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ABSTRACT 

 

Australian Bos indicus cattle are legally able to be castrated without 
anaesthesia or analgesia up to the age of 12 months. Castration surgery is 
known to cause pain to cattle, though a reliable and consistent assessment of 
pain must be first optimised before analgesic therapies can be tested for this 
procedure. Studies in conscious cattle have demonstrated the difficulty in 
isolating pain responses from the stress of handling and human contact.    

 

This study aimed to investigate electroencephalographic and 
cardiovascular responses indicative of nociception in Bos indicus bull calves 
undergoing surgical castration whilst under general anaesthesia. Further, the 
mitigating effects of administration of local anaesthetic or systemic 
meloxicam on these electroencephalographic and cardiovascular responses 
were investigated. 

  

A total of 36 six-to-eight month old Bos indicus bull calves were 
included in this prospective, randomised, experimental study. Animals were 
randomly allocated to three groups of twelve (groups L – 260 mg of 2% 
lidocaine subcutaneously and intratesticularly five minutes prior to 
castration, M - 0.5 mg kg-1 of meloxicam subcutaneously 30 minutes prior to 
castration and C – no preoperative analgesia administered). Anaesthesia was 
induced and maintained with halothane (0.9-1.1%) in oxygen. 
Electroencephalogram, heart rate (HR) and mean blood pressure (MAP) were 
recorded for 300 seconds prior to (baseline, B) and from the start of surgery 
(first testicle incision, T1).  HR and MAP were compared at ten-second 
intervals for 90 seconds from the start of T1. Median frequency (F50), spectral 
edge frequency (F95) and total power of the electroencephalograph (Ptot) were 
analysed using area-under-the-curve comparing T1 to B.  

 

All electroencephalographic variables were significantly different 
between B and T1. No differences in F50 were found between groups during 
T1. F95 and Ptot were significantly different between group L and groups C and 
M during T1. There were transient significant changes in HR and MAP in 
groups L and M compared to group C during the 20-50 second periods.  

 

This study is the first description of electroencephalographic and 
cardiovascular responses to castration in Bos indicus cattle, and the effect of 
two different analgesic strategies in reducing these responses. Administration 
of lidocaine prior to castration significantly attenuated the acute post-
operative nociceptive response. In addition, the preoperative administration 
of meloxicam attenuated the cardiovascular, but not the 
electroencephalographic, responses to castration in the peracute period. 
These findings provide support for the preoperative administration of 
lidocaine and give impetus for further research into the peracute anti-
nociceptive effects of meloxicam for castration in Bos indicus bull calves. 
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1 LITERATURE REVIEW 

1.1 Australian Cattle Industry 

1.1.1 Current Australian Pastoral Cattle Practices 

The Australian cattle industry contributes significantly to the 

Australian agricultural economy. In 2014 the Australian beef industry 

comprised nearly 30 million head of cattle across 80,000 properties. This 

accounted for 55% of the country’s combined agricultural activity that 

incorporates livestock and cropping enterprises (MLA 2015). The off-farm 

meat value of this industry is nearly $AU13b per annum. The Northern cattle 

industry of Australia is based on broad-acre properties located in northern 

Western Australia, the Northern Territory and Queensland. The cattle type is 

predominantly the Bos indicus species, principally the Brahman breed, due to 

their inherent parasite and heat resistance (Frisch et al. 1984). Bos indicus 

cattle are generally considered to be a more difficult breed to handle, tend to 

have a much larger flight distance and be more unpredictable in their 

behaviour compared to Bos Taurus cattle such as Angus or Friesian (Fordyce 

et al. 1988; Zavy et al. 1992). 

1.1.2 Routine Husbandry Procedures 

The cattle in the northern beef industry of Australia are typically 

mustered once a year for routine husbandry and marking procedures, 

including castration, dehorning, branding, ear-tagging and prophylactic 

disease control. Numerous documents are published by Meat and Livestock 

Australia Limited (MLA) pertaining to the practice of husbandry procedures, 

including guidelines for best practice with reference to applicable legal 

obligations (Newman et al. 2007). The MLA is the producer-owned body 

responsible for marketing, research and development for the livestock and 

red meat industries of Australia. The guidelines outline the husbandry 

procedures in detail, including the recommendation for using a scalpel blade 

rather than a sharpened pocket-knife for castration, and ensuring the 
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procedures are not done in dusty or wet conditions to reduce the chance of 

infection.  

1.1.3 Current Western Australian Welfare Regulations 

Western Australia, as with all states of Australia, has individual animal 

welfare legislation that dictates the Australian Animal Welfare Standards and 

Guidelines (AHA 2014) and the Model Code of Practice for cattle (PISC 2004) 

to varying degrees. Currently the standards stipulate that animals over the age 

of six months cannot be surgically castrated without the appropriate use of 

analgesia. Though this applies to all cattle in Western Australia, an ambiguous 

caveat exists allowing older, previously un-mustered bulls to be castrated 

without analgesia, though “preferably” to be completed by a veterinarian. 

Consequently, most, if not all, northern cattle are castrated without the use of 

anaesthesia or analgesia up to the age of 12 months given the yearly muster 

and geographical remoteness of northern cattle properties. Putting this reality 

into perspective, these animals may be up to 300-400kg by that age. With no 

chemical restraint utilised it is only physical restraint combining human and 

techniques employing, for instance, ropes and crushes, that provide the 

requisite immobility for the procedure to be carried out.  The restraint 

techniques have their own human and animal welfare implications given the 

known reactivity and potentially violent response of larger cattle undergoing 

painful husbandry procedures with no analgesia (Stafford 2013).  

1.1.4 Why should these Practices be examined?  

The pain and distress caused by castration without the use of 

anaesthesia or analgesia has been long known, with the capacity to impact the 

industry’s market success. Veterinarians noted that castration caused a 

reduction in well-being over sixty years ago (Fenton et al. 1958), while 

pressure from both the modern-day consumer and non-consumer sectors to 

uphold livestock welfare considerations can impact market strength (Weary 

et al. 2004). Producers and veterinarians acknowledge that the castration 

process has a significant cost to an animal, but also that it is necessary for 

management and productivity reasons. If a means to reduce the welfare 
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impact of cattle castration that is simple to utilise and cost-effective, it be may 

be readily adopted. This approach to refinement has already occurred in the 

merino sheep industry of Australia where the use of the local anaesthetic 

agent Trisolfen ® has greatly increased the welfare of merino lambs 

undergoing the mulesing procedure (Lomax et al. 2013). Further assessment 

into the pain caused by castration and its potential alleviation is required to 

improve both producer and consumer confidence in the Australian beef 

industry. Further to this, the concept of pain and nociception will be evaluated, 

along with possible paths of research.   

1.2 Pain & Nociception 

1.2.1 Introduction 

Whilst the debate may still be ongoing regarding the level to which 

animals ‘feel’ pain, it is incontrovertible that the pain pathways and 

consequences of their stimulation are very similar, if not identical, in all 

mammals. The husbandry procedures that occur on a daily basis in various 

livestock industries such as castration, dehorning and tail docking are widely 

accepted to cause pain (Weary et al. 2004). To understand the definition and 

concept of pain in these livestock, some of the basic concepts must be 

understood.  

1.2.2 Pain & Nociception Background 

The description of pain widely accepted in scientific literature is that 

given by the International Association of Pain (IASP) in 1979 as “an unpleasant 

sensory and emotional experience, associated with actual or potential tissue 

damage, or described in terms of such damage” (Bonica 1979). In 2001 an 

additional stipulation was added so that “the inability to communicate verbally 

does not negate the possibility that an individual is experiencing pain and is in 

need of appropriate pain-relieving treatment”. This second component of the 

pain definition was included initially to cover non-verbal or pre-verbal 

humans and infants however it can be applied to animals.  
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Pain is a normal defense mechanism of a living being and is essential 

for survival because of the behavioral changes elicited by the person or animal 

when pain is detected. A lack of pain has been shown to shorten life 

expectancy considerably (Miranda et al. 2002). The basic physiology of pain 

and the underlying processes of nociception are discussed before looking 

further into pain assessment in animals.  

Nociception is the physiological process of pain detection by a pain 

receptor or nociceptor and the transmission of that signal to the brain (Shilo 

et al. 2013). The conscious perception of nociception is known as pain, though 

it is recognised to be a very complex experience. While we cannot currently, 

perhaps ever, understand the thoughts of a non-verbal animal, as indicated 

above this inability to articulate or express themselves does not preclude their 

ability to feel pain.  

The nociceptive pathway incorporates the detection of the noxious 

stimuli at the periphery, be it mechanical, chemical or thermal, that is known 

as transduction, whereby the signal is changed from the physical action to the 

electrical signal. After transduction, the signal is transmitted to the spinal cord 

where modulation occurs, prior to projection, and finally perception in the 

cerebral cortex (Figure 1-1).  

 

Figure 1-1 Nociceptive pathways in animals including transduction, transmission,  
modulation, projection and perception. From Anderson and Muir (2005). 
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1.2.3 General Pain Assessment 

The knowledge that procedures like castration cause pain in animals is 

not sufficient for the basis of analgesia application. Demonstration of this 

theory in a scientific manner allows quantification of pain or nociception, and 

in turn, the ability of an analgesic treatment to diminish it. As may be 

appreciated, literate verbal humans are able to self-report the level of pain 

being perceived through a variety of measuring aids from simple descriptive 

scales to complex reporting algorithms. The ability to self-report is the gold 

standard for pain assessment, and in humans this method highlights that pain 

is an explicitly individual experience. Anecdotally this variability in responses 

to the same noxious stimuli is described in veterinary medicine amongst 

different breeds and types of animals, some being more stoic than others.  

1.2.4 Animal Pain Assessment 

To ensure the successful treatment of pain in animals, first the accurate 

recognition of pain must happen. Many pain assessment strategies for animals 

are adapted from techniques used for humans. As the recognition of pain is a 

fundamental pre-requisite to its treatment, there have been many methods of 

both subjective and objective assessment investigated, though none are yet to 

be defined as ‘gold-standard’ (Murrell et al. 2006). The various pain 

behaviours and consistent objective measures in many species are currently 

unknown (Price et al. 2003; Petherick et al. 2014). It is in the hospital or other 

confined setting where veterinarians and owners of animals are often 

assessing pain and deciding on treatment. Importantly, normal pain 

behaviour is altered by both these settings and the act of being observed in 

many animals (Paul-Murphy et al. 2004). Consequently, the understanding of 

specific behavioural signs of pain in animals is complex and not readily 

utilised in day-to-day practice.  

Confounders to the objectivity of pain assessment in animals include 

the use of analgesic and anaesthetic agents (Johnson et al. 1997; Murrell et al. 

2006). Many agents used in clinical anaesthetic practice have either analgesic 

properties or a depressant effect on the spinal transmission of nociception. A 

variety of pain-type assessment has been used in animals, though they can be 
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broadly categorised into either predominantly subjective or objective means. 

Subjective methods include qualitative behavioural assessment and visual 

pen scoring, while more objective means include heart rate variability, 

infrared thermography and activity monitoring. Animals in pain and distress 

have elevated levels of the hormone cortisol, though it is a non-specific 

indicator of stress (Lester et al. 1991; Choi et al. 2012). Plasma cortisol levels 

may be used in carefully designed experimental settings where the base levels 

of stress from handling and human interaction can be evaluated (Stafford et 

al. 2002; Bergamasco et al. 2011). 

1.2.5 Cattle Pain Assessment 

Recognition and assessment of pain in cattle undergoing husbandry 

procedures is a continuing field of research. Whilst it is known that animals in 

pain may be more dangerous to handle, less productive and less fertile, there 

is no consistent method of pain assessment available. It has been postulated 

that as a prey animal that does not get assistance from others in its herd, 

displaying pain-behaviour may only attract predator attention, a distinctly 

non-survival oriented activity (Stafford 2013).  

Many subjective pain assessment tools including visual pen scoring, 

videography, vocalisation and chute exit speed have been trialled and 

reviewed (Coetzee 2013). Notably behavioural assessments tend to have a 

common flaw associated with large inherent variability due to personnel 

previous experience and bias affecting the result (Johnson 2007). The focus to 

obtain a validated objective measure for cattle pain following presumed 

painful procedures is ongoing. Some advances in objective pain assessment 

have been forthcoming in the last decade, including the development of a 

composite pain scale (de Oliveira et al. 2014) and a pain expression scale 

(Gleerup et al. 2015) which may be used in specified clinical situations. Work 

using other objective measures that are applicable only in the research setting 

include the use of infrared thermography, heart-rate variability, 

electroencephalography, nociceptive threshold assessment and pedometry 

(Coetzee 2013; Musk et al. 2016). It must be acknowledged that only a 

minority of these mentioned pain assessments have been completed in Bos 

indicus species (de Oliveira et al. 2014; Musk et al. 2016), with the majority of 
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studies in Bos taurus, such as Angus or Friesian, typical meat and milking 

breeds.  

1.2.6 Cattle Analgesia Therapy 

As cattle are a part of the food chain through milk or meat production 

strict controls exist mandating the use of analgesics in the cattle industry 

world-wide. In the developed world there is a marked difference between 

continental or country divisions regarding the products that are licensed for 

use in cattle, resulting in a stymied ability to treat pain in these animals. 

Interestingly the administration of local anaesthesia prior to castration and 

dehorning is legal requirement in some European countries (DEFRA 2003), 

recommended and available in Australia (PISC 2004) but no analgesics are 

licensed for the treatment of pain in livestock in the USA (Bayley 2010). In the 

Australian farm setting, only local anaesthetics and non-steroidal anti-

inflammatory agents have been licensed for use in cattle, though in the 

research setting other drugs may also be used.      

1.2.7 Species-specific Pain Assessment 

Between cattle species there are marked differences in temperament. 

Older references suggest that Bos indicus cattle such as Brahmans have a 

flightier nature, and are more reactive to handling (Fordyce et al. 1988; Zavy 

et al. 1992). However, more recent reports indicate that with low-stress 

handling techniques and acclimation to the handling environment these 

animals can be treated like Bos taurus species, translating to increased 

productivity (Cooke 2014). A previous study using behavioural and objective 

measures of pain in Bos indicus bull calves following castration indicated 

differences in Qualitative Behavioural Assessment (QBA), pedometry and 

weight gain, however these measures did not consistently demonstrate a 

difference between study groups (Musk et al. 2016).  

The only validated pain assessment tool available for use in cattle is a 

composite pain scale developed by de Oliveira et al. (2014) at the University 

of Estadual Paulista, Brazil. This scale, known as the UNESP-Botucatu pain 

scale, is particularly relevant to the current study of Brahman cattle from the 
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Northern Australian beef industry, having been developed using Nellore 

cattle, a breed of Bos indicus cattle commonly found in Brazil. Further pain 

assessment tools comprise behavioural scales including a facial pain score 

developed in dairy cattle (Gleerup et al. 2015) and QBA in Angus steers during 

handling prior to slaughter (Stockman et al. 2012), however these are in Bos 

taurus species. Further research into objective pain assessment in cattle, 

specifically Bos indicus species, is therefore warranted.  

A number of objective measurements of pain in cattle have been 

investigated, including a number of neurophysiological techniques. One 

technique, electroencephalographic response to likely noxious (painful) 

stimulus, allows investigation of this while the animal is anaesthetised 

providing an ethical model (Murrell et al. 2006). Electroencephalography 

techniques have been investigated in Bos taurus cattle for a number of noxious 

stimuli, however no Bos indicus EEG studies have been completed. As an area 

with a paucity of data, the use of EEG techniques assessing responses to 

noxious stimuli in Bos indicus cattle merits investigation.     

1.3 Electroencephalography 

1.3.1 Electroencephalography Overview 

Neurophysiological techniques in both man and animals have been 

increasingly used to try to establish the specific features of the nociceptive and 

pain pathways indicated earlier. As mentioned in the previous section EEG can 

be used as an objective measure of pain in both animals and humans. Murrell 

and Johnson (Murrell et al. 2006) have reviewed the use of EEG for pain 

assessment in animals in great detail. The basis of EEG is the recording of the 

electrical activity of the brain at various locations on the scalp or head, with 

consequent analysis allowing identification of nociception. 

Electroencephalographic techniques include raw data analysis, 

spectral analysis and somatosensory evoked potentials (SEP). Some basic 

features of these techniques were identified by Johnson (2007) (Table 1-1).  
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Table 1-1 Advantages and disadvantages of EEG and behavioural analysis used in pain 
studies of animals. Adapted from (Johnson 2007). 

COMPONENT EEG ANALYSIS BEHAVIOURAL ANALYSIS 

Restraint required Animals must be anaesthetised due to 
movement limitation required 

Animals must be conscious 

Sample numbers required Small number can produce statistical 
differences 

Larger numbers required for statistical 
differences 

Analysis type used Mathematical concepts used are 
complex 

No complex mathematical concepts involved 

Analysis timeframe Rapid analysis (computer based) Laborious data analysis involved time and 
personnel input 

Pain type studied Suited to acute pain stimulus Suited to more prolonged perception of pain 

Cross-species application Consistent responses in wide variety 
of mammalian species 

Behaviour specific to species and even type 

Pain type differentiation Differentiation of visceral and 
somatic pain 

Behaviour specific to noxious stimuli 

Pain required Pain research without the conscious 
perception of pain in research 
animals 

Research animals must suffer pain in order 
for the pain-related behaviours to be 
measured 

 

1.3.2 Electroencephalography uses in Human and Animal Healthcare 

There has been many studies in humans utilising EEG data for the 

assessment of anaesthetic depth, the principal clinical use in human medicine 

(Whyte et al. 2003). In the research setting the magnitude and nature of the 

EEG response to a noxious stimulus is tightly linked to the intensity of the 

stimulus in humans (Chen et al. 1989). In the veterinary medicine sphere 

there is no clinically utilised EEG technologies. Limitations of applying EEG 

analysis to the clinical setting in veterinary anaesthesia are principally linked 

to reliability, validity and logistics. Furthermore, in human anaesthesia, one of 

the principal factors associated with professional liability is the occurrence of 

awareness and recall from anaesthesia and surgical procedures, a factor at 

this point not, and perhaps never to be, encountered in the veterinary realm. 

Bispectral (BIS) analysis allows a semi-temporal readout providing a useful 

single value linked directly to the depth of anaesthesia and as such, awareness.  

1.3.3 Animal Studies Using Electroencephalography 

Over the last 20 years there has been a number of reports of using EEG 

analysis, principally for analgesic therapy assessment. These studies are 

summarised in respect to authors and year of publication, species 

investigated, number and nature of population assessed, anaesthesia protocol 
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employed, noxious stimuli employed and outcome of electroencephalographic 

assessment (Tables 1-2 – 1-6). Due to the unpredictable and changeable plane 

of anaesthesia during equine procedures, it is this species where the most 

trials of clinical application of EEG have occurred (Johnson et al. 1997; Grint, 

Johnson, Clutton, et al. 2014; Grint, Johnson, De Sa Lorena, et al. 2014). Despite 

these studies, no reliable clinical application of EEG during equine anaesthesia 

has been established. Much of the variance may be associated with the 

confounding components found to be commonly used in general anaesthesia 

in the 21st century. For example, ketamine is a nearly ubiquitous agent used 

during equine anaesthesia (Taylor 2015), and has been shown to have 

profound effects on the EEG response of horses, specifically generating a high-

voltage slow waveform response (Purohit et al. 1981). 

Studies carried out in animal models in both clinical and experimental 

settings include the assessment of spontaneous EEG changes during 

castration in both ponies and donkeys (Grint, Johnson, Clutton, et al. 2014), 

changes in EEG responses due to the effects of tramadol or morphine in dogs 

undergoing castration (Kongara et al. 2013) and EEG changes attributed to 

local anaesthesia techniques during antler removal in red deer (Johnson, 

Wilson, et al. 2005). In such settings there is often the need for the use of an 

injectable anaesthetic for induction of anaesthesia prior to maintenance of 

anaesthesia with an inhaled drug, due to safety concerns of both the animals 

and personnel involved.  
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Table 1-2 EEG studies published utilising equid species (horses, ponies, mules, donkeys).  

Author Year Population Nature of 
Stimuli 

Anaesthesia Outcome 

Grint, Johnson, 
De Sa Lorena et 
al. 

2014 11 horses  
11 mules 
4 ponies 

Castration ACP, thiopentone 
then halothane 

A response to castration observed in 73%/82%/0% horses, 36%/36%/0% of mules, 
75%/100%/25% of ponies for F50, Ptot and F95 respectively.  
Acepromazine IV vs IM administration caused reduced EEG response.  

Grint, Johnson, 
Clutton et al.  

2014 6 ponies 
6 donkeys 

Castration ACP, thiopentone 
then halothane 

EEG responses to noxious stimuli noted in both donkeys and ponies. Donkeys have a 
greater change in Ptot in response to castration than ponies. 

Murrell et al.   2003 9 ponies 
4 horses 

Castration ACP, GGE and 
thiopentone then 
halothane 

Desynchronisation of EEG during castration, increased F50 may be specific nociceptive 
response in horses. 

Johnson, 
Bloomfield and 
Taylor 

1999 8 ponies Binaural broad band 
click 
 

Thiopentone then 
ketamine CRI and 
halothane 

Ketamine reduced F95, F50 and midlatency of auditory evoked potentials. 
F95 might be indicative of general CNS depression, F50 of antinociception. 

Johnson and 
Taylor 

1998 8 ponies None applied Thiopentone then 
halothane, 
methoxyflurane or 
isoflurane 

MAC multiples of 1, 1.25 and 1.5x, isoflurane depressed all EEG values recorded more 
than the 1x halothane MAC.  
All methoxyflurane MAC levels resulted in increased EEG values than the lowest than 
the 1x halothane MAC. 

Johnson, Young 
and Taylor 

1994 9 ponies None applied ACP, thiopentone 
then halothane 

The F95 had the best correlation with end-tidal halothane levels. 

Ekström, Short 
and Geier 

1993 8 horses Bilateral stifle 
arthroscopy 

Detomidine, 
ketamine then 
halothane or 
isoflurane 

EEG frequency shift changes observed suggest that isoflurane provided better 
analgesia than halothane for this group of horses.  

Mayhew and 
Washbourne 

1992 27 ponies 
Horses not 
reported 

Brainstem auditory 
evoked potential 

Etomidate sedation Positive relationship between waveform I-V interpeak latency and inter-aural distance 
was confirmed in ponies and horses. 

Otto and Short 1991 18 horses  None applied Conscious  
Xylazine, ketamine 
then halothane 

Conscious – electrical activity distributed mainly in  and  frequency bands, minor 
activity in the  and  frequency ranges.  
Anaesthesia - Increasing depth accompanied by a pronounced shift from  to  and  
bands.  

Mayhew and 
Washbourne  

1990 Not reported Brainstem auditory 
evoked potential 

Etomidate sedation EEG waveform description. 
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Table 1-3 EEG studies published utilising companion animal species (dogs, cats). 

Author Year Population  Nature of 
Stimuli 

Anaesthesia  Outcome 

Kongara et 
al.  

2013 16 dogs Castration ACP, atropine with tramadol or 
morphine, thiopentone then 
halothane 

During testicle 1 ligation the tramadol group had higher F50 and lower Ptot 
than the morphine group. No F95 differences. No post-operative CMPS-SF 
differences.  

Kongara, 
Chambers 
and 
Johnson 

2012 24 dogs Ovariohysterectomy ACP with atropine and morphine,  
tramadol or morphine and 
tramadol, thiopentone or 
halothane 

No differences between F50 and Ptot in any group; F95 lower in morphine c.f. 
low-dose morphine and tramadol group; lower CMPS-SF in low-dose and 
tramadol group c.f. tramadol or morphine alone.  

Kongara, 
Chambers 
and 
Johnson 

2010 8 dogs 
(crossover) 

Supramaximal 
electrical stimuli  

ACP w either tramadol, parecoxib, 
morphine or saline, propofol then 
halothane 

F50 increased in tramadol/parecoxib and saline group c.f. morphine; abolished 
F50 response in morphine group. 

Bergamusco 
et al.  

2003 20 dogs  
(10 analysed) 

None applied Propofol CRI Prevalence of slow rhythms ( and ) with fast rhythms ( and ) poorly 
represented.   

Taylor and 
Vierk 

2003 3 cats 5mm stainless steel 
probe  

Conscious, ketamine IM only or 
with ketamine CRI 

No changes in EEG following IM ketamine; ketamine infusion (10.0-22.2 
mg/kg/h), total and low-frequency EEG power and autonomic responses to 
nociceptive stimulation were eliminated.  
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Table 1-4 EEG studies published utilising laboratory animal species (rabbits, rats). 

Author Year Population Nature of Stimuli Anaesthesia  Outcome 

Murrell et al.  2010 60 rats Ovariohysterectomy Induction and maintenance w 
halothane; 4 groups of CRIs: 
saline, thiopental, ketamine 
or fentanyl 

Stable F50 during surgery so unsuitable noxious stimuli indicator, maybe due 
to length or surgery or predominantly visceral component; control group 
similar changes to other minimal anaesthesia model studies.  

Murrell, Waters 
and Johnson  

2008 40 rats None applied Halothane, isoflurane, 
desflurane and sevoflurane 

Used 1.25, 1.5 and 1.75x MAC of each agent, burst suppression (BS) almost 
complete at all levels of isoflurane; no BS at any levels of halothane; BS 
evident in all levels of desflurane and sevoflurane w increasing burst 
suppression ration (BSR) with increasing levels.  

Murrell et al.   2007 46 rats Mechanical, thermal 
and electrical noxious 
stimuli on tail 

Halothane EEG changes caused by the stimuli are quantitatively different from each 
other; F50 increased with electrical stimuli, some channels in thermal stimuli 
with none during mechanical; predominantly noxious stimuli (mechanical 
and thermal) may demonstrate cortical stimulation versus non-specific 
electrical stimuli.  

Antunes et al.  2003 12 rats Pedal withdrawal reflex Isoflurane or halothane EEG and auditory evoked potentials were suppressed more by isoflurane 
than. halothane. 

Rampil and 
Laster 

1992 23 rats Alligator clip on tail Isoflurane Increasing isoflurane MAC multiples, increased burst-suppression; burst-
suppression evidence did not predict lack of somatic response.  

Kaieda et al.   1989 24 rabbits Nil Induction w halothane or 
isoflurane then thiopentone 
w fentanyl CRI; ventilated w 
70% N2 in O2 or 70% N2O.  

Greatest change in EEG in halothane and N2O group 
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Table 1-5 EEG studies published utilising ruminant species (sheep, cattle, goats, deer). 

Author Year Population  Nature of Stimuli Anaesthesia 
Protocol 

Outcome 

Lehmann et al. 2017 36 calves Surgical castration Halothane Increased F50 and F95 with decreased Ptot in response to 
castration ameliorated by local anaesthesia; intermittent 
decreased heart rate and mean arterial pressure ameliorated 
by both local anaesthesia and systemic nonsteroidal 
antinflammatory therapy.   

Bergamasco et al.   2011 12 Holstein 
calves 

Castration Conscious No treatment effect was noted between groups (IV sodium 
salicylate vs control) for cortisol and EEG measurements. 

Johnson et al.   2009 55 lambs Castration w rubber 
rings 

Halothane F50 and F95 demonstrated an increasing sensitivity to the 
noxious stimulation of castration with increasing age.  

Gibson et al.  2009  17 Friesian 
calves 

Neck tissue and 
blood-vessel 
transection 

Ketamine and propofol 
then halothane 

The EEG responses seen following neck-tissue and blood-
vessel transection were qualitatively distinct, and suggested 
that cutting neck tissues caused greater noxious sensory input 
than transection of only the major blood vessels of the neck.  

Gibson et al.  2007 20 Friesian 
calves 

Scoop dehorning Ketamine and propofol 
then halothane 

Increase in the F50 and F95 and a decrease in Ptot following 
dehorning and no change in the group that had a local block.  

Johnson, Stafford 
et al.   

2005 41 lambs Castration w rubber 
rings 

Halothane Increase in the F50 in the younger lambs and an increase in 
Ptot in both groups, which was of greater magnitude in the 
older lambs; no significant changes in the F95.  

Johnson, Wilson et 
al.   

2005 29 male red 
deer 

Dehorning Ketamine and propofol 
then halothane 

Lidocaine ring block of the antler pedicle provides adequate 
analgesia for velvet antler removal. The use of antler pedicle 
compression bands represents a noxious stimulus in its own 
right.  

Jongman et al.  2000 98 lambs Castration, mulesing, 
formalin, docking, ear-
tagging.  

Conscious Mulesing, docking and castration compared to handling, 
shearing and ear tagging suggest that mulesing at both the 
time of treatment and during 15 min after treatment results in 
a response that is similar to that of induced lameness.  

Antognini and 
Carstens 

1999 10 goats Clamp on dew claw Isoflurane Isoflurane blunted EEG and midbrain reticular formation–
thalamus activation response to noxious stimulation at 1.1 
MAC and higher.  

Ong et al.  1997 8 sheep Electrical stimulus Conscious Following stimulus, an overall increase in the EEG power 
spectrum occurred in the first four seconds, then rapidly 
returned to normal.  
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Table 1-6 EEG studies published utilising other species (pigs, wallabies). 

Author Year Population 
size 

Nature of 
Stimuli 

Anaesthesia  Outcome 

Diesch et al.   2010 20 joeys Haemostat clamp 
on toe 

Halothane Joeys aged < 127 days had little or no EEG activity; periods of spontaneous EEG 
activity were present by 142 days. EEG responses to a noxious stimulus were 
non-existent in joeys aged 94–127 days, showed a minimal decrease in the F50 in 
ages 142-181 days and a greater decrease 187-261 day old joeys.  

Haga and Ranheim 2005 47 male piglets Castration Halothane Injecting lidocaine into the funiculus spermaticus or testes is effective in 
reducing signs of nociception caused by castration. Lidocaine injection is less 
noxious than castration without local anaesthetic.  
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1.3.4 Minimal Anaesthesia Model 

As indicated previously there are confounding effects of various 

anaesthetic agents on the EEG, including choices of induction, maintenance 

and analgesic agents. The minimal anaesthesia model was first developed and 

applied to horses anaesthetised with halothane by Murrell et al. (2003) where 

the anaesthetic depth was kept at as ‘light’ a level as possible to maintain 

unconsciousness but allow EEG changes evoked by noxious stimuli to be 

demonstrated (Murrell et al. 2006). This model is still used to allow 

researchers to ethically examine the effects of a non-analgesic control group, 

a continuing source of controversy in the current veterinary research realm 

(Slingsby 2010).  

As indicated above the volatile agent halothane is used as the inhalant 

of choice in the minimal anaesthesia model. Investigations into the various 

other volatile agents available including isoflurane, sevoflurane and 

desflurane (Murrell et al. 2008) have elucidated the effects of these agents on 

the spontaneous EEG activity of the brain of rats at differing levels of minimal 

alveolar concentration (MAC). It was discovered that the newer agents of 

isoflurane, sevoflurane and desflurane cause marked burst-suppression 

effects on the EEG activity at low levels of inhaled agent, from 1.25 x MAC and 

above. Burst-suppression is the phenomenon of alternating periods of slow 

high amplitude waves (the burst) followed by periods of so-called flat EEG 

(the suppression) (Amzica 2009). Given the considerable reduction of use in 

halothane in the human medical setting, commercial producers are currently 

only producing the drug for use in equine practice and research 

establishments.  

1.3.5 Electroencephalography Output and Data Analysis 

The EEG can be recorded intra-cranially (near-field), or most 

commonly from electrodes placed on the surface of the scalp (far-field) 

(Murrell et al. 2006). In humans, custom-made scalp caps with a multitude of 

electrodes are manufactured. In animals a number of different arrangements 

and types of electrodes have been trialled, though currently the most popular, 
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due to the ease of use, are the sub-dermal needle-type electrodes. In humans 

there are often up to 32 channels of EEG activity recorded, allowing location 

of activity to specific anatomical regions. In animals, however, the anatomical 

differences and relatively smaller cranium size mean that at most animal EEG 

recordings are usually only from one to two channels.  

In humans a multitude of EEG frequencies have been categorised, 

including delta (0-4Hz), theta (4-8Hz), alpha (8-12Hz) and beta (>12Hz). The 

level of each frequency is reported and has been linked to functional aspects 

including cognitive memory and performance (Klimesch 1999). Whilst some 

studies have tried to assign similar categories to animals, the power spectrum 

following Fast Fourier Transformation (FFT) is the most applicable analysis 

to animals currently available (Kongara et al. 2013). Three derived values of 

the transformed data, the median frequency or F50 below which 50% of the 

total power of the EEG is contained, the spectral edge frequency or F95 below 

which 95% of the total EEG power is located and the total power or Ptot which 

contains the whole spectrum of EEG recorded are described (Figure 1-2)  

(Murrell et al. 2006).  

  

Figure 1-2 The schematic representation of the three frequencies (F50, F95 and Ptot) used in 
EEG spectrum analysis. Adapted from Murrell and Johnson. 

Following temporally-applied acute noxious stimuli in animals these 

three frequency descriptors have been reported to undergo specific changes. 

Generally a shift of the EEG towards higher frequency and lower amplitude 

occurs during the classic arousal pattern and tends to result in predictable 

changes in the EEG (Grint, Johnson, De Sa Lorena, et al. 2014). The median 

frequency and spectral edge frequency have been shown consistently to 

increase during nociception, and the total power of the EEG to fall (Murrell et 
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al. 2006). This pattern of change has been demonstrated across a range of 

species and noxious stimuli including equids during castration (Murrell et al. 

2003), red deer during antler removal (Johnson, Wilson, et al. 2005), calves 

during dehorning (Gibson et al. 2007) and dogs during castration (Kongara et 

al. 2013). These studies also show that the use of local anaesthesia can obtund 

these responses to a high degree. Within the three frequency descriptors both 

a decrease in the total power of the EEG and an increase in the median 

frequency have been associated with noxious stimuli. There is growing 

evidence that the spectral edge frequency is more closely related to the depth 

of anaesthesia than the noxious stimuli per se (Kongara et al. 2013). 

Furthermore, the total power descriptor has shown preference for indicating 

the occurrence of somatic versus visceral pain (Johnson, Wilson, et al. 2005).  

1.3.6 Electroencephalography Practical Components 

There have been investigations into the impact of various anaesthetic 

agents on the changes in EEG activity, including the use of agents with known 

analgesic properties and those without. Anaesthesia induction agents such as 

propofol and ketamine that have a short duration of action and therefore 

minimal or short-lived effects on EEG activity are preferred for EEG studies 

(Johnson et al. 1999). In some animals the induction of anaesthesia with an 

inhaled drug is simple but for larger animals such as cattle and horses this 

approach is not commonly performed and injectable agents are often 

required. Whilst there is debate about the effect of the induction agent on EEG 

activity, most reports adequately account for this potential issue by including 

a control group that is anaesthetised with the same protocol as the treatment 

group(s) (Gibson et al. 2007). As EEG activity has inherent individual 

variation, comparisons within each animal between the pre-noxious stimulus 

baseline and the time following noxious stimulus are commonly used.  

As indicated previously EEG is useful for describing the response to 

acute noxious stimuli only. This property is demonstrated in Gibson et al.’s 

dehorning study (2007) where baseline EEG activity returned within 90 

seconds of the noxious stimuli application. Local anaesthetics are useful to 

assess the response, or lack thereof, in EEG activity during noxious stimuli 

application due to the complete abolition of the nociceptive signal 
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transduction. In Australia, the only local anaesthetic that is licensed for use in 

beef cattle is lidocaine (lignocaine), that has no withholding period for both 

milk and meat.  

Given that the EEG changes with acute noxious stimuli changes, there 

is a theory that if an inflammatory reaction can be generated per-acutely, (ie. 

within minutes), then the use of anti-inflammatories and their effect on the 

generation of this reaction may be investigated. In rats it has been shown that 

the inflammatory response after the intradermal injection of formalin creates 

an acute inflammatory reaction that is measurable within minutes (Fischer et 

al. 2014). This theory provides an avenue for assessing if pre-treatment with 

non-steroidal anti-inflammatories, such as meloxicam which is readily 

available, attenuates the pain response to soft tissue injury (e.g. castration) 

evident in cattle.  

1.4 Summary 

Research into the assessment of pain and pain mechanisms in cattle 

needs ongoing refinement to allow use in practical settings, thus the drive for 

continuing it. To further elucidate this area, specifically in the important 

Northern Australian beef industry, further research must be completed. Given 

the previous complications associated with measuring the pain response in 

conscious Bos indicus cattle, a role for the use of EEG and the minimal 

anaesthesia model is clear. Some obstacles do exist, as highlighted above, 

principally associated with the perceived temperament issues of Bos indicus 

cattle and the suitability of this species for induction of anaesthesia with an 

inhalant drug. 

1.5 Project Study Aims 

The aims of the project were: 

1) to characterise the electroencephalographic and cardiovascular 

responses to castration in Bos indicus bull calves in response to 

nociception during halothane anaesthesia.  

2) Assess the specific attenuation of these responses by the use of 

intra-testicular lidocaine or subcutaneous meloxicam.  
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The hypothesis of the project was that the local anaesthesia will markedly reduce 

the nociceptive response to castration, however the meloxicam will not. The data 

produced from investigating these aims will add to the current knowledge and 

literature regarding cattle during castration. Specifically, it may allow further 

development of welfare guidelines for the Australian cattle industry.  
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2 MATERIALS AND METHODS 

2.1 Animals 

2.1.1 Animal Ethics Approval 

This study was approved by the Murdoch University Animal Ethics 

Committee, #R2730 15 in accordance with the Code of Practice for the Care 

and Use of Animals for Scientific Purposes. 

2.1.2 Signalment 

Thirty-six six to eight month-old healthy male entire Brahman (Bos 

indicus) calves sourced from a private supplier in the Kimberly region of 

Western Australia were used in the study. The animals had previously 

undergone dehorning and weaning. All animals had bilaterally descended 

testicles.   

2.1.3 Farm Induction Protocol 

The bulls were allowed to acclimatise to the University farm paddocks 

for one week.  At this point a number of procedures were performed as part 

of the farm induction protocol and instrumentation for the study: collection of 

blood for Bovine Viral Diarrhoea Virus (BVDV) antibody testing (Department 

of Agriculture WA, Kensington, Australia); application of a pour-on insecticide 

treatment (Cydectin, Virbac, Australia); and the fitting of a pedometer (Afitag 

II, Afimilk, Israel) to the right distal metatarsus. Pedometry data was not part 

of this thesis so is not further reported. The bulls were identified with the use 

of a numbered (#1-48) ear tag put in the right pinnae, with the same number 

marked on the pedometer and sprayed (Spray & Mark, Dy-Mark, Australia) 

onto the left and right rump.  
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Figure 2-1 Calf number 23 seen following castration illustrating the pedometer above the 
right metatarsal-phalangeal joint and the tag number marked on the right rump 
for afar identification purposes.   

2.2 Herd Management 

2.2.1 Feeding  

The bulls were held in a 1.1 ha paddock with irrigated kikuyu pasture 

available for free-grazing and oaten hay bales intermittently fed out. A beef 

cattle specific balanced mixed pelleted food was available on a daily basis 

(EasyBeef®, Milne Feeds, Perth, Australia) and during the study period was 

fed only after the morning drafting had been completed. Once all anaesthetic 

procedures had been completed the pelleted food was available from a bulk 

feeder ad lib.  

The bulls had access to one ground-level stock trough for water, and a 

fountain present in the paddock.  

2.2.2 Environment 

The main paddock had irrigated kikuyu pasture, a large piggery 

building inset into the paddock and multiple large trees around the boundary 

and in the paddock. No other structures were in the paddock. A rectangular 

livestock trough with continuous flow float system was accessible from all 
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sides at the south-west end of the paddock. The round self-feeder was placed 

near the piggery building at the north-east end.  

 

 

 

 

Figure 2-2  Satellite image of paddock with the external fence highlighted (dashed line). The 
‘x’ marks the location of the self-feeder. 
Image extracted from Google Maps (google.com/maps).  

2.2.3 Enrichment 

No specific environmental enrichment was provided though a number 

of features associated with the paddock and its surrounds gave the bulls a high 

level of behavioural enrichment. Various bird-life, including ducks, galahs and 

black cockatoos came into the paddock on a regular basis.  All four sides of the 

paddock had ring-lock wire fences and multiple species including horses, 

donkeys, sheep and other cattle within close visual or nuzzling distance. The 
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paddock was located immediately behind the university farm’s teaching 

buildings and yards, where various activities occurred regularly. Additionally 

a laneway passed the paddock that regularly had farm vehicles travelling 

along it.  

An unintended enrichment provision developed with the self-flushing 

cleaning system beneath the piggery building. A slow running fountain 

constantly ran to fill up a counter-weighted swinging bucket that would empty 

on reaching a threshold level to flush the space below the piggery grating. The 

bulls were often playing with both the fountain and the swing-buckets, and 

seemed to enjoy it.  

2.2.4 Sentinel animals 

Prior to the anaesthetic procedures commencing, a sentinel animal, an 

aged good-temperament halter-trained Illawarra cow, was introduced to the 

main paddock. During the anaesthetic procedures this cow lived in the 

recovery paddock. Additionally during the anaesthetic procedures a five year-

old Angus bull receiving daily medical attention for an injured leg acted as a 

second sentinel animal within the hospital building.  

2.3 Castration and Electroencephalography 

2.3.1 Management on procedure day 

Each morning all the bulls were herded via a laneway into the 

collection yards for daily assessments to be performed.  Animals scheduled for 

anaesthesia and surgery were weighed and drafted into a small transport 

vehicle to travel to the University hospital.  Other procedures performed at 

this time included blood sampling or post-operative assessment as required. 

If blood sampling was necessary, the bulls were restrained in a head bale 

(Leicht, Australia) and blood was collected from the jugular vein. The four 

bulls for experimentation each day were loaded onto a trailer and moved to 

the hospital holding yards. In pairs the bulls were directed into the in-hospital 

race prior to the anaesthetic procedure.  
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After restraint in a custom-made squeeze chute and head bale 

assembly, two halters were applied; a soft cotton restraint halter and a large 

heavy gauge nylon long lead halter. The heavy gauge halters lead was passed 

through the custom-made tilt-table assembly (Murdoch University, Australia) 

and fixed to the gate of this crush via a lever system to help manoeuvre the 

bull into position.  

Once the bull was standing in the tilt-table crush assembly, the soft 

halter was tightened to the allocated point on the tilt-table. Three heavy nylon 

straps were passed around the bull to restrain the animal against the tilt table 

with a neck, a cranial thoracic strap and a caudal abdominal strap. Once these 

straps were tightened the tilt-table was activated and the bull was effectively 

restrained in left lateral recumbency. A blindfold was placed over the eyes and 

forehead and the fore and hind legs were secured together by soft cotton 

ropes and fastened to the corresponding points on the tilt-table.   

2.3.2 Study Groups 

The study had three equal groups: castration only (C, n=12); castration 

with meloxicam (M, n=12) and castration with lidocaine (L, n=12).  The 

allocation was block randomised to ensure that the last animal to be castrated 

on a given day was equally represented across the three study groups.   

2.3.3 Anaesthetic Management  

Once in lateral recumbency a custom-made mask (H. Lehmann, 

Murdoch University, Australia) was fitted over the bull’s muzzle to facilitate 

induction of anaesthesia. A Tafonius Junior large animal anaesthetic machine 

and ventilator (Vetronic, UK) with a large animal circle circuit was attached to 

the mask assembly and delivered halothane (Halothane BP, Pharmachem, 

Australia) in oxygen during spontaneous ventilation. The initial anaesthetic 

machine settings were 100% oxygen at 8 L/min and halothane at 1 %.  The 

low initial concentration of halothane was delivered to allow the animal time 

to get used to the smell.  After five minutes the halothane vaporiser setting 

was increased to 5 % and the mask was held firmly in place until the animal 
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was anaesthetised. It took approximately 30 minutes to reach a depth of 

anaesthesia adequate for endotracheal intubation. 

Direct or tracheal intubation was achieved by digital palpation of the 

epiglottis and arytenoid cartilages of the larynx with two personnel retracting 

the bull’s jaw and tongue to allow access. Intubation was accomplished with 

either an 18 mm, 20 mm or 22 mm internal diameter silicone large animal 

cuffed endotracheal tube (Surgivet, Australia). Once intubated, anaesthesia 

was maintained with halothane in oxygen with the aim of maintaining a pre-

EEG baseline end-tidal halothane (FE’Halo) of 0.9-1.1%. Positive-pressure 

ventilation was applied to maintain the end-tidal carbon dioxide (FE’CO2) 

between 40-50mmHg.  

2.3.4 Instrumentation 

During the induction period an electrocardiogram (ECG) was recorded 

in a base-apex manner using dermal needles. Following intubation 

comprehensive physiological monitoring equipment was applied to the 

animal. This monitoring equipment included a pulse-oximetry probe on the 

tongue, an oscillometric blood-pressure cuff on the proximal tail, a 20-gauge, 

1.16 inch cannula (BD Insyte, Becton Dickinson Infusion Therapy, USA) in the 

auricular artery for invasive blood pressure measurement and arterial blood 

sampling, a thermistor temperature probe in the caudal nasal passages and a 

three-lead far-field EEG using dermal needles (Neuroline subdermal, Ambu, 

Malaysia). Figure 2.3 and 2.4 illustrate the ECG and EEG needle placement.  
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Figure 2-3 Example placement of the base-apex ECG needles. 

 
 
Figure 2-4 Example placement of the EEG dermal electrodes, as viewed from a right-sided 

oblique dorsoventral aspect. 

The electrode and colour codes are as follows: red = non-inverting, midway 
between medial canthi; blue = inverting, sitting superficially over right mastoid 
process; green = earth, just distal to midline poll.  
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2.3.5 Monitoring 

Physiological variables and inspired and expired gas composition was 

continuously measured with a multi-parameter monitor (Carescape B650 

Anaesthetic Monitor, GE Healthcare, Finland) and manually recorded every 

five minutes during anaesthesia. During the 30-minute induction phase of 

anaesthesia the following parameters were measured: inspired oxygen 

concentration (FiO2 %), end-tidal oxygen concentration (FEO2 %), inspired 

halothane concentration (FiHalo %), Fe’Halo (%), halothane-vaporiser setting 

(%), Fe’CO2 (mmHg), respiratory rate (fR) and heart rate (HR) via the ECG.  

Once the trachea was intubated additional parameters were also 

recorded: peak-inspiratory pressure (PIP), positive-end expiratory pressure 

(PEEP), tidal volume (VT), peripheral oxygen haemoglobin saturation (spO2), 

systolic arterial pressure (SAP), diastolic arterial pressure (DAP), mean 

arterial pressure (MAP), intranasal temperature (T). The time of 

commencement of induction of anaesthesia, time to intubation, number of 

attempts at intubation, total anaesthesia time, time to extubation, time to 

standing and eye position was recorded. Analgesic drug, dose, route and time 

of administration were also recorded. A single arterial blood sample was 

collected into a pre-heparinised syringe (Pico50, Radiometer, Denmark) prior 

to removal of the arterial catheter and analysed with temperature correction 

for electrolytes and blood gas status (ABL 700 series, Radiometer, Denmark).  

2.3.6 Electroencephalography data acquisition 

A far-field EEG was obtained using dermal needles (Neuroline 

subdermal, Ambu, Malaysia) with the non-inverting electrode placed midline 

between the medial canthi, the inverting electrode over the right mastoid 

process and the earth electrode 2-4cm caudal to the poll as previously 

described (Murrell et al. 2006).  

Following a ten-minute period of stable anaesthesia with FE’Halo at 

0.9-1.1% and FE’CO2 40-55mmHg a five minute baseline EEG was obtained.  

The first procedure (first testicle castration or lidocaine injection) was then 

completed. Group M received 0.5 mg/kg of meloxicam (Ilium Meloxicam 20, 

Troy Laboratories, Australia) subcutaneously during the induction phase of 
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anaesthesia 30 minutes prior to castration, and Group L received 260 mg 

lidocaine (Ilium Lignocaine 20, Troy Laboratories, Australia) subcutaneously 

(into the distal scrotal skin surrounding the incision site) and intra-

testicularly (into the body of each testicle) following the baseline data 

acquisition. In Group L a further five-minute period following the injection of 

lidocaine was recorded prior to castration. Each bull had the left testicle 

removed first.  Five minutes later the right testicle was removed. Time points 

were recorded as timestamps on the EEG trace as baseline start, lidocaine 

injection, first testicle start, first testicle finish, second testicle start, second 

testicle finish and completion of the EEG trace (finish). The timeline of the 

anaesthesia and EEG collection is illustrated in Figure 2-3. 

2.3.7 Cardiovascular data acquisition 

Heart rate (derived from base-apex ECG electrodes, bpm), peripheral 

oxygen haemoglobin saturation (SpO2 %) and invasive arterial blood pressure 

via the auricular arterial line were recorded every five minutes throughout 

anaesthesia. The heart rate and blood pressure data were digitised at a rate of 

1 Hz (Powerlab 8/35, AD Instruments, Australia) and continuously recorded 

(LabChart Pro, AD Instruments, Australia) on a personal computer (Satellite 

C850, Toshiba Corporation, Japan). Baseline data of heart rate and blood 

pressure were defined as an averaged 300 seconds immediately prior to the 

start of surgery (groups C and M) or the injection of lidocaine (group L). Data 

extraction and analysis were completed off-line following the study. 

2.3.8 Castration 

Castration was completed on all bulls by a trained, experienced 

clinician. An open castration technique was used: the testicle was stabilised in 

the distal scrotum, a skin incision was made over the most distal point of the 

scrotum, the tunica vaginalis was incised and the testicle was extracted, and 

firm pressure was placed on the spermatic cord until it ruptured. Any 

remaining fibrous connections were severed by sharp dissection.  
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2.3.9 Anaesthetic recovery 

Following the completion of the EEG recording, all instrumentation 

was removed from the bull, the anaesthetic was discontinued, the bull 

disconnected from the anaesthetic machine, pulled onto a carrying plate of a 

fork lift (I8, Nissan Forklift, Japan) and transferred to a recovery paddock. The 

recovery paddock contained the sentinel cow and any other bulls that had 

already been castrated on that day. The bulls remained in left lateral 

recumbency during recovery, had a blind fold placed, were extubated once 

rejecting the tube or swallowing then restrained in the same position with 

pressure on the neck, head and dependent forelimb for as long as possible. 
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 Figure 2-5 Flow diagram of study for EEG assessment.  
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2.4 Weights and blood sample collection 

2.4.1 Weighing 

The bulls were weighed on in-line scales in the race (Gallagher, 

Australia) on arrival, day -7 (7 days prior to anaesthesia), day 0 (day of 

anaesthesia), day 6, day 10 and on departure.  

2.4.2 Blood collection 

Blood was collected from the jugular vein during anaesthesia and on 

days 3 and 6 following anaesthesia. 

2.5 Data acquisition and statistical analysis 

2.5.1 Electroencephalographic data sourcing 

The EEG data was directed through a custom-made break-out box (C. 

Johnson, Massey University, New Zealand) and the signal amplified through a 

bioamplifier (DAM 50 differential amplifier, World Precision Instruments, 

USA). The EEG was recorded with a gain of 1000x in alternating current mode, 

a low filter setting of 1Hz and a high filter setting of 100 Hz. The data was then 

digitised at a rate of 1 Hz (Powerlab 8/35, AD Instruments, Australia) and 

continuously recorded (LabChart Pro, AD Instruments, Australia) on a 

personal computer (Satellite C850, Toshiba Corporation, Japan). Data 

extraction and analysis was completed off-line following the completion of the 

procedures. Noise was noted in the EEG signal and earthing the tilt-table to 

the break-out box resolved the majority of this noise.    

2.5.2 Cardiovascular data sourcing 

The heart rate from the ECG and arterial blood pressure were recorded 

simultaneously to allow temporal association of events. An additional single 

channel bioamplifier (BioAmp ML132, AD Instruments, Australia) and bridge 
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amplifier (BridgeAmp ML110, AD Instruments, Australia) were utilised to 

retrieve the ECG and blood pressure measurements respectively, and the data 

then acquired by the PowerLab arrangement (see 2.7 a).  

2.5.3 Statistical analysis 

Continuous data was assessed for normality using Shapiro-Wilk 

analysis. Normally distributed data were compared between treatment 

groups with one-way ANOVA analysis and results displayed as mean  1 S.D. 

Non-parametric data were analysed with Mann-Whitney U analysis and 

displayed as median (range).  

The raw EEG data was inspected for any noise artefacts such as 

electromyography signals. Fast fourier transformation (FFT) was completed 

using custom-written software (C. Johnson, Massey University, New Zealand). 

The median frequency (F50), spectral edge frequency (F95) and the total 

power (Ptot) of the EEG was then established using 1-Hz frequency bins on 

each timestamped period of data.  

The spectral data was then smoothed, and summarised by the 

normalised area-under-the-curve (AUC) utilising the statistical software 

package R (The R Foundation for Statistical Computing, United States).  This 

normalised AUC was then regressed against the timestamp and treatment. A 

mixed effect model was fitted with a random intercept term to account for the 

repeated measures.  

The measurements of HR and arterial blood pressure taken over 300 

seconds following the first incision into the scrotum (T1) were compared to 

the 300 seconds of baseline measurements. Within each 300 second epoch, 

averages were collected over each ten-second time period for the first 90 

seconds following incision and were labelled T10 through to T90. The values for 

each time-period are presented as a percentage change from the baseline. The 

mean arterial blood pressure (MAP) was assessed. Normality of all data was 

assessed with the Shapiro-Wilk test. Normally distributed data were 

compared with a one-way ANOVA. Gabriel’s post-hoc analysis was performed 

if p < 0.05. SPSS software (Version 22.0.0.0, IBM, USA) was used to complete 

all analysis. Data are presented as mean  SD unless otherwise stated. 
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2.6 Funding 

2.6.1 Project Funding 

The project was funded by the Australian Government and Meat and 

Livestock Australia (MLA) corporation (grant B.AWW.0242).  
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3 RESULTS 

3.1 Animals and Anaesthesia 

3.1.1 Animals  

There were no significant differences in the weight of the animals 

between groups, the time from the start of delivery of halothane to intubation, 

total general anaesthesia time or time for removal of the first testicle (Table 

3-1).  

 

Table 3-1 Animal weight and times (intubation, general anaesthesia and time to remove 
first testicle).  

Mean ( SD) of weight, time to intubation and total general anaesthesia time of 
the treatment groups with median (range) for the time for removal for the first 
testicle (start of incision to rupture of the spermatic cord).  

 Treatment Group  

Variable C L M P-value 

Weight (kg) 238  17 233  24 239  16 0.689 

Intubation time (minutes) 33.0  6.5 36.1  10.1 35.5  7.5 0.624 

General Anaesthesia time (minutes) 79.9  8.6 82.2  19.3 82.2  9.9 0.956 

Time to testicle removal (seconds) 34 (18-49) 40 (20-84) 33 (22-61) 0.467 

 

3.1.2 Anaesthesia and Recovery 

The Fe´CO2 was maintained in the target range over the combined 600 

seconds of baseline and T1 time periods [Group C, 6.5 ± 0.6 kPa (49  5 

mmHg); Group L, 6.5 ± 0.5 kPa (49  4 mmHg); Group M, 6.7 ± 0.5 kPa (50  4 

mmHg)] with no differences between groups (p = 0.628). The PaCO2 at the end 

of surgery was higher than the target value [Group C, 7.8 ± 1.0 kPa (59  8 

mmHg); Group L, 7.7 ± 0.8 kPa (58  6 mmHg); Group M, 7.6 ± 0.8 kPa (57  6 

mmHg)] with no differences between groups (p = 0.756). All other 

cardiorespiratory parameters remained within the normal range throughout 

the study.  

All bulls in each treatment group had an excellent recovery based on 

subjective assessment. Well-defined recovery plateaus became apparent with 
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the rejection of the endotracheal tube in all animals around 10 minutes after 

being disconnected from the anaesthetic machine. Following extubation, the 

earliest attempts to rise occurred 10 minutes later. Occasionally the bull 

remained recumbent, resting, and required visual and auditory stimulation to 

rise. All recoveries were calm and excitement-free.  

No regurgitation was noted during anaesthesia or recovery in any of 

the bulls.  

3.1.3 Monitoring 

During the induction of anaesthesia, ECG monitoring showed two 

isolated ventricular premature contractions (VPC) in three animals. Three 

animals had visual evidence of mild rumenal bloating requiring an increase in 

tidal volume and therefore peak inspiratory pressure (PIP) to maintain the 

target Fe´CO2. No adverse impacts on the cardiovascular parameters were 

noted following the increase in PIP. All animals recovered uneventfully from 

anaesthesia, and all were observed eating within 30 minutes of standing. 

Postoperative assessment of pain was performed via qualitative behavioural 

assessment and subjective veterinary assessment (data not shown). None of 

the animals required rescue analgesia.  

3.2 Data 

3.2.1 Electroencephalography Data 

Data from all 36 bulls were included in the analysis. Somatic responses 

(swallowing, ear flicking or extremity movement) were observed and noted 

following incision in five animals: two animals in groups L and M, and one in 

group C.  

The final model for F50 indicated that the only significant predictor of 

AUC was timestamp (F: 65.1668, P – value: < 0.0001). For F95 and Ptot the final 

model indicated that the main effects timestamp and treatment, as well as the 

two-way interaction, were all significant predictors of AUC (Table A1 – A3 in 

Appendix).  
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In a comparison between the 300 seconds of baseline and the 300 

seconds following T1, F50 was increased in all groups (p < 0.0001). No 

differences in the magnitude of change in F50 between groups (p = 0.6491) 

were observed (Fig. 3.1). F95 was also increased in all groups following T1, 

compared to baseline (p = 0.0001). An increase in F95 in groups C and M and a 

decrease in group L (Fig. 3.2) (p = 0.0005) were observed. Ptot after T1 was 

decreased in all groups compared to baseline (p < 0.0001). There were 

significant differences in the change of Ptot between all groups (p = 0.0163) 

(Fig. 3.3): L decreased by the least, C by the most, and M was intermediate to 

L and C. No difference in group L was seen for any variable following injection 

of lidocaine (F50, p = 0.093; F95, p = 0.998; Ptot, p = 0.225). 
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 Figure 3-1 Median frequency (F50) of halothane-anaesthetised six-to-eight month old Bos 
indicus bull calves in three treatment groups. 

 Group C - no preoperative analgesia, n = 12; group L – pre-operative lidocaine, n = 
12 and group M – preoperative meloxicam, n = 12 are shown. Both baseline period 
and the 300 seconds following castration of the first testicle (T1) are shown on the 
x-axis. All treatment groups were different compared to baseline (p < 0.0001). There 
were no differences between groups during T1 (p = 0.6491). Castration occurred at 
0 seconds. Median results are shown. 
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  Figure 3-2 Spectral edge frequency (F95) of halothane-anaesthetised six-to-eight month old Bos 

indicus bull calves in three treatment groups. 

Group C - no preoperative analgesia, n = 12; group L – preoperative lidocaine, n = 

12 and group M – preoperative meloxicam, n =12 are shown. Both baseline period 

and the 300 seconds following castration of the first testicle (T1) are shown on the x-

axis. All treatment groups were different compared to baseline (p < 0.0001). All 

groups were different during T1 (p = 0.0005). Castration occurred at 0 seconds. 

Median results are shown. 
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Figure 3-3 Total power (Ptot) of halothane-anaesthetised six-to-eight month old Bos indicus bull 

calves in three treatment groups.  

Group C - no preoperative analgesia, n = 12; group L – preoperative lidocaine, n = 

12 and group M – preoperative meloxicam, n = 12 are shown. Both baseline period 

and the 300 seconds following castration of the first testicle (T1) are shown on the x-

axis. All treatment groups were different compared to baseline (p < 0.0001). There 

were significant differences between groups during T1 (p = 0.0163). Castration 

occurred at 0 seconds. Median results are shown. 
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3.2.2 Cardiovascular data 

Cardiovascular data from 23 animals was collected and included in 

these analyses (group C, n = 7; group L, n = 8; group M, n = 8). The remaining 

13 animals did not have cardiovascular data recorded due to the appropriate 

equipment not being available over the first three days of experimentation. 

There were no differences in the baseline values of HR or MAP between the 

three groups. HR decreased from baseline and was different between groups 

C and L at T20 (p = 0.03), T30 (p = <0.001) and T40 (p = 0.009) and between 

groups L and M at T30 (p = 0.015) (Fig. 5a). MAP also decreased from baseline 

and was different between groups C and L at T20 (p = 0.003), T30 (p <0.001), 

T40 (p = <0.001), T50 (p = 0.018), T70 (p = 0.027) and T80 (p = 0.045); between 

groups C and M at T40 (p = 0.025) and T50 (p = 0.024); and between groups L 

and M at T20 (p = 0.013) and T30 (p = 0.002). 

 

 

 

Figure 3-4 Percentage change in heart rate (HR) from the baseline in each of the ten second 

epochs (T10 to T90) following castration.  

Significant differences (p < 0.05) between the groups following Gabriel post-hoc 

analysis indicated by * (group C compared to L), ^ (group C compared to M), and + 

(group L compared to M). C = castration without preoperative analgesia, L = 

castration with preoperative lidocaine, M = castration with preoperative meloxicam. 



 

 42 

 

 

 

 

Figure 3-5 Percentage change of mean arterial blood pressure (MAP) from the baseline in each 

of the ten second epochs (T10 to T90) following castration.  

Significant differences (p < 0.05) between the groups following Gabriel post-hoc 

analysis indicated by * (group C compared to L), ^ (group C compared to M), and + 

(group L compared to M). C = castration without preoperative analgesia, L = 

castration with preoperative lidocaine, M = castration with preoperative meloxicam. 
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4 DISCUSSION 

4.1 Aims and Study Overview 

4.1.1 General Aims 

The project aims of characterising the electroencephalographic and 

cardiovascular responses to surgical castration in Bos indicus bull calves 

indicative of nociception during halothane anaesthesia were successfully 

completed. Once elucidated, the mitigation of these responses by analgesic 

therapy of either intra-testicular lidocaine or subcutaneous meloxicam was 

also examined. The hypotheses were partially supported with marked 

mitigation of both EEG and cardiovascular response to castration following 

lidocaine treatment, though only cardiovascular response mitigation evident 

following meloxicam therapy.  

The electroencephalographic findings were similar to previous 

mammalian studies assessing noxious stimuli with the characteristic 

nociceptive response occurring. F50 increased in all three experimental groups 

(C, M and L) compared to baseline levels without any significant difference 

between the groups. F95 increased in groups C and M but decreased in group 

L. Ptot decreased in all groups but the decrease was least in group L and 

greatest in group C.  

Equally, the cardiovascular responses to surgical castration displayed 

similar attenuation of the nociceptive response shown in the EEG responses. 

Group L was associated with the greatest attenuation of cardiovascular 

responses following the noxious stimulus. The cardiovascular responses in 

group M were intermediate to groups L and C.  

In brief, lidocaine attenuated, but did not abolish, the EEG and 

cardiovascular response to surgical castration whereas bull calves pretreated 

with meloxicam were only significantly different from the control group with 

respect to their cardiovascular responses, not their EEG descriptors.  
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4.1.2 Study Motivation 

As outlined in the first chapter (section 1), the project had its 

motivational origins from the relative lack of welfare requirements in the 

legislation dictating animal welfare standards during castration of farmed 

cattle. Despite the well established concept of pain caused by castration the 

legislation in Australia is lacking in any practical applications of pain 

reduction in this context (AHA 2014). With ever-increasing pressure from 

consumer and non-consumer sectors to ensure livestock welfare 

considerations are maintained, the data generated in this study adds to the 

literature in support of the concept of pain occurring during castration and a 

method by which to assess potential analgesic therapies.  

4.2 Electroencephalographic Findings 

4.2.1 Electroencephalographic response in control treatment group 

The electroencephalographic responses typically associated with 

nociception are increases in F50 and F95, and a decrease in Ptot (Gibson et al. 

2007; Grint, Johnson, Clutton, et al. 2014; Grint, Johnson, De Sa Lorena, et al. 

2014) in the peracute period following noxious stimuli. These findings have 

been sustained in multiple ruminant studies examining the EEG responses to 

procedures including dehorning and castration (Johnson, Stafford, et al. 2005; 

Johnson, Wilson, et al. 2005; Gibson et al. 2007). The calves in the current 

project had analogous results in all three EEG frequencies examined following 

the start of T1 (Figures 3-1, 3-2 and 3-3). The comparisons between the 

baseline period and T1 were markedly significant in all three frequencies with 

p < 0.0001 in all three analyses. Previous establishment of the increase in F50 

and F95 and the decrease of Ptot following the start of the noxious stimuli being 

across-species indicators of mammalian nociception gives merit to state that 

Bos indicus bull calves experience nociception during castration. The 

establishment of this control group response allowed the effect of provision 

of analgesia to be assessed. 
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4.2.2 Lidocaine and electroencephalographic response modification 

Local anaesthetic techniques including testicular infiltration have been 

successfully used in a number of species and reduction in nociception during 

castration has been described (Haga et al. 2005; Thüer et al. 2007; Moldal et 

al. 2013). Gibson et al. (2007) demonstrated that a lidocaine ring block 

prevented any EEG response to dehorning in Holstein calves. The presence of 

a reduced, but not eliminated, response in the current study suggests that the 

local anaesthetic block was incomplete. Previous data supports this 

occurrence with the possibility of uneven tissue infiltration (Haga et al. 2005) 

or low local anaesthetic levels present in the cremaster muscle at the time of 

surgery (Ranheim et al. 2005). Haga and Ranheim (2005) found incomplete 

anaesthesia produced in piglets during castration following intra-testicular or 

intra-furnicular lidocaine, postulating that the scrotal ligament and intra-

abdominal portion of the spermatic cord may be responsible for the continued 

nociceptive signal. The current data supports this premise and may reflect 

nociception originating from the spermatic cord. Analysis of the EEG response 

comparing the periods before and after injection of lidocaine revealed no 

significant changes in any of the EEG parameters. This absence of noxiousness 

associated with the process of injection is consistent with other studies in 

cattle and piglets (Haga et al. 2005; Gibson et al. 2007). 

The use of local anaesthetic techniques might be expected to abolish 

nociception because of the signal transduction interruption as seen previously 

during dehorning of calves (Gibson et al. 2007). Certainly, targeted local 

anaesthesia techniques including nerve-stimulator guided blockade and 

intrathecal anaesthesia have a high rate of full sensory blockade (Campoy et 

al. 2012).  

The electroencephalographic responses normally associated with 

nociception are increases in F50 and F95, and a decrease in Ptot (Gibson et al. 

2007; Grint, Johnson, Clutton, et al. 2014; Grint, Johnson, De Sa Lorena, et al. 

2014). For F95, an antinociceptive response will typically be characterised as 

no change from the baseline, and so the decrease in F95 seen in group L was 

seemingly paradoxical. This pattern was first described in a study assessing 

EEG responses to reticular stimulation in cats, termed “synchronisation”, and 
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is considered a modified form of EEG activation (Prince et al. 1966). It was 

referred to as “paradoxical arousal” in a study on isoflurane-anaesthetised 

sheep where its incidence was correlated with the intensity of stimulus (Otto 

et al. 2003). Such data provide a plausible explanation as to why the decreased 

F95 was seen in the current study in only group L, where the most significant 

anti-nociception effect was expected, and thus only the higher intensity 

stimulus at the point of testicle retraction elicited a response.  

4.2.3 Meloxicam and EEG Response Modification 

There were no EEG changes in response to castration associated with 

the preoperative administration of meloxicam. Many investigations into the 

effects of NSAIDs on nociception, specifically during surgery on animals, have 

found no differences in the variables considered. These studies report that 

preoperative administration of meloxicam does not affect the F50 in 

anaesthetised dogs (Kaka et al. 2015) and that the administration of carprofen 

does not alter minimum alveolar concentration (MAC) of isoflurane in dogs 

(Ko et al. 2009). However, a significant difference between the control and 

meloxicam-treated animals may have been expected given previous studies 

supporting a similar response in animal models of acute nociception (Dı́az-

Reval et al. 2004; Otto et al. 2005). A previous study by Dumka and Srivastava 

(2004) reported that therapeutic plasma concentrations of meloxicam were 

present 30 minutes after the subcutaneous administration of 0.5 mg kg-1 to 

cross-breed calves. It is feasible that anti-nociceptive plasma levels of 

meloxicam were not present by the start of surgery in the current study given 

the species, age and size differences in the study population compared to this 

study. Consequently, higher doses and/or drug administration more than 30 

minutes before surgery may have produced different results.  

4.2.4 Minimal Anaesthesia Model and EEG recording 

Obtaining valid EEG measurements during anaesthesia necessitates 

minimal influence of anaesthetic and analgesic drugs, along with physiological 

variables that may be altered by anaesthesia. The stability of the FE´Hal and 

the physiological parameters, FE´CO2, temperature and oxygenation over the 
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duration of the study indicate that these parameters were not responsible for 

the EEG changes presented here. Partial pressures of CO2 were greater than 

usually reported in other minimal anaesthesia studies (Murrell et al. 2010; 

Kongara et al. 2013). These results reflect the difficulty of maintaining 

normocapnia in cattle and are not unusually high for large ruminants (Klein 

et al. 1988). The values recorded are considerably less than those which 

would be expected to have a direct effect on the EEG (Paulson et al. 1974). 

Furthermore, during anaesthesia, mechanical ventilation was managed by 

interpreting the information provided by capnography. The discrepancies 

between the FE´CO2 and PaCO2 in this study reflect the limitations of 

capnography, as opposed to the gold-standard temporaneous arterial blood 

gas analysis. Such discrepancies may be the result of high ventilation-

perfusion mismatch resulting in an increase of alveolar dead-space.  

Halothane was used in the current study as the sole agent for both 

induction and maintenance of anaesthesia. This anaesthetic protocol differs 

significantly from most other large animal studies assessing EEG when 

intravenous agents including thiopentone or ketamine have been used 

(Johnson, Wilson, et al. 2005; Gibson et al. 2007; Grint, Johnson, De Sa Lorena, 

et al. 2014). Induction of anaesthesia with an inhaled drug delivered by 

facemask in large animals has been reported previously: in trained horses 

(Pascoe et al. 1993) and small calves (Keegan et al. 2006). In older and thus 

larger cattle, the technique of induction of anaesthesia with a facemask for 

delivery of the drug is rarely reported (Thurmon et al. 1968). The facilities at 

the Murdoch University farm permitted this technique to be used without 

adverse incident occurring for either the animals or personnel involved. 

Halothane, along with other common volatile anaesthetic agents including 

isoflurane and sevoflurane, have been examined for their cerebral depressant 

effects at equipotent doses in rats during EEG recording (Murrell et al. 2008). 

Sevoflurane is the most popular choice amongst humans for mask induction 

due to the sweet odour, non-irritant nature of the agent and rapid onset and 

offset of action due to low blood solubility co-efficient. Unfortunately, 1xMAC 

or higher equivalent doses of sevoflurane cause burst suppression resulting 

in isoelectric periods of EEG, making it unsuitable for EEG assessment.  
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4.3 Cardiovascular Responses 

4.3.1 Introduction 

Comparable and transient decreases in HR and MAP were evident in 

all three experimental groups following the commencement of surgery, with 

group L having the least change compared to baseline values, and group M an 

intermediate change. These short-lived reductions in heart rate and blood 

pressure have previously been reported in anaesthetised ruminants during 

the application of noxious stimuli (Gibson et al. 2007; Johnson et al. 2009) but 

the current study is the first such description in cattle during castration. 

Previous descriptions indicating dominant sympathetic nervous system 

responses with an increase in heart rate and blood pressure to noxious stimuli 

frequently focus on a delayed change measured in minutes to hours following 

noxious stimuli (Peers et al. 2002; Coetzee 2013). The timing of recordings 

taken in previous studies compared to the peracute period recorded here may 

explain the disparate results. This theory is supported with the apparent 

return to near to baseline levels of both the HR and MAP by approximately 

100 seconds following surgery. Studies with analogous results to the current 

study similarly used continuous computer-recorded data from the moment of 

the incision (Gibson et al. 2007; Johnson et al. 2009). This methodology allows 

interrogation of the interval immediately from the start of the incision. The 

mechanism of bradycardia and reduced blood pressure observed in this study 

is not clear. Given the short period in which changes occurred, a neural 

mechanism is the most likely explanation. The reduced HR and MAP in the 

current study may result from vasovagal response to noxious stimuli (van 

Lieshout et al. 1991). This response may subsequently be overridden by the 

stress response of surgery and anaesthesia, as could be occurring in the 

reports of animals when relatively delayed cardiovascular measurements 

were recorded (Grondahl-Nielsen et al. 1999; Peers et al. 2002). Further work 

to elucidate this mechanism, possibly using an anti-cholinergic treatment, is 

required.  

The possibility that the cardiovascular responses reported here were 

vagally-mediated, might be investigated further by examining whether an 
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antimuscarinic drug (e.g. atropine) can attenuate this response. Advanced 

physiological data, for example, respiratory values including airway pressure 

and dynamic lung compliance, along with cardiac output and stroke volume, 

may also enable elucidation of the mechanism given the known impact of 

vagus nerve activity on these parameters (van Lieshout et al. 1991). 

4.3.2 Cardiovascular responses with lidocaine  

The pre-operative administration of 260 mg of lidocaine (group L) 

resulted in the greatest attenuation of cardiovascular responses following the 

noxious stimulus. Minimal reductions in HR and MAP were evident in these 

animals until T30. This time (T30) coincides with when the maximal traction 

was placed on the spermatic cord just prior to rupture (see Table 3-1), 

indicating that visceral stimulation, and not the initial incision, may have 

caused the delayed response in this group. A comparable response has been 

reported in conscious calves being castrated with local anaesthesia where the 

skin incision and handling of the testicle provoked minimal behavioural 

reaction, however spermatic cord traction induced pain-related behaviours 

(Thüer et al. 2007). A more complex local anaesthetic technique such as 

epidural or intrathecal anaesthesia may result in complete analgesia (Stilwell 

et al. 2008). Using such an involved technique is seldom used for the process 

of castration in livestock, particularly in large-scale field settings.  

4.3.3 Cardiovascular responses with meloxicam  

Following 0.5 mg kg-1 meloxicam SC prior to castration (group M), the 

cardiovascular response to surgery was intermediate between that of groups 

L and animals that had not had any pre-operative analgesia (group C). This 

result is interpreted as a reduction in the nociceptive response following 

castration with meloxicam. This explanation conflicts with the traditional 

concept of inflammation occurring some time after the initial activation of 

nociception and pain perception. Anti-nociceptive actions of non-steroidal 

anti-inflammatory drugs, in addition to their anti-inflammatory actions, have 

previously been reported in sheep and cattle using ketoprofen and carprofen, 

and the mechanism of action is considered to be centrally mediated (Otto et 
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al. 2003; Lizarraga et al. 2006). The current data are enhancing the concept of 

inflammation occurring as a part of nociceptor transduction, rather than as a 

consequence of it. Further investigation of the meloxicam-induced reduction 

of acute nociception during husbandry procedures in cattle is undoubtedly 

warranted.      

4.4 Study Limitations 

4.4.1 General limitation overview 

Some limitations exist in this study, and acknowledgement and 

understanding of these limitations with the impact on the validity of the data 

gained is crucial. A number of limitations are overt and were considered prior 

to the project commencing, including the number of animals used and how the 

data analysis was being completed. There are further limitations that may be 

considered in a purely theoretical realm, but require examining to display the 

full understanding of the project.  

4.4.2 Sample size 

A total number of 36 Bos indicus bull calves were used in this study. 

These numbers are generous in large animal research. Large animal studies 

often have small treatment group numbers, with the restriction originating 

from financial and logistic factors (de Vries et al. 2016). Certainly there are 

few anaesthesia-based research based projects using cattle of this size, with 

numbers often much smaller. Indeed other ruminant and equid projects have 

at most used 30 or fewer animals (Johnson, Wilson, et al. 2005; Grint, Johnson, 

De Sa Lorena, et al. 2014).  

 

4.4.3 Data collection and analyses 

The data analysis was performed by personnel present at the 

experimental phase who were not blinded to the treatment groups. As the 

data was recorded and extracted via computational methods the bias from is 

expected to be minimal. 
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4.4.4 Control group ethics 

The ethical justification for including control group (group C) is an 

interesting component of the study. It must be made clear that this control 

group allowed evaluation of the nociceptive responses by the bull calves, and 

valid comparison with the treatment groups. As all animals being castrated in 

this study were anaesthetised the welfare of these study animals was 

markedly higher than their compatriots on Australian cattle farms where all 

husbandry procedures including castration, dehorning, branding and tagging 

are done without the benefit of either anaesthesia or analgesia. A recent 

review of the ethics of using such control groups in the pre-eminent veterinary 

anaesthesia and analgesia serial publication supported their use (Slingsby 

2010). In additional support of the project, the Murdoch University Animal 

Ethics Committee approved the undertaking.  

4.4.5 Noxious stimuli assessment 

The noxious stimulus in the current study was an irreversible surgical 

procedure. A standardised repeatable stimulus, such as those used in 

minimum alveolar concentration (MAC) determination studies, may provide 

more information about the analgesic efficacy of various drugs. It was chosen 

to use the surgical procedure to allow a real-world demonstration of the 

nociception of castration in Bos indicus bull calves, along with the amelioration 

of this response with the analgesic treatments.  

4.4.6 Pharmacokinetic assessment 

The pharmacokinetics of neither lidocaine or meloxicam are known in 

Bos indicus cattle, with dosing and timing coming from studies in Bos taurus 

species cattle. There is the potential that unsatisfactory time or dosing of both 

drugs influenced the results achieved. From a practical aspect the 

pharmacokinetics of these agents would have to be applied to a field-setting 

to allow real-world welfare improvements. From the current study it may be 

inferred that a suitable plasma level of meloxicam occurred during the 30 

minutes from subcutaneous injection to surgery start time. In a field-setting, 

it would be useful to ascertain is this level can be achieved more rapidly via an 
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intramuscular injection to encourage uptake of the practice. The lack of 

collection of pharmacokinetic data during this study is also a shortfall, 

however due to additional cost and logistical implications it was elected to not 

be included.  
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4.5 Conclusions and Practical Implications 

4.5.1 EEG findings 

As expected, the Bos indicus bull calves in this study demonstrated 

typical mammalian nociceptive responses to the noxious stimuli of surgical 

castration. Furthermore the data indicates the reduction of this response by 

the use of intratesticular lidocaine. Meloxicam had no appreciable effect on 

the EEG response to surgical castration.  

4.5.2 Cardiovascular findings 

A novel finding of the transient decrease in blood pressure occurring 

after the start of surgical castration in Bos indicus bull calves is reported 

herein. This result was additionally supported by the decreased heart rate 

during the same period. Surprisingly, the use of both lidocaine and meloxicam 

attenuated this cardiovascular response to surgical castration.  

4.5.3 Practical Implications and Future Development 

In conclusion, this study is the first description of EEG and 

cardiovascular responses to castration in Bos indicus cattle, and the effect of 

two different analgesic drugs in reducing these responses. Administration of 

lidocaine prior to castration significantly attenuated the acute post-operative 

nociceptive response in six-to-eight month old Bos indicus bull calves. In 

addition, the preoperative administration of meloxicam attenuated the 

cardiovascular, but not the EEG, responses to castration in the peracute 

period. These findings provide support for the preoperative administration of 

lidocaine and give impetus for further research into the peracute anti-

nociceptive effects of meloxicam for castration in Bos indicus bull calves. 
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5 APPENDIX 

Table A 1 The predicted median frequency (F50) area-under-the-curve (AUC) from the mixed 
effects model for the three groups. 

 

 

 

 

 

 

Table A 2 The model interactions (a) and predicted spectral edge frequency (F95) area-
under-the-curve (AUC) (b) from the mixed effects model for the three groups. 

a 

 

 

 

 

 

 

 b 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TS fit se lower upper 

B 4.040895 0.207325 3.627398 4.454392 

T1 4.758077 0.207325 4.344580 5.171573 

 numDF denDF F-value p-value 

(Intercept) 1 66 12131.899366 0.0000000 

TS 2 66 23.612333 0.0000000 

Tx 2 33 3.474494 0.0427203 

TS:Tx 4 66 7.316009 0.0000612 

TS Tx fit se lower upper 

B C 23.30691 0.4043657 22.50456 24.10926 

T1 C 24.40731 0.4043657 23.60496 25.20966 

B L 23.36051 0.4043657 22.55816 24.16286 

T1 L 23.08607 0.4043657 22.28372 23.88842 

B M 23.75512 0.4043657 22.95277 24.55747 

T1 M 24.91579 0.4043657 24.11344 25.71814 
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Table A 3 The model interactions (a) and predicted total power (Ptot) area-under-the-curve 
(AUC) (b) from the mixed effects model for the three groups.  

 
a 

 

 

 

 

 

 

b  

 

TS Tx fit se lower upper 

B C 18.70859 1.12872 16.45502 20.96215 

T1 C 15.64272 1.12872 13.38915 17.89628 

B L 20.93368 1.12872 18.68012 23.18724 

T1 L 20.20549 1.12872 17.95193 22.45906 

B M 21.48978 1.12872 19.23622 23.74334 

T1 M 17.69135 1.12872 15.43779 19.94492 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 numDF denDF F-value p-value 

(Intercept) 1 33 964.155543 0.0000000 

TS 1 33 34.944006 0.0000013 

Tx 2 33 2.684924 0.0831081 

TS:Tx 2 33 4.676048 0.0162946 
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