Journal of Informatics and Mathematical Sciences

Vol. 9, No. 2, pp. 297–316, 2017 ISSN 0975-5748 (online); 0974-875X (print) Published by RGN Publications

Proceedings of

International Conference on Science and Sustainable Development (ICSSD)
"The Role of Science in Novel Research and Advances in Technology"
Center for Research Innovation and Discovery Covenant University Nigeria

Center for Research, Innovation and Discovery, Covenant University, Nigeria June 20-22, 2017

Research Article

Application of Artificial Neural Network for the Inversion of Electrical Resistivity Data

O.L. Johnson and A.P. Aizebeokhai*

Department of Physics, Covenant University, Ota, Nigeria *Corresponding author: a.p.aizebeokhai@gmail.com

Abstract. The inversion of most geophysical data sets is complex due to the inherent non-linearity of the inverse problem. This usually leads to non-uniqueness of solutions to the inverse problem. Artificial neural network (ANN) has been used effectively to address several non-linear and non-stationary inverse problems. This study is essentially an assessment of the effectiveness of estimating subsurface resistivity model parameters from apparent resistivity measurements using ANN. Multi-layered earth models for different geologic environments were used to generate synthetic apparent resistivity data. The synthetic apparent resistivity data were generated using linear filter method embedded in the RES1D program. Neural network toolbox on MATLAB was used to design, train and test a developed neural network that was employed in the inversion of the apparent resistivity sounding data sets. Resilient feed-forward back propagation algorithm was used to train the network. The network was trained with 50% of the synthetic apparent resistivity data sets and their corresponding multi-layered earth models. 25% of the data set was used to test the network and the network was validated with another 25% of the data set. The network was then used to invert field data obtained from Iyanna-Iyesi, southwestern Nigeria. The results obtained from ANN responses were compared with that of a conventional geoelectrical resistivity inversion program (WINRESIST); the results indicate that ANN is effective in the inversion of geoelectrical resistivity sounding data for multi-layered earth models.

Keywords. Artificial Neural Network (ANN)

MSC. 92B20

Received: May 23, 2017 **Revised:** June 19, 2017 **Accepted:** July 15, 2017

Copyright © 2017 O.L. Johnson and A.P. Aizebeokhai. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

The main goal of performing electrical resistivity survey is to evaluate the variations in the subsurface resistivity distribution based on the surface measurements of the apparent resistivity and interpret these variations (resistivity anomalies) in terms of geological and hydrogeological features in the subsurface. The true resistivity of the earth's subsurface can only be measured directly if the subsurface was to be homogeneous and this is never the case. Apparent resistivity, which is the volumetric average of the resistivity of a homogeneous half-space, depends on the electrode configuration used for the measurements (Aizebeokhai, 2010). This is because the subsurface layering and the geoelectric parameters of the layers are often unknown. The determination of the true resistivity model from the measured apparent resistivity data set is an inverse problem. Thus, the true resistivity distribution of the subsurface cannot be uniquely determined due to the intrinsic nature of the data structure. Also, the relationship between the observed apparent resistivity and the model parameters (true resistivity and layer thickness) is non-linear. Forward modelling mathematical techniques are generally used to relate the observed apparent resistivity to the desired model parameters. In other words, they are required to predict what the observed apparent resistivity should have been given the layered models.

Inversion techniques are commonly used to solve geophysical and engineering inverse problems (Tarantola, 2005). Inversion is performed on the measured apparent resistivity data to estimate the true model resistivity and thickness for each layer. Inversion is not only limited to resistivity data as nearly all geophysical problems are inverse problems. The normal linearized inversion methods to solving the non-linear inverse problem in geophysics are generally based on iterative processes. The inversion processes update the model parameters at each step to best fit the observed data. A good inversion method must simultaneously minimize the effects of the observed apparent resistivity data error and the model parameter errors. Conventionally, observed apparent resistivity field data and a starting model are inputted into the inversion program for inversion to produce calculated apparent resistivity with a final inverse model of the subsurface.

Advanced modern technology in computer forward modelling has made it possible to estimate resistivity data for 1D, 2D and 3D resistivity models of the subsurface. Advanced methods such as linear filter theory and exponential approximation of Kernel function are iterative methods which require quasi-linearization of the non-linear resistivity problem and adjust the model parameters iteratively to produce a response to some degree of agreement with the observed data. The least squares optimization method (Lines and Treitel, 1984) is commonly used for the data inversion. The initial model consisting of the different resistivity and thickness of the assumed layers is modified by the optimization process in order to increase the correlation between the measured and calculated apparent resistivity values. The least square inverse solutions are often unstable and not unique when applied to all non-linear inverse problems. The non-uniqueness may be due to a finite number of measurements of both current and potential sampling points.

The initialization of model parameters is important in normal inversion of resistivity data and poor hypothesis usually results in the wrong estimation of parameters. Artificial neural network (ANN) may be used in the direct inversion of resistivity data as it has the ability to learn and perform non-linear optimization in the interpretation of geophysical data. ANN used in the direct inversion of resistivity data proceeds from observation and experience rather than theoretical deduction (Stephen et al., 2004). ANN can be used in the interpretation of 1D, 2D, 3D and 4D electrical resistivity data. Unlike the normal methods used for interpretation of resistivity data which use a fixed algorithm to estimate model parameters, ANN performs artificial intelligent non-linear interpretation between input and output data and allows the network to acquire useful information on the problem. A lot of data sets are used to train the network. ANN is a powerful data-driven, self-adaptive, flexible computational tool with the ability to perform nonlinear statistical modelling and provide a new substitute to logistic regression with a high degree of accuracy.

Neural networks offer a number of advantages, including imposing less formal statistical training, ability to implicitly detect complex nonlinear relationships between dependent and independent variables, ability to detect all possible interactions between predicting variables and the availability of multiple training algorithms. ANN with Back Propagation (BP) learning algorithm is widely used in solving various classical forecasting and estimation problems. The output performance will depend upon the trained parameters and the data set relevant to the training.

Inversion techniques commonly performed on resistivity data are used to deduce the distribution of the true resistivity of the subsurface. Interpreting resistivity data and obtaining an accurate model for the true resistivity of the subsurface is a problem as most solutions are unstable and not unique. Also, due to inhomogeneity and anisotropy, the interpretation may bring about ambiguous and unreliable results. ANN has the ability to be trained, can be used to analyse apparent resistivity data to produce more accurate models of the subsurface resistivity distribution; and thus, corrects for the ambiguity commonly observed in least-squares based inversions.

The aim of this study is to assess the effectiveness of estimating subsurface resistivity model parameters from resistivity measurements using artificial neural network (ANN). The specific objectives of this research are to estimate the electrical resistivity response of multi-layered earth model using ANN responses and compare the results obtained with those of conventional. The multi-layered earth models for different geologic environments were used to generate synthetic apparent resistivity data using the RES1D program for VES. The training of the neural network and testing of the data were carried out with the use of ANN tool box in MATLAB. The results obtained from the ANN were compared with that of the conventional inversion program, Win-Resist.

2. Theoretical Framework

Artificial Neural Networks (ANN) is a network of computer procedures (algorithms) inspired by the concept of the biological network of neurons which is used to approximately determine output functions that rely on a large amount of unknown inputs. It belongs to a group of computational designs inspired by the biological brains (Luger and Stubblefield, 1993; McClelland et al., 1986).

ANN is an artificial intelligence technology brought about by the analysis of the human central nervous systems. The human brain is made up of about 100 billion cells called neurons. These neurons are connected to each other through pathways called dendrites that help to receive electrical signals from other neurons and axons to transmit electrical signals to other neurons. These connections give neurons the ability to accept and send electrical signals which are responsible for the brain's function.

The neural network is a way to make computers create a model of the brain so as to perform some activities just as the brain can., for example, pattern recognition. Neural networks are characterized by a lack of explicit representation of knowledge; there are no symbols or values that directly correspond to classes of interest. Rather, knowledge is implicitly represented in the patterns of interactions between network components (Lugar and Stubblefield, 1993). In ANN, the synthetic nodes also called neurons or processing elements are to reproduce a biological neural network. ANN works like the human brain in the sense that the information is received by the network from the environment via a learning procedure and the strength of the connected neurons (weights) are then used to store the received information and also activated during the training or prediction.

Figure 1 shows three-layer architecture of a neural network design. The computer performs the operation layer by layer and also moving from left to right. For the inputs I_1 , I_2 and I_3 , corresponding outputs O_1 , O_2 and O_3 will be calculated for them. In the first layer, each neuron obtains its respective inputs directly from its input, and their output becomes $f(I_1)$, $f(I_2)$ and $f(I_3)$ as seen in Equation (1). The output O_1 , O_2 and O_3 then become the inputs to the hidden layers and the strength of connections $W_1, W_2, W_3, W_4, \ldots, W_{12}$ are then used to calculate the output of the neurons in the hidden layer by multiplying their inputs O_1 , O_2 and O_3 by their corresponding strength of connection and adding them. The calculated output at the hidden layer then becomes the inputs to calculate the corresponding output at the next hidden layer. The same process for the calculation at the hidden layer is repeated at the output layer until the desired goal is achieved.

Input Layer
$$O_1 = f(I_1)$$

$$O_2 = f(I_2)$$

$$O_3 = f(I_3)$$
Hidden Layer
$$O_4 = f((W_1 * O_1) + (W_5 * O_2) + (W_9 * O_3))$$

$$O_5 = f((W_2 * O_1) + (W_6 * O_2) + (W_{10} * O_3))$$

$$O_6 = f((W_3 * O_1) + (W_7 * O_2) + (W_{11} * O_3))$$

$$O_7 = f((W_4 * O_1) + (W_8 * O_2) + (W_{12} * O_3))$$
Output Layer
$$O_8 = f((W_{13} * O_4) + (W_{16} * O_5) + (W_{19} * O_6) + (W_{22} * O_7))$$

$$O_9 = f((W_{14} * O_4) + (W_{17} * O_5) + (W_{20} * O_6) + (W_{23} * O_7))$$

$$O_{10} = f((W_{15} * O_4) + (W_{18} * O_5) + (W_{21} * O_6) + (W_{24} * O_7))$$
(1)

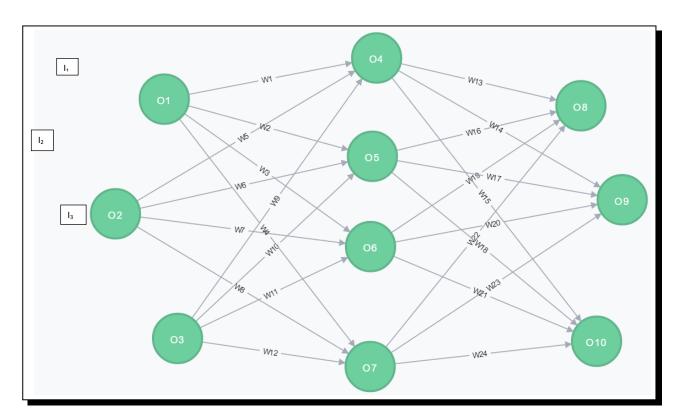


Figure 1. Three layer neural network architecture

3. Methodology

In this project, synthetic data sets were generated that mimic different geologic environments. Different models for 3-8 horizontal isotropic layers over a half-space were used to generate a set of apparent resistivities for 24 and 25 current electrode positions with half-current electrode spacing (AB/2) ranging from 1 m to 750 m and 1 m to 1000 m, respectively. These ranges of current electrode spacing were selected because the effective depth of investigation for these spread is similar to that of the test data (observed field data). The linear filter method (Koefoed, 1979) embedded in the RES1D program was used for the forward modelling to calculate the synthetic apparent resistivity for Schlumberger array on 1D earth models. The design, training and testing of the data were performed with the use of the Neural Network Toolbox on the MATLAB software (Demuth et al., 2007).

3.1 Synthetic Model Generation and Forward Modelling

The forward modelling for the 3-8 layered models were carried out with the use of the RES1D program. Tables 1 and 2 show the different earth layered models generated for 24 and 25 data points respectively. The following workflow was implemented for the synthetic model generation and forward modelling:

- (i) Generation of different models for different environments.
- (ii) Inputting the synthetic models into the RES1D program for forward modelling.

		3 LAYERS			4LAYERS			5 LAYERS			6LAYERS			7 LAYERS			8LAYERS	
		RESISTIVITY	THICHNESS	5	RESISTIVITY	THICHNES	S	RESISTIVITY	THICHNES	S	RESISTIVITY	THICHNES	S	RESISTIVITY	THICHNES	S	RESISTIVITY	THICHNES
	11	300	1.3	3	20	4.1		10	2		70	1.9		140	1.3		90.8	1
	MODEL	50	10	Ä	60	3.6	L 5	50	11		340	7.4		540	3		320.7	
	ĭ	1200		MODEL	22	12.5	MODEL	100	20	핖	405	20.8	1.9	1200	17	11	1101.5	10
				2	1200		ž	20	15	MODEL	360	13.2	ODEL	3800	20	핕	3555.3	
	L 2	1200	5					400		2	120	12.4	ž	400	15	MODEL	366.7	15
2	MODEL	50	12	4	60	3					700			120	14	Σ	110.6	1:
POINIS	ĭ	300		핃	10	10.8		84	1.4					100			90	g
₹ [MODEL	40	19.5	97	730	4		36	1.5					50	
DAIA				_	700		MODEL	400	15	8	112	6.8		140	1.8			
4 J							ž	280	20	MODEL	332	15.5	0	330	4		70	
Ž								3000		ĭ	4044	20.5	\vdash	1800	11.7		720.7	1
											1860	14	ODEL	3555.3	18	12	1201.5	
											799		Σ	366.7	13		1575.3	10
														110.6	11.4	MOD	3574.3	2
														54		Σ	370	1
																	90	
																	66.3	

Table 1. The different models generated for 24 data points

		3 LAYERS			4LAYERS			5 LAYERS			6LAYERS			7 LAYERS			8LAYERS	
		RESISTIVITY	THICHNES	S	RESISTIVITY	THICHNES	S	RESISTIVITY	THICHNES	S	RESISTIVITY	THICHNES	S	RESISTIVITY	THICHNES	S	RESISTIVITY	THICHNES
	L 1	10	5		60	4		62.9	1.3		37	1.3		55	1.1		220.6	1
	MODEL	390	10	필	100	11.5	L 5	1300	2.5		140	3.7		662	4.6		175.9	3
	ž	10		MODEL	40	20.3	MODEL	3400		17	11.5	L9	1020	15	11	1375		
				_	9000		Σ	380.5		ğ	340	15.7	5.7 OW	2900	11	DEL	1790	15
	1.2	530	4.8					167		_	130	22.6	ĭ	360	14	MOM	3990.8	
2	MODEL	42	8		150	1					3065			120	13	Σ	360	
	ž	3		필	30	4	9	222	1.3					60			220.5	
				MODEL	160	5	9 7	170.4	9.9		84.5	1.4					80	
<u> </u>				_	1000		MODEL	1084	34 12.4 15 20.6	1.8	279.1	4.7		260	1.1			
5							ĭ	1645		MODEL 8	731.3	16.6	0	500	10		360	1
1								4265		ž	3084	18.3	\leftarrow	90	17.3		1790	1
											484	12.8	MODEL	1200	14	12	1375	9
											170.9		8	100	15		80	
														155	10.9	MODEL	3990.8	
														3080		2	220.6	
																	220.5	
П																	175.9	

Table 2. The different models generated for 25 data points

After the generation of the different models, the model parameters were inputted into the RES1D program to calculate for their different apparent resistivities. Table 3 shows the generated apparent resistivities from the earth layered models.

AB/2	MODEL 1	MODEL 2	MODEL3	MODEL 4	MODEL 5	MODEL 6	MODEL 7	MODEL 8	MODEL 9	MODEL 10	MODEL 11	MODEL 12
1	281.9074	1198.047	20.0326	59.6496	10.2122	89.8217	71.6938	37.2815	148.6465	142.4666	96.084	82.340
1.3	284.6472	1201.218	19.9899	60.0313	10.1287	90.6532	71.1589	37.2634	150.1526	141.6176	96.9593	88.316
1.8	236.3762	1191.295	20.1479	58.4751	10.913	106.9314	77.2089	41.1125	172.989	150.3737	110.9275	112.565
2.4	183.152	1174.058	20.4259	55.922	12.1459	130.1422	86.5774	46.5748	204.4208	163.7294	130.0636	144.364
3.2	135.0785	1144.08	20.9007	51.9693	13.8731	158.5149	99.4124	53.2701	241.8338	181.9347	152.7472	181.291
4.2	95.9512	1086.294	21.7638	45.7339	16.3103	193.1402	117.0353	61.4766	287.3561	207.4464	180.3586	225.424
4.2	72.3133	983.4559	23.1983	37.2975	19.4212	232.9653	138.9732	70.9978	341.8334	241.3523	213.7879	278.6859
5.5	61.6324	793.2405	25.5834	26.7863	23.6388	281.4209	167.8981	83.4475	415.9658	293.002	261.093	351.999
7.5	62.4501	562.1244	28.2221	19.1738	28.0371	325.4566	197.0721	97.2904	497.9474	357.4312	317.3253	433.45
10	69.2182	352.9813	30.5521	15.5267	32.3947	360.688	224.5983	113.1052	583.9692	433.5599	381.933	519.52
13	85.857	172.069	33.2405	14.947	38.2749	393.1063	258.5656	139.3008	704.7746	552.548	482.7328	642.125
13	109.0758	110.1274	36.3009	17.0807	43.9239	410.1079	286.8188	170.9266	823.5078	678.2778	592.3186	764.0883
18	140.6697	103.3922	41.6112	20.95	49.8511	420.2147	311.381	213.0672	951.0724	816.3682	719.405	895.4045
24	178.5687	118.5338	50.3339	26.1645	55.3723	432.5603	329.3491	265.1029	1072.505	945.0693	848.119	1020.947
32	224.6862	140.45	63.3688	33.1481	60.4935	461.5103	341.2754	330.2325	1173.382	1047.094	966.6311	1131.482
42	289.3534	166.4711	84.3511	43.9976	66.539	532.1308	350.4432	421.7843	1220.38	1090.29	1054.722	1204.86
55	361.0891	191.4717	110.0134	57.3753	74.1069	643.7273	361.7733	519.2083	1150.738	1019.608	1047.415	1175.00
55	436.1804	213.3471	139.5482	72.8986	84.8775	781.726	382.4956	612.8796	977.6263	852.8359	941.4194	1038.39
75	540.414	237.7696	185.8738	97.4243	104.9457	992.866	425.295	723.8035	666.9729	561.0386	691.5442	745.902
100	639.6306	255.8833	237.2056	124.8154	128.7191	1209.105	473.9864	804.075	396.0087	310.4438	429.6196	454.103
130	740.9658	270.1633	299.3944	158.3033	156.8213	1446.896	524.1378	856.9236	217.0524	149.8797	219.1758	232.897
130	833.9142	280.2102	368.6165	195.9778	186.2987	1683.434	567.5466	878.1603	138.3216	82.143	107.1135	121.31
180	918.8185	287.2793	446.9565	239.1429	217.2926	1919.24	604.2441	876.1055	110.9685	60.7254	65.9164	81.373
240	1002.778	292.6168	547.2454	295.2764	253.4572	2177.398	637.4046	858.0604	104.1838	56.2407	53.1574	69.921

Table 3. Apparent resistivities generated from the different models

3.2 Design, Training and Testing of Network

The NN toolbox software delivers a flexible network object type that permits different architectures of networks to be generated and then used with different functions to initialize, train and simulate. This flexibility is obtained because the generated networks have an object-oriented representation. The representation permits the design of different architectures and also allocates various algorithms to the architectures. In this work, a multilayer feed forward network was implemented from the neural network tool box. This can be used for function fitting, pattern recognition problems and prediction problems. The following work flow was implemented using the neural network tool box for training network:

- (i) Arrangement of apparent resistivity and layered model data.
- (ii) Create and configure the network.
- (iii) Train the network.
- (iv) Validate and test the network.
- (v) Use the network on the field data.

3.3 Data Arrangement

The effectiveness of any network depends mainly on the arrangement of the data used in the training and testing of the network. The effectiveness of any network depends mainly on the arrangement of the data used in the training and testing of the network. The data used consisted of the generated synthetic earth layered models, their corresponding apparent resistivities and the apparent resistivities from the field data. The generated synthetic earth layered models and their corresponding apparent resistivities were divided into two sets for the training, i.e. twenty four (24) data points and twenty five (25) data points. Twenty four data points consists of twenty four datasets of four (4) of each earth layered models in .MOD format and their corresponding apparent resistivities in .DAT format while the twenty five data points consists of twenty four datasets of four (4) sets of each layered earth models in .MOD and their corresponding apparent resistivities in .DAT format. The network was also trained with some sets of the apparent resistivities from the field data. The testing data consists of sets of twenty four and twenty five data points of the generated apparent resistivities and also the apparent resistivities from the field.

Tables ?? and ?? show the arrangement of the input and target data sets into the MATLAB program for training the network respectively. The network's input and target matrices were a $24 \times N$ and $M \times N$ matrix respectively for 24 data points and $25 \times N$ and $M \times N$ matrix for 25 data points, where N is the number of soundings, M is the earth layered models consisting of the true resistivity and thicknesses. Most times, the data has to be transposed to be inputted into the neural network architecture for training. So therefore, the input and target matrices

are a $N \times 24$ and $N \times 25$ for 24 and 25 data points respectively, where N here is the number of inputs and 24 and 25 are the number of samples.

3.4 Neural Network Architecture Design

Designing a neural network on MATLAB can be done by using the conventional neural network toolbox or coding the architecture. Figure ?? shows the conventional way of designing a network and this is prompted using the 'nntool' command. This involves giving the network a name, setting the input data, the target data, the training function, adaption learning function, the adaptation learning function, performance function, etc.

The following are the requirements to design a neural network:

- (i) Configuration of the inputs, layers and outputs.
- (ii) Normalization of the input data.
- (iii) Setting the transfer function for each layers.
- (iv) Setting the Initialization, Performance, Training and Divide Functions.
- (v) Setting the training parameters.
- (vi) Viewing the network.

4. Application of Neural Network to Field Data

ANN was applied to estimate the earth layered models for a field in Ota, Ogun State. After the network is trained, tested and validated, the network will then be used to calculate its response to any input. The field apparent resistivity data was used as an input to estimate its earth layered model which consists of the true resistivities and the thicknesses. The "sim' function is used to simulate the neural network to estimate the earth model parameters. 'sim(project,TEST_FIELD1_8LAY)' is used to estimate the model parameters for the input field apparent resistivity contained in the matrix 'TEST_FIELD1_8LAY' and for the neural network 'project'. The 'mse' function was used to calculate the mean square error between targets and output. 'mse(project,FIELD_TARGET,project_output)' was used to calculate the mean square error between the target data contained in the matrix 'FIELD_TARGET' and the network's output 'project_output'.

5. Results and Discussions

After series of iterations, the network showed its effectiveness in estimating the earth layered models. A good fit between the target and output data was achieved on a trial and error basis. After the arrangement and normalization of the input and target data, the number of inputs used for the architecture was 24 and 25 for twenty four (24) and twenty five (25) data points respectively. The transfer function for the hidden layers used was the log sigmodial transfer

function. The target data was arranged at different time steps containing 'NaN' values for areas with no data. The 'divideblock' function was used to divide the input and target matrices for training, testing and validation, where 50% was used for training, 25% for testing and 25% for validation. This division was done because of the arrangement of the data. In most cases, it is advisable to use 70% for training, 15% for testing and the other 15% for validation. So of the 24 sample data sets used, 12 were used for training, 6 for testing and the remaining 6 used for validation. After series of iterations, the network adapted to the data, was tested with the generated synthetic models and was used to estimate the earth layered models for the field data. After the first few iterations, the regression values obtained were not good enough. The number of neurons was increased from 20 to 30 and so on and this improved the results of the iteration. After a lot of iterations, the data adapted almost perfectly to the network but after the number of hidden neurons was increased, the network began to adapt faster to the network and a better fit between the target and output data was obtained.

Figures 2a and 2b are the neural network architectures used for the input and target matrices for 25 and 25 data points respectively. Figure 3a is one the best fits between the target and output data, Figure 3b is the performance plot and Figure 3c is the training state of the network. Tables 4 to 9 show the different synthetic earth layered models and the estimated earth layered models from WINRESIST and ANN.

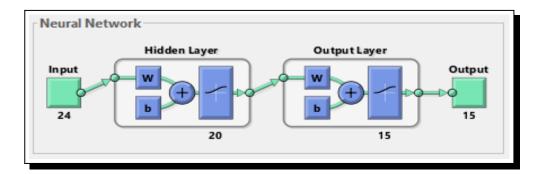


Figure 2a. Neural network architecture for 24 data points

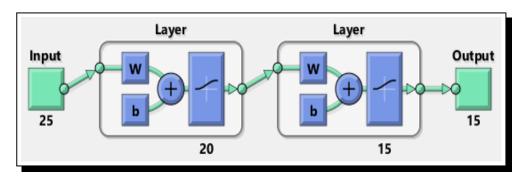


Figure 2b. Neural network architecture for 25 data points

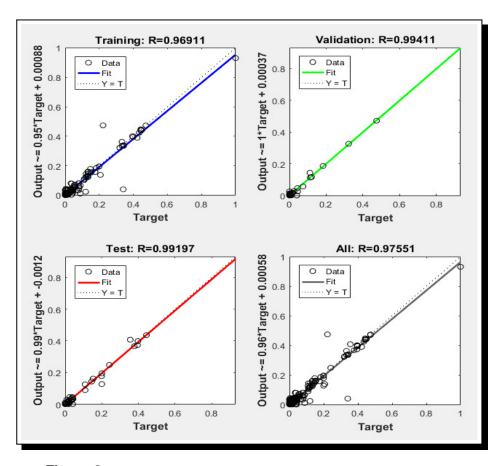


Figure 3a. One of the best regressions fit after series of iterations

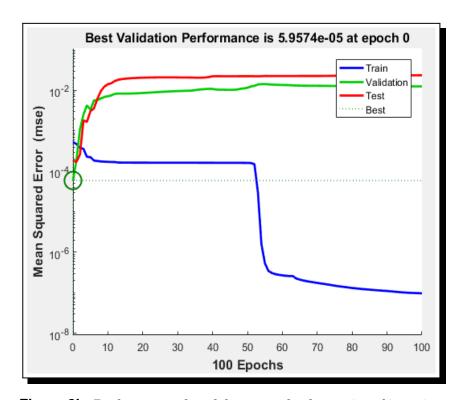


Figure 3b. Performance plot of the network after series of iterations

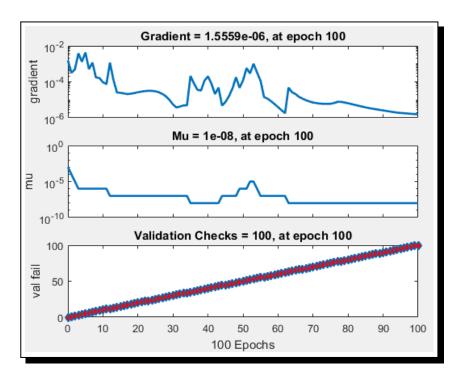


Figure 3c. Training state of the network after series of iterations

0						3 LAYER MO	DELS					
0		RES :	1D MODELS		WINREST MOD	ELS	ANN MODELS					
0	EL 1	RES	THICKNESS	RES	THICKNESS	RMS ERROR	RES	THICKNESS	MSE ERROR	RMS ERROR		
	MOD	300.0	1.3	311.3	1.3	0.5				0.0		
	Σ	50.0	6.0	51.0	5.8	0.0				0.0		
		28.0	0.0	28.0	0.0	0.0	LICED	FOR TRAINING		0.0		
S	۲5	8.0	5.0	8.0	5.1	0.5	USED	FOR TRAINING		0.0		
POINTS	MODEL	20.0	8.0	20.4	7.8	0.0				0.0		
<u>o</u>	Ĭ	5.0	0.0	5.0	0.0	0.0				0.0		
DATA	L 3	1900.0	4.9	1902.9	4.9	2.1	1899.615297	5.607115	0.0	0.0		
4 D/	MODEL	50.0	9.0	48.3	9.3	0.0	50.546735	10.044550	0.0	0.0		
24	ĭ	29.5	0.0	29.5	0.0	0.0	29.475623	NaN	0.0	0.0		
	L 4	224.5	5.0	224.9	4.8	0.5	224.499578	5.956748	0.0	0.0		
	ODEL	99.0	12.0	102.7	11.4	0.0	99.028205	12.039630	0.0	0.0		
	ž	55.5	0.0	55.6	0.0	0.0	55.522386	NaN	0.0	0.0		

Table 4. Three layered earth models from RES 1D and estimated models from WINRESIST and ANN

					4 LAYER MODE	LS					
	RES 1	D MODELS	18	WINREST MOD	ELS		ANN MO	DELS			
	RES	THICKNESS	RES	THICKNESS	RMS ERROR	RES	THICKNESS	MSE ERROR			
0	200.0	4.1	200.2	4.2	0.1						
MODEL	600.0	3.6	604.1	3.5							
JQ.	400.0	12.5	406.0	12.6							
2	1000.0	0.0	998.8			USED FOR TRAINING					
10	420.0	5.0	419.5	5.4	0.1	OSED FOR TRAINING					
ᇤ	380.0	11.3	377.2	11.0							
MODEL	285.0	18.0	289.8	18.5							
>	1002.0	0.0	1005.6								
Ξ	90.0	3.6	89.6	3.6	0.1	90.206397	3.607892				
ᇤ	1508.0	12.0	1516.1	12.0		1510.025691	12.124567				
MODEL	1000.0	3.6	1000.2	3.4		1002.679834	3.629856				
>	300.0	0.0	300.1			303.458933	NaN				
12	60.0	3.0	59.6	3.0	0.1	61.985678	3.005789				
	500.0	10.8	506.4	10.6		499.236791	10.798765				
MODEL	400.0	3.0	402.7	3.0		399.219809	3.287865				
2	60.0	0.0	60.1			61.789076	NaN				

Table 5. Four layered earth models from RES 1D and estimated models from WINRESIST and ANN

	RES 1	D MODELS		WINREST MOD	ELS	ANN MODELS				
	RES	THICKNESS	RES	THICKNESS	RMS ERROR	RES	THICKNESS	MSE ERROF		
. [10.0	2.0	9.9	2.0	0.2					
17	50.0	11.0	51.2	10.5		USED FOR TRAINING				
B	100.0	20.0	90.0	24.5						
MODEL	200.0	2.0	237.3	1.9						
	50.0	0.0	49.7							
	500.0	1.0	498.6	1.0	0.4					
138	1011.3	2.5	1040.3	2.4						
MODEL 18	600.0	13.5	594.1	12.7						
8	400.0	1.0	405.9	1.4						
	1900.0	0.0	1898.4							
	90.0	1.3	86.9	1.2	0.3	92.989800	1.300456			
13	320.0	3.0	299.6	3.0		322.467810	3.892561			
MODEL	1000.0	12.4	1005.9	12.4		1002.569810	12.450981			
8	320.0	1.3	319.5	1.3		321.903801	1.325698			
	1008.0	0.0	1007.4			1010.589352	NaN			
	84.0	1.4	81.4	1.4	0.4	82.567892	1.402561			
MODEL 20	730.0	4.0	733.3	4.0		729.985701	5.290851			
H	400.0	15.0	398.4	15.0		401.751502	15.085612			
9	908.0	1.4	909.9	1.2		910.908376 1.435619				
	2090.0	0.0	2089.6			2100.108273	NaN			

Table 6. Five layered earth models from RES 1D and estimated models from WINRESIST and ANN

	RES 1	D MODELS	1	WINREST MOD	DELS		ANN MO	DELS			
	RES	THICKNESS	RES	THICKNESS	RMS ERROR	RES	THICKNESS	MSE ERROF			
	70.0	1.9	68.8	1.9	0.2	USED FOR TRAINING					
ю	1000.0	7.4	1192.5	6.2							
	405.0	20.8	376.8	20.6							
MODEL	360.0	13.2	373.6	12.1							
2	1200.0	12.4	1229.6	12.6							
	700.0	0.0	696.8								
	145.0	1.0	142.7	1.0	0.2	USED FOR TRAINING					
18	900.0	2.5	959.7	2.4							
	298.5	8.3	286.7	8.2							
MODEL	447.0	2.5	456.9	2.5							
Σ	50.0	2.5	51.8	2.5							
	150.0	0.0	149.9								
	55.0	1.4	53.5	1.4	0.3	52.097254	1.872538				
5	306.0	7.9	304.3	7.8		302.678152	8.746291				
	1080.0	11.4	1074.4	11.5		1082.087361	11.481654				
MODEL	596.0	25.5	594.6	25.3		599.092735	26.019275				
2	339.0	15.7	341.1	16.0		340.916274	15.610293				
	210.0	0.0	209.9			211.082675	NaN				
	36.0	1.5	35.3	1.5	0.1	35.890182	34.093856				
88	112.0	6.8	112.8	6.9		113.028372	6.726154				
	3078.0	15.5	3064.3	15.9		3080.937186	16.019854				
MODEL	4044.0	20.5	3998.2	20.8		4045.728945	20.456172				
2	1860.0	14.0	1852.7	14.0		1865.836178	14.293816				
	799.0	0.0	796.9			801.289375	NaN				

Table 7. Six layered earth models from RES 1D and estimated models from WINRESIST and ANN

	RES.	ID MODELS	T \	/INREST MOD	ELS		ANN MODELS				
	RES	THICKNESS	RES	THICKNESS	RMSERROR	RES	THICKNESS MSE ERRO				
	140.0	1.3	136.5	1.3	0.3						
-	540.0	3.0	552.2	3.1							
8	1200.0	17.0	1202.5	17.0							
=	540.0	20.0	546.5	20.7		USED FOR TRAINING					
MODEL	2000.0	15.0	1976.8	14.9							
-	120.0	14.0	119.9	14.0							
	100.0	0.0	100.2								
	160.0	1.7	157.3	1.7	0.3						
8	550.0	5.0	549.3	5.0							
6	1500.0	11.7	1494.5	16.0							
MODEL	2006.7	19.3	2009.2	19.3							
2	1650.9	15.5	1649.9	15.5							
_	120.0	11.4	121.0	15.0							
	80.0	0.0	80.1								
	24.0	1.0	23.0	1.0	0.4	22.781625	1.103870				
100	980.0	3.0	1025.0	3.0		989.982736	3.189172				
8	1750.0	8.0	1789.7	8.0		1740.027351	8.261767				
=	1800.0	11.0	1810.4	10.9		1827.082647	11.937648				
MODEL	3200.0	18.0	3179.0	17.9		3202.829101	18.937264				
-	350.0	12.0	349.7	12.0		351.298364	12.391826				
	200.0	0.0	201.0			201.572810	NaN				
	140.0	1.8	154.8	1.6	0.5	139.999453	2.587201				
8	990.0	4.0	532.2	5.1		989.995156	3.897030				
2	2807.0	11.7	1517.6	16.8		2806.990882	11.690239				
8	3555.3	18.0	3799.2	16.9		3554.221287	18.011702				
MODEL	2900.0	13.0	373.6	15.7		2900.012984	12.995829				
_	110.6	11.4	120.5	14.0		110.601232	11.380670				
	54.0	0.0	81.7			54.002243	NaN				

Table 8. Seven layered earth models from RES 1D and estimated models from WINRESIST and ANN

- 1	RES 1	D MODELS	\ \	INREST MOD	ELS		ANN MODELS				
	RES	THICKNESS	RES	THICKNESS	RMSERROR	RES	THICKNESS MSE				
	90.8	1.3	88.7	1.3	0.3						
	320.7	4.0	324.4	4.0							
4	900.0	10.7	899.0	10.8							
MODEL	1362.0	24.0	1355.0	24.3							
8	366.7	15.7	366.5	15.1							
ž	110.6	11.4	110.1	11.0							
	90.0	9.5	90.1	9.0							
	50.0	0.0	50.0			USED FORTBAINING					
	187.9	1.4	186.3	1.4	0.4	USED FOR I RAINING					
	280.8	3.9	282.5	3.9							
4	1208.0	7.5	1223.1	7.9							
MODEL	2170.3	14.8	2217.0	14.7							
8	3574.3	20.0	3556.3	19.8							
×	370.0	19.0	369.4	19.0							
	980.0	14.0	975.9	13.9							
	80.9	0.0	81.4								
	187.9	1.0	183.4	1.0	0.2	187.900275	1.000000				
	900.0	2.5	947.2	2.9		899.993120	2.500000				
₩.	1344.0	6.7	1411.9	6.9		1343.989145	6.700000				
ᇳ	2170.3	14.8	2178.5	14.6		2169.887950	14.800000				
MODEL	1588.0	20.7	1564.0	20.4		1588.010652	20.700000				
≊	50.0	15.6	49.9	16.0		50.001959	15.600000				
	120.9	14.1	120.1	13.9		120.903070	14.100000				
	50.1	0.0	50.0			50.087080	NaN				
	70.0	1.0	67.6	1.0	0.1	68.990608	1.639724				
_	720.7	2.5	771.7	2.9		700.355661	2.057161				
4	1201.5	6.7	1261.4	6.9		1416.479116	6.427065				
MODEL	1575.3	16.8	1550.6	16.8		1575.082019	18.961700				
8	720.7	20.7	710.3	20.4		706.295714	18.596180				
ž	370.0	14.2	367.2	13.8		367.544429	12.447457				
	90.0	9.5	89.5	10.0		76.481085	7.072557				
	66.3	0.0	66.2			60.097707	NeN				

Table 9. Eight layered earth models from RES 1D and estimated models from WINRESIST and ANN

5.1 Results of the Field Data

After successfully training the network and it has the ability to correctly estimate a model that was not used for training, the ANN will definitely be able to estimate the earth layered models for the apparent resistivities got from the field. Table 10 shows the responses of the trained ANN for the inputted apparent field resistivity data compared to that obtained from WINRESIST. Figures 10 and 11 are the sounding curves obtained after interpreting the field data using WINRESIST program while Figures 12 and 13 are their corresponding sounding curves obtained for the ANN responses.

6. Conclusion

The results obtained from ANN responses for the synthetic apparent resistivity data sets were compared with the corresponding earth layered models and also with that of WINRESIST. The compared results were almost the same as ANN was effective in estimating the models back in some cases. Figure 4 to Figure 9 shows the deviations in the compared results.

The arrangement of the input and target data sets used for the training of the network was a combination of different multiple earth layered models. This arrangement helped to mimic different environments and this makes the network very versatile in its learning and in the estimation of the model parameters. Figure 14 shows the contributed architecture of the neural network implemented in this research project. The architecture consists of 24 inputs labelled $R_a 1, R_a 2, ..., R_a 24$ which are the apparent resistivities, the hidden processing elements (neurons) which are labelled $PE1, PE2, ..., PE_n$ and the targets, the corresponding multilayered earth models which are labelled Rt1...Rt3 and To for a three layered earth model and $Rt1_1...Rt8_1$ and To_1 for an eight layered earth model.

RESISTIVITY		W	INRESIST		AN	N
				RMS	RESISTIVITY	THICKNESS
ESA 225.0 2.7 342.628196 3.581927 2408.2 4.1 2669.491624 2.907498 9389.9 23.4 8899.671526 19.983625 379.5 12.9 276.657182 13.826152 119.4 13.0 373.271836 15.361726 48.5 77.962186 NaN 54.7 1.9 55.816273 2.192837 678.6 2.8 676.271625 3.137825 5117.9 21.7 5122.261738 21.819273 364.6 12.2 367.261728 12.471829 120.9 12.0 130.291829 12.192372 43.7 42.182937 NaN 84.5 1.4 2.8 51.517264 0.841725 279.1 4.7 344.427183 4.917280 3084.0 30.3 2857.718274 31.618264 4840.0 12.8 482.417264 12.318274 170.9 200.611716 NaN 3354.3 27.9 706.710						
SAN 2408.2 4.1 2669.491624 2.907498 9389.9 23.4 8899.671526 19.983625 11.99.83625 13.826152 11.94.4 13.0 373.271836 15.361728 18.26152 11.94.4 13.0 373.271836 15.361728 NaN VARIANDE STATE						
Section						
STATE 12.9 276.657182 13.826152 119.4 13.0 373.271836 15.361726 119.4 13.0 373.271836 15.361726 119.4 13.0 373.271836 15.361726 119.4 13.0 373.271836 15.361726 NaN	\ES					
119.4 13.0 373.271836 15.361728 48.5 77.962186 NaN 203.3 1.0 4.5 213.561926 1.116253 54.7 1.9 55.816273 2.192837 678.6 2.8 676.271625 3.137825 5117.9 21.7 5122.261738 21.819273 364.6 12.2 367.261728 12.471825 120.9 12.0 130.291829 12.192377 43.7 42.182937 NaN 84.5 1.4 2.8 51.517264 0.841725 279.1 4.7 344.427183 4.917286 731.3 16.6 662.918274 31.618264 12.8 482.417264 12.318274 31.618264 12.8 482.417264 12.318274 31.618264 12.8 482.417264 12.318274 31.618264 12.8 338.0 1.9 379.810298 1.491833 38.0 1.9 379.810298 1.491833 120.3 13.0 396.210190 13.182725 70.4 122.129200 NaN 881.9 25.8 846.019284 26.192815 120.3 13.0 396.210190 13.182725 70.4 122.129200 NaN 882.9 4.0 295.102930 4.221000 NaN 882.9 4.0 295.102930 4.21000 NaN 894.5 1.8 3.6 93.100294 1.723300 NaN 894.5 1.8 3.6 93.100294 1.723300 NaN 894.5 1.8 3.6 93.100294 1.723300 NaN 895.7 1.5 145.311029 1.600000 1.000000 1.00000 1.00000 1.000000 1.00000 1.000000 1.00000 1.0000000 1.000000 1.000000 1.000000 1.0000000 1.0000000 1.0000000 1.00000000						
A8.5						
Colorador Colo			15.0			
S4.7 1.9 55.816273 2.192837		48.5			77.902180	IVAIV
Fig. Continue C		203.3	1.0	4.5	213.561926	1.116253
CS 2655.3 6.7 2654.172819 6.192837 5117.9 21.7 5122.261738 21.819273 364.6 12.2 367.261728 12.471829 12.09 12.0 130.291829 12.192372 43.7 42.182937 NaN 42.182937 NaN		54.7	1.9		55.816273	2.192837
Sintage		678.6	2.8		676.271625	3.137829
Sintage	2.7	2655.3	6.7		2654.172819	6.192837
364.6 12.2 367.261728 12.471825 120.9 12.0 130.291829 12.192372 43.7 42.182937 NaN	\ K					21.819273
120.9 12.0 130.291829 12.192372 143.7						
143.7 2.8 51.517264 0.841725						
84.5 1.4 2.8 51.517264 0.841725 279.1 4.7 344.427183 4.917280 731.3 16.6 662.918274 22.618274 3084.0 30.3 2857.718274 31.618264 170.9 200.611716 NaN 63.0 1.0 2.5 56.027384 1.391728 338.0 1.9 379.810298 1.491835 403.3 14.1 3560.92019 14.192817 120.3 13.0 396.210190 13.182725 70.4 122.129200 NaN 828.9 4.0 295.102930 4.221000 1840.9 11.4 2073.812018 10.210002 1840.9 11.4 2073.812018 10.210002 1840.9 11.4 2073.812018 10.210002 1840.9 11.4 2073.812018 10.210002 1840.9 11.4 3739.201823 20.311910 363.7 14.7 362.710297 14.310234 118.6 13.9 117.510291 13.801820 52.0 43.519210 NaN 558.2 5.5 609.534173 5.813011 1488.9 16.4 1473.600385 15.401025 121.5 14.1 121.410294 14.129104 57.2 51.901829 NaN 582.1 121.5 14.1 121.410294 14.129104 57.2 51.901829 NaN 582.1 125.5 12 2.7 51.619274 1.100000 2.893040 2.893040 2.893040 2.804 15.3 369.251395 15.209838 2.905 25.2 3474.300000 24.804293 369.4 15.3 369.251395 15.209838 140.00182 371326 55.638394 2.905 25.2 3474.300000 24.804293 369.4 15.3 369.251395 15.209838 140.00182 371326 55.638394 2.905 25.2 3474.300000 24.804293 369.4 15.3 369.251395 15.209838						
XY 1 4.7 344.427183 4.917280 XY 31.3 16.6 662.918274 22.618274 3084.0 30.3 2857.718274 31.618264 484.0 12.8 482.417264 12.318274 170.9 200.611716 NaN 63.0 1.0 2.5 56.027384 1.391728 338.0 1.9 379.810298 1.491835 831.9 25.8 846.019284 26.192819 3354.3 27.9 706.710294 28.192837 403.3 14.1 3560.920192 14.192817 120.3 13.0 396.210190 13.182729 70.4 122.129200 NaN 68.701928 828.9 4.0 295.102930 4.221000 828.9 4.0 295.102930 4.221000 828.9 4.0 295.102930 4.221000 828.9 4.0 295.102930 4.221000 829.9 4.0 295.102930 4.221000 829.0 1840.9 11.4 2073.812018 10.210000 829.0			1.4	2.8		
SS 731.3 16.6 662.918274 22.618274 30.84.0 30.3 2857.718274 31.618264 484.0 12.8 482.417264 12.318274 11.618264 170.9 200.611716 NaN NaN RS 63.0 1.0 2.5 56.027384 1.391728 1.491835 338.0 1.9 379.810298 1.491835 1.491835 1.491835 338.0 1.9 379.810298 1.491835 1.49183		279.1				
3084.0 30.3 2857.718274 31.618264 484.0 12.8 482.417264 12.318274 170.9 200.611716 NaN						
484.0 12.8 482.417264 12.318274 170.9 200.611716 NaN 63.0 1.0 2.5 56.027384 1.391728 338.0 1.9 379.810298 1.491835 1.491835 831.9 25.8 846.019284 26.192815 26.192815 3354.3 27.9 706.710294 28.192837 403.3 14.1 3560.920192 14.192817 120.3 13.0 396.210190 13.182725 70.4 122.129200 NaN 68.701928 94.5 1.8 3.6 93.100294 1.723300 828.9 4.0 295.102930 4.221000 1.723300	\ ES					
170.9 200.611716 NaN						
ET 63.0 1.0 2.5 56.027384 1.391728 338.0 1.9 379.810298 1.491835 831.9 25.8 846.019284 26.192819 3354.3 27.9 706.710294 28.192837 403.3 14.1 3560.920192 14.192817 120.3 13.0 396.210190 13.182729 70.4 122.129200 NaN 68.701928 82.89 4.0 295.102930 4.221000 828.9 4.0 295.102930 4.221000 828.9 4.0 295.102930 4.221000 3509.9 21.4 3739.201823 20.311910 363.7 14.7 362.710297 14.310234 118.6 13.9 117.510291 13.801820 52.0 43.519210 NaN 159.8 1.7 1.5 145.311029 1.600000 558.2 5.5 609.534173 5.813011 148.9 16.4 1473.600385 15.401029 3571.4 28.1 3751.111204 27.703873			12.0			
838.0 1.9 379.810298 1.491838 831.9 25.8 846.019284 26.192818 3354.3 27.9 706.710294 28.192837 403.3 14.1 3560.920192 14.192817 120.3 13.0 396.210190 13.182728 70.4 122.129200 NaN 68.701928 94.5 1.8 3.6 93.100294 1.723300 828.9 4.0 295.102930 4.221000 828.9 4.0 295.102930 4.221000 3509.9 21.4 3739.201823 20.311910 363.7 14.7 362.710297 14.310234 118.6 13.9 117.510291 13.801820 52.0 43.519210 NaN 159.8 1.7 1.5 145.311029 1.600000 558.2 5.5 609.534173 5.813013 1488.9 16.4 1473.600385 15.401029 373.2 15.5 372.710294 15.519203 121.5 14.1 121.410294 14.129104 57.2 <			1.0	2.5		
831.9 25.8 846.019284 26.192819 3354.3 27.9 706.710294 28.192837 403.3 14.1 3560.920192 14.192817 120.3 13.0 396.210190 13.182729 70.4 122.129200 NaN				2.3		
Signature Sign						
120.3 13.0 396.210190 13.182729 70.4 122.129200 NaN 828.9 4.0 295.102930 4.221000 828.9 11.4 2073.812018 10.210009 3509.9 21.4 3739.201823 20.311910 363.7 14.7 362.710297 14.310234 118.6 13.9 117.510291 13.801820 52.0 43.519210 NaN 159.8 1.7 1.5 145.311029 1.600000 558.2 5.5 609.534173 5.813011 1488.9 16.4 1473.600385 15.401029 3571.4 28.1 3751.111204 27.703873 373.2 15.5 372.710294 15.519203 121.5 14.1 121.410294 14.129104 57.2 51.901829 NaN 53.5 1.2 2.7 51.619274 1.100000 166.0 2.5 160.700000 2.893040 966.3 6.0 1082.371826 5.638394 1953.1 14.1 2093.281729 13.903895 3490.5 25.2 3474.300000 24.804293 369.4 15.3 369.251395 15.209838 120.7 14.0 120.428385 14.020193	3.13					
120.3 13.0 396.210190 13.182729 70.4 122.129200 NaN 828.9 4.0 295.102930 4.221000 828.9 11.4 2073.812018 10.210009 3509.9 21.4 3739.201823 20.311910 363.7 14.7 362.710297 14.310234 118.6 13.9 117.510291 13.801820 52.0 43.519210 NaN 159.8 1.7 1.5 145.311029 1.600000 558.2 5.5 609.534173 5.813011 1488.9 16.4 1473.600385 15.401029 3571.4 28.1 3751.111204 27.703873 373.2 15.5 372.710294 15.519203 121.5 14.1 121.410294 14.129104 57.2 51.901829 NaN 53.5 1.2 2.7 51.619274 1.100000 166.0 2.5 160.700000 2.893040 966.3 6.0 1082.371826 5.638394 1953.1 14.1 2093.281729 13.903895 3490.5 25.2 3474.300000 24.804293 369.4 15.3 369.251395 15.209838 120.7 14.0 120.428385 14.020193	ΛĘ					
TO.4 122.129200 NaN						
82 94.5 1.8 3.6 93.100294 1.723300 828.9 4.0 295.102930 4.221000 1840.9 11.4 2073.812018 10.210009 3509.9 21.4 3739.201823 20.311910 363.7 14.7 362.710297 14.310234 118.6 13.9 117.510291 13.801820 52.0 43.519210 NaN 159.8 1.7 1.5 145.311029 1.600000 558.2 5.5 609.534173 5.813011 558.2 5.5 609.534173 5.813011 1488.9 16.4 1473.600385 15.401029 3571.4 28.1 3751.111204 27.703873 373.2 15.5 372.710294 15.519203 121.5 14.1 121.410294 14.129104 57.2 51.901829 NaN 53.5 1.2 2.7 51.619274 1.100000 166.0 2.5 160.700000 2.893040 966.3 6.0 1082.371826 5.638394 1953.1 <td></td> <td></td> <td>15.0</td> <td></td> <td></td> <td></td>			15.0			
88 94.5 1.8 3.6 93.100294 1.723300 828.9 4.0 295.102930 4.221000 1840.9 11.4 2073.812018 10.210009 3509.9 21.4 3739.201823 20.311910 363.7 14.7 362.710297 14.310234 118.6 13.9 117.510291 13.801820 52.0 43.519210 NaN 159.8 1.7 1.5 145.311029 1.600000 558.2 5.5 609.534173 5.813011 1488.9 16.4 1473.600385 15.401029 3571.4 28.1 3751.111204 27.703873 373.2 15.5 372.710294 15.519203 121.5 14.1 121.410294 14.129104 57.2 51.901829 NaN 53.5 1.2 2.7 51.619274 1.100000 166.0 2.5 160.700000 2.893040 966.3 6.0 1082.371826 5.638394 1953.1 14.1 2093.281729 13.903895 369.4		70.4				INAIN
828.9 4.0 295.102930 4.221000 1840.9 11.4 2073.812018 10.210005 3509.9 21.4 3739.201823 20.311910 363.7 14.7 362.710297 14.310234 118.6 13.9 117.510291 13.801820 52.0 43.519210 NaN 159.8 1.7 1.5 145.311029 1.600000 558.2 5.5 609.534173 5.813011 558.2 5.5 609.534173 5.813011 373.2 15.5 372.710294 15.519203 121.5 14.1 121.410294 14.129104 57.2 51.901829 NaN 53.5 1.2 2.7 51.619274 1.100000 166.0 2.5 160.700000 2.893040 966.3 6.0 1082.371826 5.638394 966.3 6.0 1082.371826 5.638394 1953.1 14.1 2093.281729 13.903895 3490.5 25.2 3474.300000 24.804293 369.4 15.3 369.251395 15.209838 120.7 14.0 120.428385 14.020193	-	04.5	1.0	2.0		1 722200
1840.9				5.0		
3509.9 21.4 3739.201823 20.311910 363.7 14.7 362.710297 14.310234 118.6 13.9 117.510291 13.801820 52.0 43.519210 NaN 159.8 1.7 1.5 145.311029 1.600000 558.2 5.5 609.534173 5.813011 558.2 5.5 609.534173 5.813011 558.2 3571.4 28.1 3751.111204 27.703873 373.2 15.5 372.710294 15.519203 121.5 14.1 121.410294 14.129104 57.2 51.901829 NaN 53.5 1.2 2.7 51.619274 1.100000 166.0 2.5 160.700000 2.893040 966.3 6.0 1082.371826 5.638394 966.3 6.0 1082.371826 5.638394 3490.5 25.2 3474.300000 24.804293 369.4 15.3 369.251395 15.209838 120.7 14.0 120.428385 14.020193						
118.6 13.9 117.510291 13.801820 52.0 43.519210 NaN 159.8 1.7 1.5 145.311029 1.600000 558.2 5.5 609.534173 5.813011 1488.9 16.4 1473.600385 15.401029 3571.4 28.1 3751.111204 27.703873 373.2 15.5 372.710294 15.519203 121.5 14.1 121.410294 14.129104 57.2 51.901829 NaN 53.5 1.2 2.7 51.619274 1.100000 166.0 2.5 160.700000 2.893040 966.3 6.0 1082.371826 5.638394 966.3 6.0 1082.371826 5.638394 1953.1 14.1 2093.281729 13.903895 3490.5 25.2 3474.300000 24.804293 369.4 15.3 369.251395 15.209838	18					
118.6 13.9 117.510291 13.801820 52.0 43.519210 NaN 159.8 1.7 1.5 145.311029 1.600000 558.2 5.5 609.534173 5.813011 1488.9 16.4 1473.600385 15.401029 3571.4 28.1 3751.111204 27.703873 373.2 15.5 372.710294 15.519203 121.5 14.1 121.410294 14.129104 57.2 51.901829 NaN 53.5 1.2 2.7 51.619274 1.100000 166.0 2.5 160.700000 2.893040 966.3 6.0 1082.371826 5.638394 966.3 6.0 1082.371826 5.638394 1953.1 14.1 2093.281729 13.903895 3490.5 25.2 3474.300000 24.804293 369.4 15.3 369.251395 15.209838	\ \					
S2.0						
159.8 1.7 1.5 145.311029 1.600000 558.2 5.5 609.534173 5.813011 1488.9 16.4 1473.600385 15.401029 3571.4 28.1 3751.111204 27.703873 373.2 15.5 372.710294 15.519203 121.5 14.1 121.410294 14.129104 57.2 51.901829 NaN 53.5 1.2 2.7 51.619274 1.100000 166.0 2.5 160.700000 2.893040 966.3 6.0 1082.371826 5.638394 966.3 6.0 1082.371826 5.638394 1953.1 14.1 2093.281729 13.903895 3490.5 25.2 3474.300000 24.804293 369.4 15.3 369.251395 15.209838 120.7 14.0 120.428385 14.020193			13.9			
558.2 5.5 609.534173 5.813011 1488.9 16.4 1473.600385 15.401029 3571.4 28.1 3751.111204 27.703873 373.2 15.5 372.710294 15.519203 121.5 14.1 121.410294 14.129104 57.2 51.901829 NaN 53.5 1.2 2.7 51.619274 1.100000 166.0 2.5 160.700000 2.893040 966.3 6.0 1082.371826 5.638394 1953.1 14.1 2093.281729 13.903895 3490.5 25.2 3474.300000 24.804293 369.4 15.3 369.251395 15.209838 120.7 14.0 120.428385 14.020193						
1488.9 16.4 1473.600385 15.401029 3571.4 28.1 3751.111204 27.703873 373.2 15.5 372.710294 15.519203 121.5 14.1 121.410294 14.129104 57.2 51.901829 NaN 166.0 2.5 160.700000 2.893040 966.3 6.0 1082.371826 5.638394 1953.1 14.1 2093.281729 13.903895 3490.5 25.2 3474.300000 24.804293 369.4 15.3 369.251395 15.209838 120.7 14.0 120.428385 14.020193				1.5		
3571.4 28.1 3751.111204 27.703873 373.2 15.5 372.710294 15.519203 121.5 14.1 121.410294 14.129104 57.2 51.901829 NaN 53.5 1.2 2.7 51.619274 1.100000 166.0 2.5 160.700000 2.893040 966.3 6.0 1082.371826 5.638394 1953.1 14.1 2093.281729 13.903895 3490.5 25.2 3474.300000 24.804293 369.4 15.3 369.251395 15.209838 120.7 14.0 120.428385 14.020193						
121.5 14.1 121.410294 14.129104 57.2 51.901829 NaN 53.5 1.2 2.7 51.619274 1.100000 166.0 2.5 160.700000 2.893040 966.3 6.0 1082.371826 5.638394 966.3 6.0 293.281729 13.903895 3490.5 25.2 3474.300000 24.804293 369.4 15.3 369.251395 15.209838 120.7 14.0 120.428385 14.020193	25					
121.5 14.1 121.410294 14.129104 57.2 51.901829 NaN 53.5 1.2 2.7 51.619274 1.100000 166.0 2.5 160.700000 2.893040 966.3 6.0 1082.371826 5.638394 966.3 6.0 293.281729 13.903895 3490.5 25.2 3474.300000 24.804293 369.4 15.3 369.251395 15.209838 120.7 14.0 120.428385 14.020193	/ES					
57.2 51.901829 NaN 53.5 1.2 2.7 51.619274 1.100000 166.0 2.5 160.700000 2.893040 966.3 6.0 1082.371826 5.638394 1953.1 14.1 2093.281729 13.903895 3490.5 25.2 3474.300000 24.804293 369.4 15.3 369.251395 15.209838 120.7 14.0 120.428385 14.020193						
53.5 1.2 2.7 51.619274 1.100000 166.0 2.5 160.70000 2.893040 966.3 6.0 1082.371826 5.638394 1953.1 14.1 2093.281729 13.903895 3490.5 25.2 3474.300000 24.804293 369.4 15.3 369.251395 15.209838 120.7 14.0 120.428385 14.020193			14.1			14.129104
166.0 2.5 160.700000 2.893040 966.3 6.0 1082.371826 5.638394 1953.1 14.1 2093.281729 13.903895 3490.5 25.2 3474.300000 24.804293 369.4 15.3 369.251395 15.209838 120.7 14.0 120.428385 14.020193						
966.3 6.0 1082.371826 5.638394 1953.1 14.1 2093.281729 13.903895 3490.5 25.2 3474.300000 24.804293 369.4 15.3 369.251395 15.209838 120.7 14.0 120.428385 14.020193				2.7		1.100000
1953.1 14.1 2093.281729 13.903895 3490.5 25.2 3474.300000 24.804293 369.4 15.3 369.251395 15.209838 120.7 14.0 120.428385 14.020193						2.893040
369.4 15.3 369.251395 15.209838 120.7 14.0 120.428385 14.020193	9					5.638394
369.4 15.3 369.251395 15.209838 120.7 14.0 120.428385 14.020193	52	1953.1			2093.281729	13.903895
120.7 14.0 120.428385 14.020193	\\	3490.5			3474.300000	24.804293
		369.4	15.3		369.251395	15.209838
54.6 52.919204 NaN		120.7	14.0		120.428385	14.020193
		54.6			52.919204	NaN

Table 10. ANN response to inputted apparent resistivity from the field with WINRESIST

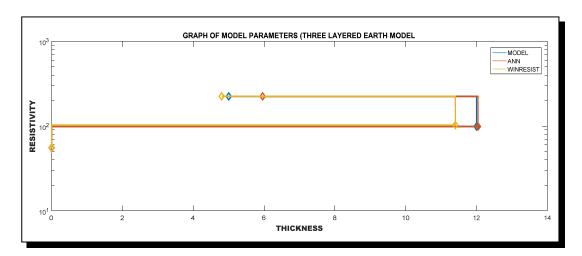


Figure 4. ANN responses compared with synthetic model parameters for three layered earth model

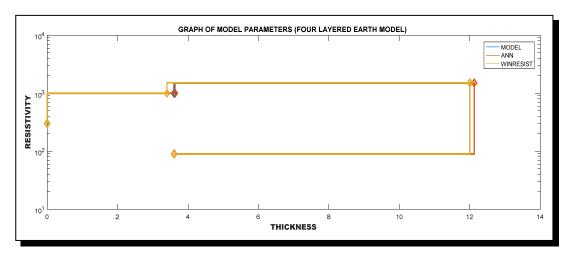


Figure 5. ANN responses compared with synthetic model parameters for four layered earth model

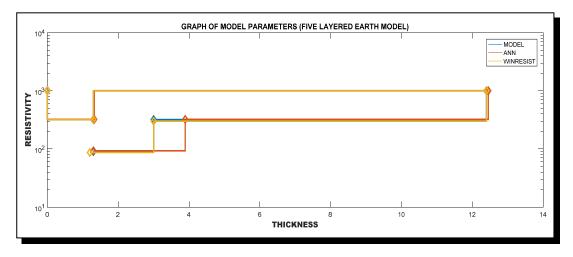


Figure 6. ANN responses compared with synthetic model parameters for five layered earth model

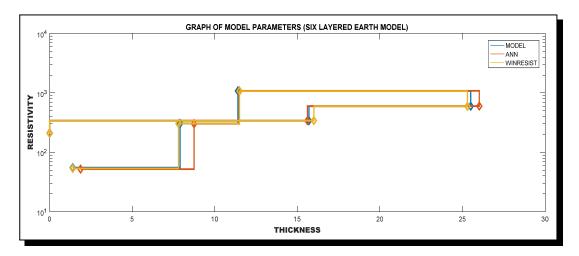


Figure 7. ANN responses compared with synthetic model parameters for six layered earth model



Figure 8. ANN responses compared with synthetic model parameters for seven layered earth model

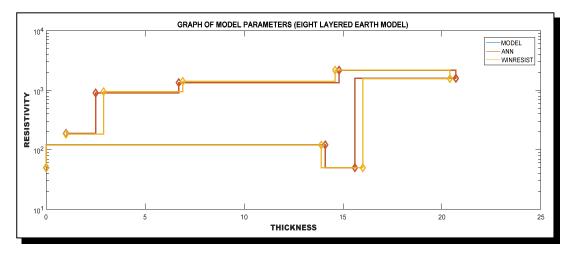


Figure 9. ANN responses compared with synthetic model parameter for eight layered earth model

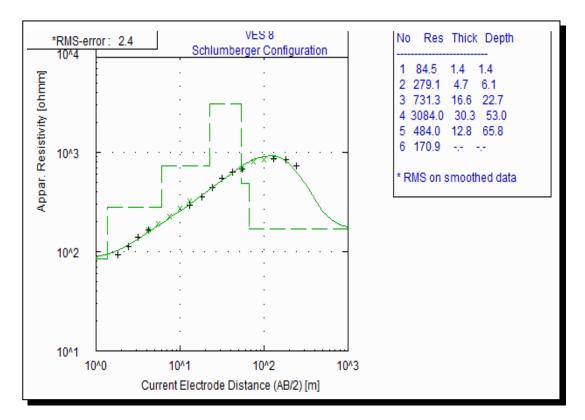
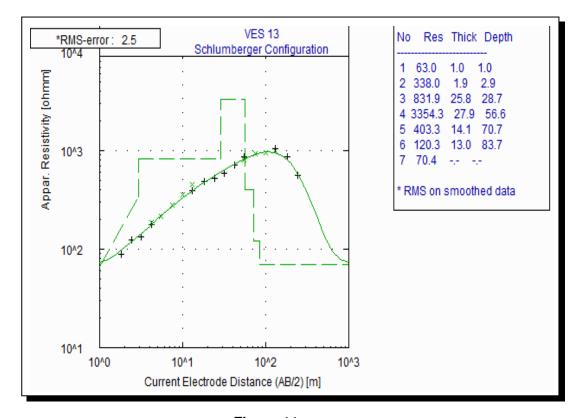



Figure 10. VES 8

Figure 11. VES 13

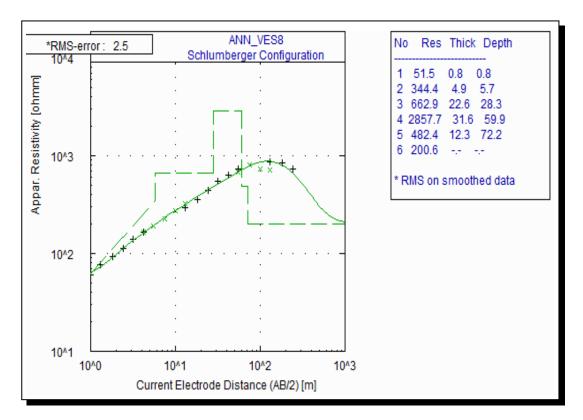


Figure 12. ANN_VES 8

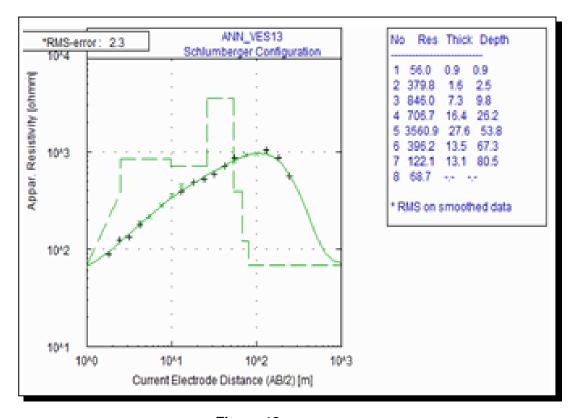


Figure 13. ANN_VES 13

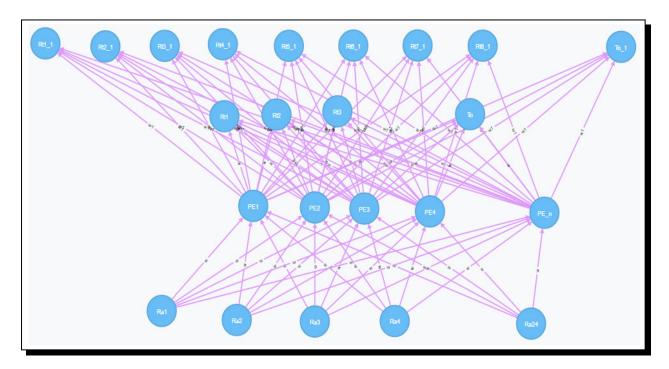


Figure 14. Neural network architecture

Acknowledgement

The authors appreciate Covenant University for partial sponsorship.

Competing Interests

The authors declare that they have no competing interests.

Authors' Contributions

All the authors contributed significantly in writing this article. The authors read and approved the final manuscript.

References

- [1] A.P. Aizebeokhai, 2D and 3D geoelectrical resistivity imaging: theory and field design, *Scientific Research and Essays* **5** (23), 3592 2605.
- [2] H. Demuth, M. Beale and M. Hagan, *Neural Network Toolbox*, 1st edition, Natick, Mass, MathWorks **9** (4), 259 265.
- [3] O. Koefoed, Resistivity sounding on an earth model containing transition layers with linear change of resistivity with depth, *Geophysical Prospecting* **27** (4), 862 868.
- [4] L. Lines and S. Treitel, A review of least-squares inversion and its application to geophysical problems, *Geophysical Prospecting* **32** (2), 159 186.
- [5] G.F. Luger and W.A. Stubblefield. *Artificial Intelligence: Structures and Strategies for Complex Problem Solving*, 2nd edition, Benjamin/Cumming Publishing, Redwood City, California, p. 850 (1993).

- [6] J.L. McClelland, D.E. Rumelhart and G.E. Hinton, *The Appeal of Parallel Distributed Processing, in Parallel Distributed Processing: Explorations in the Microstructure of Cognition Foundations*, MIT Press, Cambridge, p. 34 (1986).
- [7] J. Stephen, C. Manoj and S. Singh, A direct inversion scheme for deep resistivity sounding data using artificial neural networks, *Journal of Earth System Science* **113** (1) (2004), 49 66.
- [8] A. Tarantola, *Inverse Problem Theory and Methods for Model Parameter Estimation*, 1st edition, Society for Industrial and Applied Mathematics, Philadelphia, PA, p. 358 (2005).