regulate 
autophagy at the nucleation step (Bcl-2 and DAPK) and at the expansion/closure step (FLIP). 
 
Recently strong arguments have been advanced for the 
role of the endoplasmic reticulum (ER) in the initiation 
of autophagy (Axe et al., 2008; Hayashi-Nishino et al., 
2009; Ylä-Anttila et al., 2009). The ULK1 complex (a 
complex composed of ULK1: the mammalian ortholog 
of yeast Atg1, FIP200: the mammalian ortholog of the 
yeast Atg13, Atg17, Atg101), and the PI3K complex (a 
complex composed of Beclin 1: the mammalian 
ortholog of yeast Atg6, Atg14, hVps34, hVps15 and 
AMBRA 1) congregate at the PAS to initiate autophagy 
in response to nutrient starvation. The kinase activity of 
ULK1 is controlled by the kinase mTOR in the 
mTORC1 complex sensitive to rapamycin (Hosokawa 

et al., 2009). The protein Atg14 plays a key role in the 
ER targeting of the PI3K complex. How the ULK1 and 
PI3K complexes are coordinately regulated remains to 
be elucidated. The production of PtdIns3P by hVps34 
recruits WIPI-1/2 (Atg18) and DFPC1, which are both 
PtdIns3P binding proteins. DFCP1 is located at the 
Golgi in resting cells, but in response to autophagy 
stimulation it is recruited to an ER structure known as 
the omegasome (Axe et al., 2008). The omegasome 
serves as a PAS to accommodate the two ubiquitin-like 
conjugation systems (Atg12-Atg5, Atg16 and LC3-II, 
the phosphatidylethanolamine containing LC3, the 
mammalian ortholog of the yeast Atg8) that act 
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sequentially to elongate the phagophore membrane and 
thus form the autophagosome (Nakatogawa et al., 
2009). More recently it has been suggested that the 
mitochondrial outer membrane may be another source 
of the isolation membrane (Hailey et al., 2010). 
According to this scenario, the mitochondria-ER 
contact site provides the growing phagophore with 
lipids. The plasma membrane, through Atg16L1 
decorated vesicles derived from coated pits, is also a 
source of membrane for the phagophore (Ravikumar et 
al., 2010a). Finally, Golgi apparatus and post-Golgi 
compartments containing Atg9 also contribute to the 
formation of the autophagosome membrane (Mari et 
al., 2010; Ohashi and Munro, 2010). Whatever the 
origin of the membrane, Atg proteins are retrieved from 
the autophagosome membrane after closure, with the 
exception of a fraction of LC3-II, which is transported 
into the lysosomal compartment (Yang and Klionsky, 
2010). Following on from this discovery, several 
methods based on the analysis of the LC3 protein have 
been developed to monitor autophagy (Mizushima et 
al., 2010). 
The role of LC3 and of other members of the 
mammalian Atg8 family (GABARAPs) remains to be 
fully elucidated. However, a recent study shows that 
LC3s and GABARAPs are involved in different steps 
of autophagosome biogenesis (Weidberg et al., 2010). 
LC3s mediate the elongation of the autophagic 
membrane, and GABARAPs mediate a downstream 
event probably associated with the closure of the 
autophagosome membrane. Atg8 proteins induce 
membrane fusion, which is involved in autophagy 
(Nakatogawa et al., 2007; Weidberg et al., 2011a). 
However, the biogenesis of autophagosomes has also 
been shown to involve SNAREs in yeast and 
mammalian cells (Moreau et al., 2011; Nair et al., 
2011). Atg8 proteins can also serve as a scaffold for 
recruiting proteins that may regulate events upstream 
and downstream of the formation of autophagosomes 
(Garcia-Marcos et al., 2011; Itoh et al., 2011; Mauvezin 
et al., 2010). Moreover, LC3 contributes to the 
selectivity shown by autophagy towards different cell 
structures, protein aggregates and microorganisms via 
the recognition of an LIR (LC3 Interacting Region) on 
target proteins such as P62 and NBR1 (Noda et al., 
2008; Kraft et al., 2009; Weidberg et al., 2011b). 
After their formation, autophagosomes can merge with 
endocytic compartments (early and late endosomes, 
multivesicular bodies can merge with autophagosomes) 
before fusing with the lysosomal compartment (Liou et 
al., 1997; Razi et al., 2009; Stromhaug and Seglen, 
1993). The term "amphisome" (from the Greek roots, 
amphi: both and soma: body) has been coined by Per 
O. Seglen (reviewed in Fengsrud et al., 2004) for the 
vacuole that results from the fusion of an 
autophagosome with an endosome. The late stage of 
autophagy depends on molecules that regulate the 
maturation of autophagosomes, including their fusion 
with endosomes and lysosomes, as well as on the 

acidification of the autophagic compartments, and the 
recycling of metabolites from the lysosomal 
compartment (Figure 1). These steps are of a 
fundamental importance for the flux (defined here as 
extending from the cargo sequestration step to that of 
its lysosomal degradation) of material through the 
autophagic pathway (Codogno and Meijer, 2005). Any 
blockade in the maturation of autophagosomes, fusion 
with the lysosomal compartment or impairment of the 
lysosomal function or biogenesis would result in an 
accumulation of autophagosomes that would inevitably 
slowdown or interrupt the autophagic flux (Eskelinen, 
2005; Rubinsztein et al., 2009). 

Maturation and degradation of autophagosomes 
Rubicon and UVRAG. Rubicon and UVRAG (UV 
irradiation resistance associated gene) are two Beclin 1-
binding proteins that regulate the maturation of 
autophagosomes and endocytic trafficking (Liang et al., 
2006; Matsunaga et al., 2009; Zhong et al., 2009). 
These findings suggest that the Beclin 1: hVps34: 
UVRAG: Rubicon complex down-regulates these 
trafficking events, whereas the Beclin 1: hVps34: 
UVRAG complex upregulates the maturation of 
autophagosomes and the endocytic trafficking 
(Matsunaga et al., 2009; Zhong et al., 2009). Therefore, 
Beclin 1 regulates both the formation of 
autophagosomes (via its interaction with Atg14L) and 
the maturation of autophagosomes (via its interaction 
with UVRAG and Rubicon). 
Rab proteins. Colombo and co-workers (Gutierrez et 
al., 2004), and Eskelinen and co-workers (Jager et al., 
2004) have shown that Rab7 is required for 
autophagosome maturation. Autophagosome 
maturation is dependent on interactions with class C 
Vps proteins and UVRAG (Liang et al., 2008). This 
function of UVRAG is independent of its interaction 
with Beclin 1, and stimulates Rab7 GTPase activity and 
the fusion of autophagosomes with late 
endosomes/lysosomes. Interestingly, Rab11 is required 
for the fusion of autophagosomes and multivesicular 
bodies (MVB) during starvation-induced autophagy in 
the erythroleukemic cell line K562 (Fader et al., 2008). 
These findings suggest that specific membrane-bound 
compartment fusion processes during the maturation of 
autophagosomes engage different sets of Rab proteins, 
and possibly associated cohort proteins. Other Rab 
proteins such as Rab22 and Rab24 have subcellular 
locations compatible with a role in autophagy (Egami 
et al., 2005; Mesa et al., 2001; Olkkonen et al., 1993). 
ESCRT and Hrs. The endosomal sorting complex 
required for transport (ESCRT) mediates the biogenesis 
of MVB and the sorting of proteins in the endocytic 
pathway (Raiborg and Stenmark, 2009). It has recently 
been demonstrated that the multisubunit complex 
ESCRT III is needed for autophagosomes to fuse with 
MVB and lysosomes to generate amphisomes and 
autolysosomes, respectively (Filimonenko et al., 2007; 
Lee et al., 2007; Rusten et al., 2007). ESCRT III 
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dysfunction associated with the autophagic pathway 
may have important implications in neurodegenerative 
diseases (such as frontotemporal dementia and 
amyotrophic lateral sclerosis) (Filimonenko et al., 
2007; Lee et al., 2007). The Hrs protein (hepatocyte 
growth factor-regulated tyrosine kinase substrate) plays 
a major role in endosomal sorting upstream of ESCRT 
complexes (Raiborg and Stenmark, 2009). Hrs contains 
a FYVE domain that binds specifically to PtdIns3P, 
and facilitates the maturation of autophagosomes 
(Tamai et al., 2007). This raises the intriguing 
possibility that PtdIns3P may be required for the 
formation of the autophagosome and its maturation. 
However, the role of ESCRT proteins in autophagy 
remains to be elucidated. It is impossible to rule out the 
possibility that these proteins could be involved in the 
closing of autophagosomes (reviewed in Rusten and 
Stenmark, 2009). 
SNAREs. Soluble N-ethylmaleimide-sensitive factor 
attachment protein receptors (SNAREs) are basic 
elements in intracellular membrane fusion (Gurkan et 
al., 2007; Rothman and Wieland, 1996). In yeast the 
vacuolar t-SNAREs Vam3 (Darsow et al., 1997) and 
Vti1 (Ishihara et al., 2001), are needed for complete 
fusion to occur between the autophagosome and the 
vacuole (the name given to the lysosome in yeast) in S. 
cerevisiae. The mammalian homologue of Vt1, Vti1b, 
may be involved in a late stage of autophagy, because 
the maturation of autophagic vacuoles is delayed in 
hepatocytes isolated from mice in which Vti1b has 
been deleted (Atlashkin et al., 2003). More recently, 
Colombo and colleagues (Fader et al., 2009) have 
reported that VAMP3 and VAMP7, two v-SNAREs, 
control the fusion between autophagosomes and MVB 
and fusion of amphisomes with lysosomes, 
respectively. 
Endo/lysosomal membrane proteins. LAMPs 
(Lysosomal associated membrane proteins) are a family 
of heavily-glycosylated, endo/lysosomal 
transmembrane proteins (Eskelinen et al., 2003). 
Autophagic degradation has been shown to be impaired 
in hepatocytes isolated from LAMP-2 deficient mice 
(Tanaka et al., 2000). However, no defect in autophagy 
was observed in LAMP-2 deficient mouse fibroblasts 
(Eskelinen et al., 2004). A blockade in the later stage of 
autophagy only occurs in fibroblasts that are deficient 
for both LAMP-1 and LAMP-2. The differences in the 
autophagic activity observed between hepatocytes and 
fibroblasts may be responsible for the cell type-specific 
effects of LAMP-1 and LAMP-2 depletion (Eskelinen, 
2005). 
DRAM (Damage-regulated autophagy modulator) 
encodes a 238-amino acid protein which is conserved 
through evolution, but has no ortholog in yeast 
(Crighton et al., 2006). DRAM is a direct target of p53. 
The protein is a multispanning transmembrane protein 
present in the lysosome. DRAM may regulate late 
stages of autophagy, but surprisingly it also controls the 
formation of autophagosomes (Crighton et al., 2006). 

This suggests the possibility of a new paradigm in 
which feedback signals from the lysosomes control the 
early stages of autophagy. 
Microtubules. The destabilization of microtubules by 
either vinblastin (Høyvik et al., 1991) or nocodazole 
(Aplin et al., 1992) blocks the maturation of 
autophagosomes, whereas their stabilization by taxol 
increases the fusion between autophagic vacuoles and 
lysosomes (Yu and Marzella, 1986). More recent 
findings have confirmed the role of microtubules in the 
fusion with the acidic compartment (Jahreiss et al., 
2008; Kochl et al., 2006; Webb et al., 2004). 
Autophagosomes move bidirectionally along 
microtubules. Their centripetal movement is dependent 
on the dynein motor (Kimura et al., 2008; Ravikumar et 
al., 2005). Two types of fusion have been documented 
(Jahreiss et al., 2008): 1. Complete fusion of the 
autophagosome with the lysosome, 2. Transfer of 
material from the autophagosome to the lysosomal 
compartment following a kiss-and-run fusion process in 
which two separate vesicles are maintained. However, 
fusion with lysosomes can be microtubule-independent 
during starvation-induced autophagy when 
autophagosomes are formed in the vicinity of 
lysosomes (Fass et al., 2006). 

Acidification and degradation 
ATPases. Vacuolar ATPases (v-ATPase) are 
ubiquitous, multi-subunit proteins located in the acidic 
compartment (Forgac, 2007). Inhibition of the activity 
of v-ATPase by bafilomycin A1 or concanamycin A 
blocks the lysosomal pumping of H+ and consequently 
inhibits lysosomal enzymes, which are active at low 
pH. It has been proposed that bafilomycin A1 blocks 
the late stages of autophagy by interfering with the 
fusion of autophagosomes with endosomes and 
lysosomes (Yamamoto et al., 1998) or preventing the 
lysosomal degradation of sequestered material (Fass et 
al., 2006; Mousavi et al., 2001). Overall, the resulting 
effect of the inhibition of v-ATPase is to interrupt the 
autophagic flux as determined by the lysosomal 
inhibition of autophagic cargo. Interestingly it has 
recently been demonstrated that a deficiency of 
vacuolar H+-ATPase homolog (VMA21), a chaperone 
that binds to the c" subunit of the v-ATPase in the ER 
and which is responsible for X-linked myopathy with 
excessive autophagy (XMEA), causes an accumulation 
of autophagic vacuoles and interrupts autophagy flux in 
striated muscle cells (Ramachandran et al., 2009). 
ATPases associated with various cellular activity 
proteins (AAA ATPases) are a family of proteins 
broadly engaged in intracellular membrane fusion 
(White and Lauring, 2007). N-ethylmaleimide sensitive 
factor (NSF) is an AAA ATPase, which binds to 
SNARE complexes and utilizes ATP hydrolysis to 
disassemble them, thus facilitating SNARE recycling. 
In yeast mutants lacking sec18 (the yeast homolog of 
NSF), autophagosomes are formed, but dot not fuse 
with the vacuole (Ishihara et al., 2001). However, we 
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do not know whether the ATPase activity of NSF plays 
a role in the later stages of autophagy in mammalian 
cells. Nevertheless the activity of NSF is attenuated 
during starvation, which provides a possible 
explanation for the slow fusion between 
autophagosomes and lysosomes observed when 
autophagy is induced by starvation (Fass et al., 2006). 
Suppressor of K+ transport growth defect 1 (SKD1-
Vps4), another AAA ATPase protein, is required for 
the maturation of autophagosomes (Nara et al., 2002) in 
mammalian cells. Vps4 controls the assembly of 
ESCRT complexes on the multivesicular membrane, 
and is involved in autophagosome maturation (Rusten 
et al., 2007) in Drosophila, and autophagosome fusion 
with the vacuole in yeast (Shirahama et al., 1997). 
Degradation and lysosomal efflux. By virtue of 
lysosomal degradation autophagy contributes to 
regulating the metabolism of carbohydrates, lipids and 
proteins (Kotoulas et al., 2006; Kovsan et al., 2009; 
Mortimore and Pösö, 1987). Like acidification defects 
in the endo/lysosomal compartment, defects in the 
transport or the expression of lysosomal enzymes 
induce a blockade of autophagy, which is characterized 
by an accumulation of autophagic vacuoles (Koike et 
al., 2005; Yogalingam and Pendergast, 2008). The final 
stage of autophagy is the efflux of metabolites 
generated by the lysosomal degradation of 
macromolecules into the cytosol (reviewed in Lloyd, 
1996). Atg22 has recently been identified as a 
permease that recycles amino acids from the vacuole in 
S. cerevisiae (Yang et al., 2006). 

Cytoplasmic and nuclear regulation 
of mammalian autophagy 
Several recent reviews have been dedicated to the 
regulation of autophagy by signaling pathways 
(Codogno and Meijer, 2005; He and Klionsky, 2009; 
Meijer and Codogno, 2009). In this section we would 
like to focus on signaling pathways with identified 
targets in the molecular machinery of autophagosome 
formation. We will also discuss the role of signaling 
pathways and transcription factors in the regulation of 
the expression of genes involved in controlling 
autophagy. 

Cytoplasmic regulation 
mTORC1 and mTORC2. Many signals, including 
growth factors, amino acids, glucose, and energy status, 
are integrated by the kinase mTOR (Kim et al., 2002). 
The induction of autophagy by the inhibition of TOR 
under conditions of starvation is conserved from yeast 
to mammals (Blommaart et al., 1995; Noda and 
Ohsumi, 1998). The mTOR pathway involves two 
functional complexes: mTORC1 and mTORC2. Both 
these complexes are involved in the regulation of 
autophagy (Fig. 2). mTORC1, the rapamycin-sensitive 
mTOR complex 1, contains the mTOR catalytic 
subunit, raptor (regulatory associated protein of mTOR, 
a protein that acts as a scaffold for the mTOR-mediated 

phosphorylation of mTOR substrates), GbL and 
PRAS40 (proline-rich Akt substrate of 40 kDa). The 
binding of FKBP12 to mTOR inhibits the mTOR-
raptor interaction, suggesting a mechanism for 
rapamycin-specific inhibition of mTOR signaling 
(Oshiro et al., 2004). This mTOR-raptor interaction, 
and its regulation by nutrients and/or rapamycin are 
dependent on GbL (Kim et al., 2003). A major 
unanswered question about the stimulation of 
autophagy during starvation is how amino acids signal 
to mTOR (Meijer and Dubbelhuis, 2004). It has been 
suggested that hVps34 may have a role in the amino 
acid signaling to mTORC1 (Byfield et al., 2005; 
Nobukuni et al., 2005). Thus it appears that hVps34 
acts both as a down-regulator of autophagy (acting as 
an amino acid sensor) and as an up-regulator (because 
it is a component of Beclin 1 complexes) of autophagy. 
However, recent observations in Drosophila and 
mammalian cells suggest that Rag GTPases (Ras-
related small GTPases) activate TORC1 in response to 
amino acids by promoting its redistribution to a specific 
subcellular compartment, which contains the TORC1 
activator Rheb (Ras homolog enriched in brain, a GTP-
binding protein) (Kim et al., 2008a; Sancak et al., 
2008). Moreover, the rate-limiting factor that enables 
essential amino acids to inhibit mTORC1 has been 
identified as L-glutamine (Nicklin et al., 2009). L-
glutamine uptake is regulated by solute carrier family 
1, member 5 (SLC1A5). Loss of SLC1A5 function 
activates autophagy, and inhibits cell growth. Thus, L-
glutamine sensitivity is attributable to 
SLC7A5/SLC3A2, a bidirectional transporter that 
regulates the simultaneous efflux of L-glutamine out of 
cells and the transportation of L-leucine/essential 
amino acids into cells (Nicklin et al., 2009). 
The other mTOR complex, mTORC2, which is less 
sensitive to rapamycin, includes mTOR, rictor 
(rapamycin-insensitive companion of mTOR), GbL, 
SIN1 (SAPK-interacting protein 1) and PROTOR 
(protein observed with rictor) (Sarbassov et al., 2006). 
The mTORC2 complex phosphorylates the Ser473 of 
Akt/PKB, thereby contributing to the activation of this 
important cell-survival kinase (Sarbassov et al., 2006). 
Phosphorylated Akt/PKB down-regulates the activity 
of the transcriptional factor Forkhead Box O3 (FoxO3). 
Interestingly, FoxO3 has been shown to stimulate 
autophagy in muscle cells by increasing the 
transcription of several genes involved in autophagy 
(see below) (Mammucari et al., 2007). 
Signaling segments acting upstream of mTORC1 and 
mTORC2 that regulate autophagy have been discussed 
in recent reviews that the reader can consult for more 
information (Codogno and Meijer, 2005; Meijer and 
Codogno, 2009). 
mTORC1 substrates and the regulation of autophagy. 
As discussed above,ULK1, Atg13 and FIP200 form a 
stable complex that signals to the autophagic 
machinery downstream of mTORC1. Importantly, 
mTORC1 is incorporated into the ULK1:Atg13:FIP200 
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complex via ULK1 in a nutrient-dependent manner. 
mTOR phosphorylates both ULK1 and Atg13. Under 
starvation conditions or in response to rapamycin 
treatment, mTORC1 dissociates from the ULK1 
complex, resulting in the activation of ULK1. 
Activated ULK1 autophosphorylates, and also 
phosphorylates both Atg13 and FIP200 to initiate 
autophagy (Hosokawa et al., 2009). The location of 
phosphorylation sites, as well as the role played by 
other members of the ULK family, ULK2 and ULK3, 
remain to be determined. Once activated, mTORC1 
favors cell growth by promoting translation via the 
phosphorylation of 70 kDa, polypeptide 1 ribosomal 
protein S6 kinase-1 (p70S6K), and phosphorylation of 
the inhibitor of translation initiation, 4E-BP1. 
Interestingly, Neufeld and coworkers showed that 
p70S6K is up-regulated during starvation-induced 
autophagy in the Drosophila fat body (Scott et al., 
2004). Mammalian cells probably have a regulatory 
feedback pathway involving S6K that regulates 
autophagy (Klionsky et al., 2005). p70S6K is known to 
phosphorylate and inhibit IRS1 downstream of the 
insulin receptor (reviewed in Meijer and Codogno, 
2009). This loop could provide a way to regulate the 
activity of mTORC1 during starvation-induced 
autophagy. 
AMP-activated kinase (AMPK). Apart of being a 
sensor, mTOR can also sense changes in the cellular 
energy via AMPK. Activation of AMPK inhibits 
mTOR-dependent signaling, by interfering the activity 
of the GTPase Rheb, and protein synthesis (Meijer and 
Codogno, 2004). This is consistent with the switch off 
of ATP-dependent processes (Hardie, 2004) during 
period of energy crisis. In starved cells when 
AMP/ATP ratio increases, the binding of AMP to 
AMPK favors its activation by the AMPK kinase 
LKB1 (Corradetti et al., 2004; Shaw et al., 2004). 
Moreover, Ca2+/calmodulin-dependent kinase kinase b 
(CaMKK-b) has been identified to be an AMPK kinase 
(Hawley et al., 2005; Woods et al., 2005). The activity 
of AMPK is required to induce autophagy in response 
to starvation in mammalian cells (Meley et al., 2006) 
and in yeast (Wang et al., 2001) in a TORC1-dependent 
manner. Moreover, induction autophagy is also 
dependent on the inhibition of mTORC1 by AMPK in 
non-starved cells in response to an increase in free 
cytosolic Ca2+ (Høyer-Hansen et al., 2007). In this 
setting, the activation of AMPK and stimulation of 
autophagy are dependent on CaMKK-b. Induction of 
autophagy through the activation of AMPK is probably 
extended to other settings such as hypoxia (Degenhardt 
et al., 2006; Laderoute et al., 2006). AMPK is probably 
a general regulator of autophagy upstream of mTOR 
(Høyer-Hansen and Jaattela, 2007; Meijer and 
Codogno, 2007). Another potential candidate of 
autophagy regulation downstream of AMPK is the 
Elongation factor-2 kinase (eEF-2 kinase) that controls 
the rate of peptide elongation (Hait et al., 2006). 
Activation of eEF-2 kinase increases autophagy while 

slowing down protein translation (Wu et al., 2006). The 
activity of eEF-2 kinase is regulated by mTOR, S6K 
and AMPK (Browne et al., 2004; Browne and Proud, 
2002). During periods of ATP depletion, AMPK is 
activated and eEF-2 kinase is phosphorylated (Browne 
et al., 2004) making a balance between inhibition of 
peptide elongation and induction of autophagy. How 
eEF-2 kinase impinges on the molecular machinery of 
autophagy remains to be investigated. Moreover, 
autophagy is activated by AMPK in a p53-dependent 
manner (Feng et al., 2005). But the cytoplasmic form of 
p53 has been shown to have an inhibitory effect on 
autophagy (Tasdemir et al., 2008). 
Finally, AMPK also triggers the initiation of 
autophagosome formation by phosphorylating ULK1 
(Egan et al., 2011; Kim et al., 2011) (Figure 2). 
Beclin 1:hVps34 complexes. As discussed in the 
preceding sections, the trimer Beclin 1:hVps34:hVps15 
can interact with various different partners to control 
the formation and the maturation of autophagosomes. 
Recently, the anti-apoptotic protein Bcl-2, and anti-
apoptotic members of the Bcl-2 family such as Bcl-XL 
were shown to inhibit autophagy (Erlich et al., 2007; 
Maiuri et al., 2007; Pattingre et al., 2005). Bcl-2/Bcl-
XL binds Beclin 1 through a BH3 domain that mediates 
the docking of the latter to the BH3-binding groove. 
The constitutive Bcl-2/Bcl-XL:Beclin 1 interaction is 
disrupted by signals that promote autophagy. 
Importantly, c-Jun N-terminal kinase 1 (JNK-1) 
phosphorylates 3 amino acids in the N-terminal loop of 
Bcl-2 to trigger its release from Beclin 1 (Wei et al., 
2008) in response to starvation or ceramide treatment 
(Pattingre et al., 2009; Wei et al., 2008). In a reciprocal 
manner, the BH3 domain of Beclin 1 can be 
phosphorylated by death-associated protein kinase 
(DAPk), which has the effect of reducing its affinity for 
Bcl-XL (Zalckvar et al., 2009). A second mechanism 
that leads to the dissociation of the complex involves 
the competitive displacement of BH3-domain Beclin 1 
from Bcl-2/Bcl-XL by other BH3-containing proteins 
with proapoptotic properties such BH3-only member of 
the Bcl-2 family (BAD), the pro-apoptotic member of 
the Bcl-2 family, Bax-, and BH3-mimetics (Luo and 
Rubinsztein, 2010; Maiuri et al., 2007). The role of the 
hypoxia-inducible BH3-only proteins BNIP3 and 
BNIP3L in the dissociation of the Beclin 1:Bcl-2 
complex will be discussed in the next section. Overall 
these findings point to the central role of 
Beclin1:hVps34 complexes in the cross-talk between 
autophagy and apoptosis. Interestingly, a recent study 
reports that the anti-apoptotic protein FLIP, which 
blocks the activation of caspase 8 downstream of death 
receptors, is also an anti-autophagy molecule by 
blocking the formation of LC3-II via its interaction 
with Atg3 (Lee et al., 2009) (Figure 2). 
Inositol 1,4,5-trisphosphate (IP3) receptor. Autophagy 
can also be induced via an mTOR-independent 
pathway by lowering myo-inositol 1,4,5-trisphosphate 
(IP3) levels (Sarkar et al., 2005). This effect can be 
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achieved pharmacologically with drugs such as lithium 
or L-690 330, which disrupt the metabolism of inositol 
by inhibiting inositol monophosphatase (IMP). 
Rubinsztein and coworkers found that L-type Ca2+ 
channel antagonists, the K+ATP channel opener, and 
Gi signaling activators all induce autophagy (Williams 
et al., 2008). These drugs reveal a cyclical mTOR-
independent pathway regulating autophagy, in which 
cAMP regulates IP3 levels, influencing calpain activity, 
which completes the cycle by cleaving and activating 
Gs alpha, which regulates cAMP levels. These data 
also suggest that insults that elevate intracytosolic 
Ca2+ (such as excitotoxicity) inhibit autophagy, thus 
retarding the clearance of aggregate-prone proteins. 
Both genetic and pharmacological inhibition of the IP3 
receptor (IP3R) strongly stimulate autophagy. Kroemer 
and coworkers have shown that the IP3R antagonist 
xestospongin B induces autophagy by disrupting a 
molecular complex formed between the IP3R and 
Beclin 1, an interaction that is regulated by Bcl-2 
(Vicencio et al., 2009). The IP3R is known to be 
located in the membranes of the ER as well as in ER-
mitochondrial contact sites, and IP3R blockade triggers 
the autophagy of both ER and mitochondria, as 
observed in starvation-induced autophagy. ER 
stressors, such as tunicamycin and thapsigargin, also 
induce autophagy of the ER and, to a lesser extent, of 
mitochondria. Autophagy triggered by starvation or 
IP3R blockade is inhibited by Bcl-2, and Bcl-XL located 
at the ER, but not at the mitochondrial outer membrane 
(Pattingre et al., 2005; Vicencio et al., 2009). In 
contrast, ER stress-induced autophagy is not inhibited 
by Bcl-2 or Bcl-XL. Autophagy promoted by IP3R 
inhibition cannot be attributed to a modulation of 
steady-state Ca2+ levels in the ER or in the cytosol 
(Vicencio et al., 2009). 
Other cytoplasmic autophagy regulation mechanisms. 
The function of Atg proteins in autophagy can be 
regulated not only by protein-protein interactions and 
phosphorylation, but also by oxidation, acetylation, and 
proteolytic cleavage. Elazar and colleagues (Scherz-
Shouval et al., 2007) have reported that the oxidation of 
a cysteine residue near the catalytic site of Atg4A and 
Atg4B is required during starvation-induced autophagy. 
During starvation, the deacetylation of Atg5, Atg7, 
LC3 and Atg12 is important to stimulate autophagy. 
The acetylation is dependent on the activity of p300 
(Lee and Finkel, 2009), and the deacetylation is 
probably under the control of the histone deacetylase 
sirtuin 1 (Lee et al., 2008). Atg5, Atg7 and Beclin 1 are 
substrates for calpains (Kim et al., 2008b; Xia et al., 
2010; Yousefi et al., 2006), and Atg4D and Beclin 1 
are substrates for caspases (Betin and Lane, 2009; Cho 
et al., 2009; Luo and Rubinsztein, 2010). The cleavage 
of Beclin 1 by caspase 3, and that of Atg5 by calpain 1 
inhibit autophagy (Luo and Rubinsztein, 2010; Xia et 
al., 2010). The cleavage of Atg proteins by caspases 
and calpains has been proposed as a possible additional 
mechanism modulating autophagy. Interestingly, the 

truncated form of Atg5 generated by calpain 1 cleavage 
is translocated into the mitochondria and induces 
apoptosis (Yousefi et al., 2006). 

Nuclear regulation of autophagy 
JNK/c-Jun. The sphingolipid ceramides have been 
shown to increase the expression of Beclin 1 in human 
cancer cell lines (Scarlatti et al., 2004). In cancer cell 
lines exposed to ceramide, Li et al. have observed 
activation of JNK and increased phosphorylation of c-
Jun (Li et al., 2009). They also showed that c-Jun 
controls the transcription of Becn1 (we have adopted 
this nomenclature for the gene encoding Beclin 1), and 
the induction of autophagic cell death in response to 
ceramide. Activation of JNK, resulting in the 
upregulation of Beclin 1 expression, has also been 
reported in the autophagic cell death of human colon 
cancer cells induced by the stimulation of the human 
death receptor 5 (Park et al., 2009). 
NF-κB. The NF-κB transcription factor, which plays a 
plethoric role in inflammation, immunity and cancer 
(Karin, 2006), has also been implicated in regulating 
autophagy. A conserved NF-κB binding site has 
recently been unveiled in the promoter of the murine 
and human gene that encodes Beclin 1 (Copetti et al., 
2009). The authors have shown that p65/RelA, a 
member of the NF-κB family, upregulates the 
expression of Beclin 1 and stimulates autophagy in 
several cellular systems. Autophagy stimulation has 
also been observed after the activation of NF-κB during 
the heat shock response (Nivon et al., 2009). However, 
in contrast to this stimulatory role of NF-κB in the 
regulation of autophagy, the inhibition of NF-κB favors 
TNFα-dependent and starvation-dependent autophagy 
(Djavaheri-Mergny et al., 2006; Fabre et al., 2007). 
Moreover, Schlottmann et al. reported that activation of 
NF-κB prevents autophagy in macrophages by 
downregulating the expression of Atg5 and Beclin 1 
(Schlottmann et al., 2008). 
E2F1. E2F transcription factors are known to be 
involved in cellular proliferation, but also in DNA 
repair, differentiation and development (DeGregori and 
Johnson, 2006). E2F1 has been shown to bind to the 
promoter of Becn1, although an effect of E2F1 on 
Beclin 1 expression remains to be demonstrated 
(Weinmann et al., 2001). More recently, the activation 
of E2F1 has been shown to induce autophagy by 
upregulating the expression of the autophagy genes 
Map1lc3, Ulk1, Atg5 and Dram (we have adopted the 
nomenclature Map1lc3 for the gene encoding LC3) 
(Polager et al., 2008). The E2F1-mediated induction of 
Map1lc3, Ulk1 and Dram is direct (interaction with the 
promoter), whereas the up-regulation of the expression 
of Atg5 is indirect. 
HIF-1. HIF-1 (hypoxia-inducible factor-1) is a 
transcription factor, which regulates the transcription of 
hundred of genes in response to hypoxia (Manalo et al., 
2005). Recently Zhang et al have demonstrated that 
hypoxia-induced mitochondrial autophagy via HIF-1 
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mediated induction of Bnip3 (Zhang et al., 2008). In a 
similar way, Bellot et al. have shown that hypoxia-
induced autophagy is mediated by HIF-1, which 
induces the expression of BNIP3 and BNIP3L (Bellot 
et al., 2009). BNIP3 and BNIP3L play important roles 
in the induction of autophagy by disrupting the 
interaction of Beclin 1 with Bcl-2 via their BH3 
domain. HIF-1 could also regulate the expression of 
Beclin 1 and Atg5, probably indirectly although 
according to a recent report the silencing of HIF-1 in 
cultured chondrocytes was associated with a reduced 
level of Beclin 1 (Bohensky et al., 2007). 
FoxO proteins. Three members of the FoxO family of 
transcription factors, FoxO1, FoxO3, and FoxO4 are 
regulated by Akt phosphorylation in response to growth 
factor and insulin stimulation. FoxO proteins are 
phosphorylated by Akt, which renders them inactive in 
the presence of growth factors. When Akt is repressed, 
FoxO proteins are translocated into the nucleus, bind to 
DNA, and transactivate its target genes (Salih and 
Brunet, 2008). Several studies of protein degradation 
during muscle atrophy show that FoxO3 can induce the 
expression of multiple autophagy genes, including 
Map1lc3, Atg12, Becn1, Atg4b, Ulk1, Pik3c3 (we have 
adopted the nomenclature Pik3c3 for the gene encoding 
hVps34), Bnip3/Bnip3l, and Gabarapl1 (Mammucari et 
al., 2007; Zhao et al., 2007), and then upregulates 
autophagy. FoxO3 can bind directly to the promoter 
region of some of these genes, such as Map1lc3, Atg12, 
Gabarapl1 and Bnip3/Bnip3l. Expression of a 
constitutive form of FoxO3 induces autophagy in adult 
mouse skeletal muscle. Recently another member of the 
FoxO protein family, FoxO1, has been shown to 
regulate the expression of key autophagy genes, 
Pik3c3, Atg12, and Gabarapl1 in hepatocytes in an 
insulin-dependent manner (Liu et al., 2009). 
p53. p53 is a pivotal factor involved in regulating cell 
death and survival, and in regulating metabolism 
(Vousden and Prives, 2009). When p53 is activated by 
cellular stress, p53 accumulates in the cell nucleus, 
where it transactivates several autophagy-modulating 
genes including Dram (damage-regulated autophagy 
modulator) and Tigar (TP53-induced glycolysis and 
apoptosis regulator). DRAM stimulates the 
accumulation of autophagosomes, probably by 
regulating autophagosome-lysosome fusion to generate 
autophagolysosomes (Crighton et al., 2006). TIGAR, 
through its fructose 2, 6-bisphosphatase function, can 
modulate the glycolytic pathway and indirectly 
contribute to the fall in the intracellular level of ROS 
(Bensaad et al., 2006). Recently, the same group 
showed that TIGAR can also modulate the intracellular 
ROS level in response to nutrient starvation or 
metabolic stress, and consequently inhibit autophagy 
via an mTOR-independent pathway (Bensaad et al., 
2009). So, while DRAM and TIGAR are both 
transactivated by p53, DRAM promotes autophagy 
whereas TIGAR inhibits autophagy. The complexity of 
the autophagic response to p53 is further increased by 

the ability of cytoplasmic p53 to limit autophagy 
(Tasdemir et al., 2008). 
Transcription factor EB (TFEB). Recently the bHLH-
leucine zipper transcription factor TFEB has been 
shown to control lysosomal biogenesis and function. 
TFEB is a master gene in the gene regulatory network 
CLEAR (CLEAR: Coordinated Lysosomal 
Enhancement And Regulation) that binds to CLEAR 
target sites in the promoter of lysosomal genes and 
increases lysosomal biogenesis (Sardiello et al., 2009). 
TFEB not only controls the expression of lysosomal  
proteins, it also regulates the autophagy transcription 
program during starvation (Settembre et al., 2011). 
TFEB is retained in the cytosol because it 
phosphorylates MAP kinase (ERK2). The reduction of 
TFEB phosphorylation during starvation triggers its 
nuclear transport where it activates a transcription 
program that activates the biogensesis of lysosomes 
and stimulates autophagy. TFEB has a broad range of 
activities, because it controls the activity of genes 
involved in various different steps of autophagy, 
including autophagosome formation (Map1lc3, Wipi), 
cargo recognition (Sqstm1,) and autophagosome fusion 
with the lysosomal compartment (Uvrag, Vps11, 
Vps18). The fact that autophagy and lysosomal 
formation are both coordinated by TFEB offers a 
possible therapeutic target that could be used to boost 
the autophagic pathway when appropriate. 
Other regulators of Atg genes expression. Recently the 
phosphorylation of eIF2α by PERK has been shown to 
be essential for the conversion of LC3-I to LC3-II 
during ER-stress induced by the polyQ72 or dysferlin 
L1341P mutant (Fujita et al., 2007; Kouroku et al., 
2007). In polyQ72 loaded mammalian cells, the 
phosphorylation of eIF2α upregulates the expression of 
Atg12 (Kouroku et al., 2007). During the unfolded 
protein response, triggered by hypoxia, the 
transcription factors ATF4 and CHOP, which are 
regulated by PERK, increase the expression Map1lc3b 
and Atg5, respectively (Rouschop et al., 2010). 
Glyceraldehyde-3-phosphate dehydrogenase 
(GAPDH), a multifunctional enzyme known to play a 
role in glycolysis as well as having other less well-
understood roles such as transcriptional coactivation, 
has also been shown to upregulate the transcription of 
Atg12 to protect cells against caspase-independent cell 
death (Colell et al., 2007). 
Beclin 1 is one of the essential components involved in 
autophagosome formation, and its level usually 
increases during autophagy. For example, in HBV 
(hepatitis B virus)-infected hepatocytes, the HBV x 
protein increases autophagy by upregulating the 
expression of Beclin 1 (Tang et al., 2009). In human 
monocytes and human myeloid leukemia cells, vitamin 
D3 has been shown to induce autophagy by 
upregulating both Beclin 1 and Atg5 (Wang et al., 
2008; Yuk et al., 2009). The transcription factor 
implicated has not been identified, but it has been  
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Figure 3. Physiological and pathological roles of autophagy. The physiological role of basal autophagy is to clean the cytoplasm of 
damaged organelles and protein aggregates. This function is essential for cell fitness by limiting the accumulation of ROS. The 
stimulation of autophagy during periods of starvation plays a major role in many tissues, but with some exceptions, such as the brain, in 
providing nutrients for cell metabolism, for the biosynthesis of macromolecules, and to maintain the level of ATP. Autophagy is involved in 
an early stage of development (pre-implantation of the fertilized oocyte), and differentiation. Autophagy declines during aging, and the 
restoration of autophagy extends life span in various species. Autophagy contributes to both innate and adaptive immunity. Defective 
autophagy is observed in many human diseases, and its stimulation is beneficial in most cases. Autophagy plays a more complex role in 
cancer, because it can be a tumor suppressor mechanism, but can also become a cytoprotective mechanism in tumors, where it 
contributes to cell survival in a context of metabolic stress and in response to cancer treatments. 
 
shown that in human monocytes the effect of Vitamin 
D3 is mediated via cathelicidin. 
Very recently, Zhu et al. (Zhu et al., 2009) observed for 
the first time the regulation of autophagy by miRNA. 
They showed that miR-30a targets Beclin 1 mRNA, 
and down-regulates the expression of Beclin 1. 

Autophagy in physiology  
Autophagosome formation occurs at a basal rate in 
most cells and controls the quality of the cytoplasm by 
initiating the elimination of protein aggregates and of 
damaged organelles (Ravikumar et al., 2010b) (Figure 
3). This autophagy-dependent quality control is also 
important to limit the production of ROS. 
Stimulation of autophagy during periods of starvation 
is an evolutionarily-conserved response to stress in 
eukaryotes (Yang and Klionsky, 2010). Under 
starvation conditions, the degradation of proteins and 
lipids allows the cell to adapt its metabolism and meet 
its energy needs (Figure 3). 
The stimulation of autophagy plays a major role at birth 
to maintain energy levels in various tissues after the 
maternal nutrient supply via the placenta ceases (Kuma 
et al., 2004). Moreover, starvation-induced autophagy 

is cytoprotective by blocking the induction of apoptosis 
upstream of mitochondrial events (Boya et al., 2005). 
Autophagy is essential during development and 
differentiation. The pre-implantation period after 
oocyte fertilization is dependent on autophagic 
degradation of components of the oocyte cytoplasm 
(Tsukamoto et al., 2008). Autophagy remodeling of the 
cytoplasm is involved during the differentiation of 
erythrocytes, lymphocytes and adipocytes (Ravikumar 
et al., 2010b). Autophagy is crucial for the homeostasis 
of immune cells, and contributes to the regulation of 
self-tolerance (Nedjic et al., 2008). 
The pioneering work of Bergamini and colleagues in 
the field of autophagy (Yang and Klionsky, 2010) 
suggested that its stimulation during calorie restriction 
may contribute to extending lifespan in the rat. Recent 
data have shown that the induction of autophagy 
increases longevity in a large panel of species 
(Eisenberg et al., 2009). The antiaging effect of 
autophagy probably depends, at least in part, on its 
quality control function that limits the accumulation of 
aggregation-prone protein and damaged mitochondria. 
Calorie restriction stimulates autophagy via the 
activation of the deacetylase sirtuin-1 (Morselli et al., 
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2010). Targets of sirtuin-1 include Atg proteins 5, 7 
and 8. In several cell lines, deacetylation of these Atg 
proteins is necessary for autophagy to be stimulated by 
nutrient deprivation (Lee et al., 2008). It would be 
interesting to investigate whether this regulation of 
autophagy is conserved in tissues that preferentially use 
fatty acids as oxidizable substrates during starvation, 
where a high level of acetyl-CoA is to be expected. 

Autophagy and pathology 
As mentioned above, basal autophagy is important as a 
housekeeping process to prevent the deposition of 
aggregation-prone proteins in the cytoplasm (Figure 
3). Several neurodegenerative diseases, including 
Huntington's, Alzheimer's and Parkinson's diseases, are 
characterized by the accumulation of such protein 
aggregates in the brain (Ravikumar et al., 2010b). As a 
protective measure, the stimulation of autophagy limits 
the accumulation of toxic products and protects 
neurons against degeneration. The important 
pathological role of autophagy in aggregation-prone 
protein disease is strengthened by a recent study 
showing that a drug that enhances autophagy promotes 
the degradation of mutant, aggregation-prone α1-
antitrypsin in the liver, and consequently reduces 
hepatic fibrosis (Hidvegi et al., 2010). Autophagy is 
involved in the clearance of aggregation-prone proteins 
in muscle diseases, including limb girdle muscular 
dystrophy type 2B, Miyoshi myopathy, and sporadic 
inclusion body myositis. Blockade of the autophagic 
pathway leads to the cardiomyopathy and myopathy of 
Danon disease (Ravikumar et al., 2010b). Autophagy is 
also involved in muscle atrophy but it is unclear 
whether autophagy has a beneficial effect by promoting 
survival during catabolic conditions, or a detrimental 
effect by causing atrophy. In the heart, basal autophagy 
is necessary to maintain cellular homeostasis and is 
upregulated in response to stress in hypertensive heart 
disease, heart failure, cardiac hypertrophy, and 
ischemia-reperfusion (Nakai et al., 2007). 
In the pancreas, autophagy is required to maintain the 
architecture and function of pancreatic β-cells (Ebato et 
al., 2008). Defective hepatic autophagy probably makes 
a major contribution to insulin resistance and to 
predisposition to type-2 diabetes and obesity (Yang et 
al., 2010). 
In infectious diseases, autophagy is involved in the 
elimination of intracellular pathogens (bacteria, viruses 
and parasites), and thus contributes to the innate 
immunity (Levine and Deretic, 2007; Virgin and 
Levine, 2009). Autophagy acts as an effector of Toll-
like receptor (TLR) signaling. TLR ligands induce 
autophagy to promote the delivery of infecting 
pathogens to the lysosomes (Levine and Deretic, 2007). 
Autophagy contributes to adaptive immunity by 
generating antigenic peptides that are exposed on the 
cell surface in association with MHCAtg16L1 class II 
for presentation to CD4-positive T cells, or by 
promoting the development and survival of B and T 

cells (Paludan et al., 2005; Pua et al., 2007). Recently 
polymorphisms of the genes that encode and IRGM, 
two autophagy genes essential for the elimination of 
intracellular pathogens, have been associated with 
Croh's disease, a chronic inflammatory bowel disease 
(Virgin and Levine, 2009). 
Cancer is frequently associated with defects in 
autophagy, but the role of autophagy in cancer is 
clearly complex, because autophagy is also required in 
the later stages of tumor progression to enable tumor 
cells to cope with metabolic stress (caused by limited 
supplies of oxygen and nutrients) (Levine, 2007). The 
link between autophagy and cancer is further 
strengthened by the fact that several of the proteins 
involved in regulating autophagy are known to be 
tumor suppressor genes or oncoproteins (Morselli et al., 
2009). Several of the functions of autophagy, such as 
the elimination of defective organelles, which reduces 
oxidative stress and prevents DNA damage, also 
contribute to its tumor suppressor role (Mathew et al., 
2009; Mathew et al., 2007). Remarkably, autophagy 
facilitates effective glucose uptake and glycolytic flux 
in Ras-transformed cells (Lock et al., 2011). Moreover, 
the loss of autophagy in Ras-transformed cells is 
associated with reduced oxygen consumption and lower 
levels of the tricarboxylic acid (TCA) intermediate 
(Guo et al., 2011). The high basal level of autophagy 
observed in tumors with Ras mutation is required for 
cancer cell survival (Yang et al., 2011). In these 
tumors, autophagy certainly constitutes an Achilles 
heel that could be used in the fight against cancer. 
More generally, inhibiting autophagy is a challenging 
concept; because in many tumors autophagy is a stress 
response to anti-cancer treatments (Kondo et al., 2005). 
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