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Résumé :

Des particules hérissées sont construites par superposition de sphères et d’ellipsöıdes allongés. Des
empilements aléatoires de ces particules sont obtenus en simulant une déposition séquentielle. La
géométrie, la conductivité et la perméabilité des empilements sont analysés de manière systématique en
relation avec les caractéristiques des grains. On propose des corrélations générales reliant ces propriétés
à l’indice de sphéricité et à une taille équivalente de grain.

Abstract :

Spiky particles are constructed by superposing spheres and prolate ellipsoids. The resulting nonconvex
star particles are randomly packed by a sequential deposition algorithm. The geometry, the conductivity,
and the permeability of the resulting packings are systematically studied, in relation with the individual
grain characteristics. Overall correlations are proposed to approximate these properties as functions of
the grain equivalent size and sphericity index.

Mots clefs : Granular media, conductivity, permeability

1 Introduction

Random packings of grains can be found in various natural environments as well as in industrial
applications and they are a very interesting topic for scientific research due to their very complex
behaviour. Most earlier works were devoted to random packings of spheres, whether they are mono or
polydisperse and the studies devoted to nonspherical particles are much less common and are mostly
experimental. A review of the recent works is given in [1].

The purpose of this paper is to study the packings of star particles which are not convex. Each grain
is obtained by addition to a sphere of one or more identical ellipsoids with the same center. Because
of their general aspect, these particles are called spiky. Since they are yet nearly unexplored, there
is a fundamental interest in the study of the properties of non convex grain packings. In addition,
the kind of particles considered here is reminiscent of various objects such as grafted particles, some
pellets, flakes or small grain clusters. Therefore, the present results can find applications in a variety
of industrial situations.

The generation of the spiky particles, the various shapes which were studied and the sequential al-
gorithm which is used are described first. The geometrical properties of the particles such as the
volume, the surface and the sphericity index are presented. Collective properties of the packings are
also studied, namely porosity, hydraulic radius, correlation functions and orientation.

Then, transport properties are studied. The macroscopic conductivity is derived by solving the Laplace
equation. Permeability is obtained by solving the Stokes equations.

All the technical details about this work can be found in [1], where additional results are also provided.
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2 Random packings of different types of grains
Since packings of spherical and ellipsoidal particles are easily generated, the new grain shapes are
based on these forms. Therefore, all the particles are composed by a sphere and each new form of
grain is obtained by addition to this sphere of one or more identical ellipsoids with the same center.
The positions of the ellipsoids are chosen in order to produce grains which are relatively regular and
isotropic. However, two anisotropic types of grains are also considered.

The grains are defined by the distance R between a point XG(XG, YG, ZG) called the center and its
surface. Often XG is the center of gravity of the particle. Let us consider each particle in its local
coordinates with the origin at XG. This distance R is determined in the polar coordinates for each
orientation (Θ, ϕ) ; Θ is the inclination with respect to the z-axis and ϕ is the rotation of the x-axis
around the z-axis (Fig.1a). Then, the surface of the particle is represented as

r = R(Θ, ϕ) (1)

For a spherical grain, the function R(Θ, ϕ) is simply equal to the radius of the sphere Rsph. For an
ellipsoidal grain with semiaxes (Rx, Ry, Rz) aligned with the axes of coordinates, it can be written as

Rell(Θ, ϕ) =

{
cos2(Θ)

R2
z

+ sin2(Θ)

[
cos2(ϕ)

R2
x

+
sin2(ϕ)

R2
y

]}−1/2

(2)

In all cases, the two semiaxes Rx and Ry of each ellipsoid are identical and smaller than Rz. Therefore,
the position of the ellipsoid is fully determined by the orientation of its major axis.

Since all the grains are made of one sphere and Nell ellipsoids, the corresponding functions R(Θ, ϕ)
are expressed in terms of Rsph and Rell(Θ, ϕ). More precisely, R(Θ, ϕ) can be expressed as

R(Θ, ϕ) = max
{
Rsph, R

(j)
ell (Θ, ϕ)

}
, j = 1, . . . , Nell (3)

Examples of such particles are given in Figs.1b-h. There are two types of anisotropic grains. The
first one, called one-ellipsoid, is the particle obtained by the addition of one sphere and one ellipsoid
(Fig.1b). The second one, called two-ellipsoid, is the addition of one sphere and two ellipsoids (Fig.1c).

The regular polyhedra Ph (tetrahedron, cube, octahedron, dodecahedron and icosahedron) were used
as a basis for the regular particles. The center of the grain sphere is the center of the polyhedron
circumsphere. The ellipsoids are oriented orthogonally to the faces of Ph (Fig.1d-h). Hence, each
ellipsoid generally corresponds to two faces with opposite normals.

Since the basis of all types of grains is a sphere of radius Rsph, let Rsph be the length unit, i.e., for
the numerical simulations Rsph = 1. Then, R1, R2 and R3 denote the ellipsoid semiaxes normalized
by Rsph. Moreover, R3 is defined as the major semiaxis and R12 as the minor ones

R3 > R1,2 = R1 = R2 (4)

The random packings result from the successive deposition of grains in ”gravitational” field as follows
[1, 2]. The grains are introduced at a random location above the bed already in place and fall until
they reach a local minimum of their potential energy. During their fall, any displacement and rotation
that contribute to lower their barycenter are allowed. The grains are deposited in a square vertical
box, with a flat bottom at z = 0, and periodicity conditions along the x and y directions in order to
avoid the well-known hard wall effects. This means that a particle may sit astride the border between
two adjacent cells and interact with the rest of the packing on either side.

The box dimensions are set according to the major particle radius : 10 × 10 × 60R3
3 (Fig.1i). The

10R3 top and bottom layers are discarded. This yields 10× 10× 40R3
3 samples which are used for all

the geometrical and transport property determinations. They contain from 1000 to more than 20000
grains, depending on their shape. Small parts of such samples are shown in Figs.1j-l.

For the solution of the transport problems and of some geometrical parameters (e.g., RH), the packing
geometry was discretized into cubic volume elements of size a3, with as a rule a = 1/4. However,
calculations were also done with a=1/8, 1/12 and 1/16 in a variety of typical situations. Corrective
formulas for the discretization effects were established and systematically applied to the results.
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Figure 1 – (a) The particle definition in the polar coordinates (Θ, ϕ). Non regular particles : (b) one-
ellipsoid particle ; (c) two-ellipsoid particle. Regular particles : (d) C-shaped (cube) ; (e) T-shaped (two
tetrahedra) ; (f) O-shaped (octahedron) ; (g) D-shaped (dodecahedron) ; (h) I-shaped (icosahedron).
Sketch of the unit cell with periodic boundary conditions and illustration of some geometrical notations
(i). Parts of some numerical packing samples : One-ellipsoidal particles, R1,2=0.5, R3=3 (j) ; Two-
ellipsoidal particles, R1,2=0.5, R3=1.5 (k) ; C-shaped particles, R1,2=0.25, R3=5 (l).
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Figure 2 – (a) Porosity as a function of Ψ. The black solid line corresponds to (6). The red solid
and broken lines are the empirical correlations of [3, 4] and the green lines are the envelop of the
data of [5], for convex aspherical grain packings. (b) The porosity ϵ as a function of Rsph/RH ; the
solid and dashed lines correspond to (7) and (8), respectively. The colors correspond to the value of
the ellipsoid semiminor axis : R1,2=0.15 (red), 0.25 (green), 0.50 (blue), and 1.00 (cyan). The symbol
shapes indicate the type of grain :one-ellipsoid (◦), two-ellipsoid (⋆), C-shaped (2), O-shaped (▽)
T-shaped (△), D-shaped (◃) and I-shaped (▹). The black circle corresponds to spherical particles.
Identical symbols correspond to R3=1.5, 3 or 5, in decreasing Ψ order.

3 Geometric properties
In order to examine the influence of the type of grains on the packing geometrical and transport
properties, some single particle characteristics, such as their volume V1, surface area S1 and sphericity
index Ψ have to be determined first. The radius Rv of the equivalent sphere is deduced from V1, and
Ψ is defined as the ratio between the equivalent sphere surface Sv and the particle surface S1

Rv =

(
3V1

4π

)1/3

, Ψ =
Sv

S1
(5)

Several models are compared in [1] for the porosity as a function of Rv and Ψ. The following one
does not make any reference to the detail of the grain shape and provides a fair prediction of the bed
porosity, within about ±0.1 (Fig.2a)

ϵ = 0.40 + (1−Ψ) + (1−Ψ)3 /3 (6)

For comparison, the empirical correlations of [3, 4] and the envelop of the data of [5] are also shown
in Fig.2a. They correspond to grains with various aspherical but convex shapes. Clearly, the present
non convex particles yield much larger porosities than convex particles with an identical Ψ.

The correlation between the porosity ϵ and the hydraulic radius RH (ratio of the pore volume to the
pore surface area) is examined in Fig.2b for all types of grains. All the data for particles with R1,2 < 1
are gathered and the porosity depends on the hydraulic radius as follows

ϵ = exp

(
−0.159

Rsph

RH

)
(7)

Note that the rightmost point corresponds to a sphere packing. All other particle shapes yield a larger
hydraulic radius and a larger porosity. The results for particles with R1,2 =1 are gathered into another
group. For Rsph/RH ≤ 4, they are well represented by the introduction of a prefactor in (7)

ϵ = 0.88 exp

(
−0.159

Rsph

RH

)
(8)
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4 Transport properties of the packings
The macroscopic conductivity and permeability were deduced by integrating the local fields obtained
by solving the Laplace and Stokes equations, respectively, on the pore scale, with a prescribed ma-
croscopic potential or pressure gradient [1, 2, 6]. The solution is performed by using a finite volume
formulation of the problems, in the cubic discretization of the packing geometry.

Note that periodicity conditions have been applied along the x-, y- and z-axes when computing the
transport properties. The packing are indeed periodic along x and y, but not along z. Since the
computation domains are typically 4 to 5 times higher than wide, this has only a marginal influence
on the results.

4.1 Conductivity
Electrical and thermal conductions are governed by a Laplace equation

∇2T = 0with n · ∇T = 0 on Sp (9)

where T is the local field, Sp is the solid insulating wall and n its unit normal.

The temperature gradient ∇T is spatially periodic. In addition, either the average temperature gra-
dient ∇T or the average heat flux q is specified. It is related to the average temperature gradient ∇T
by the symmetric positive definite conductivity tensor σ which depends only upon the geometry of
the medium

q = −σ · ∇T (10)

The calculations of the conductivity tensor σ were performed for the packings described above. The
effects of the anisotropy and discretization were studied. The average over all directions σ̄ is used and
it was extrapolated for infinitely small discretization σ∞. The results are described by Archie’s law
(11) and shown in Fig.3a

σ∞ = 0.98ϵ1.422 (11)

4.2 Permeability
Permeability can be derived from the solution of Stokes equation

∇p = µ∇2v, ∇ · v = 0 with v = 0 on Sp (12)

where v, p and µ are the velocity, pressure and viscosity of the fluid, respectively.

The macroscopic pressure gradient ∇p is related to v by the permeability tensor K

v = − 1

µ
K · ∇p (13)

K is a symmetric positive definite tensor. Similarly to the conductivity tensor σ, K takes the same
values along x- and y-axes and can be slightly different along z.

There are several classical models to represent the dependence of the permeability on the geometric
packing characteristics. For example, the normalization of the permeability K by the square of the
equivalent sphere radius R2

v was successively used by [2] to gather the results for packings of spheres,
ellipsoids and parallelepipeds. The most classical model is the Carman-Kozeny equation

K =
ϵR2

H

k
(14)

where k is the Kozeny constant.

In order to reduce the numerical errors attached to the results of calculations with a finite discretization
step, extrapolated values are used [1]. The anisotropy appears to be negligible and a global numerical
fit can be found as

k∞
Ψ2

=
3.20

1− ϵ
(15)

The ratio k∞/Ψ2 is plotted in Fig.3b as a function of porosity.
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Figure 3 – (a) The extrapolated conductivity σ∞ as a function of porosity ; the line corresponds to
the fit (11). (b) The ratios kx,∞/Ψ2 and kz,∞/Ψ2 as functions of ϵ ; the solid line is the numerical fit
(15). The data are the calculated transport coefficients as functions of the porosity measured in the
same samples. Same conventions as in Fig.2 for the symbol colors and shapes. The conductivities in
(a) are averages over the x-, y- and z-directions. The Kozeny constants in (b) are calculated alont the
z-direction (open symbols), or averaged over the x- and y-directions (close symbols).

5 Conclusions
Packings of complex particles have been generated. Then, their geometric and transport properties
were numerically calculated and their dependence on the single grain characteristics has been studied.
The influence of the anisotropy and discretization effects were taken into account.

The most important geometrical characteristics of any porous medium is the porosity ϵ. It was shown to
be a function of the sphericity index Ψ, as given by the numerical fits (6-8). The particles investigated
here yield much larger porosities than convex particles with an identical sphericity index.

The hydraulic radius RH can be deduced from Ψ by taking (6) into account.

Similarly, the transport properties, such as the conductivity and the permeability, can be expressed
in terms of the sphericity index and of the equivalent sphere radius. Archie’s law applies and the
conductivity σ is a function of the porosity given by (11). The permeability can be determined in
terms of the Kozeny constant k which can be predicted by (15).
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