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Abstract :

We are currently developing software dedicated to multiscale and multiphysics modeling of arrays of
micro and nanosystems. Unlike traditional software that is based on models built once and for all,
here this is the software that constructs models. It is based on the mathematical Two-Scale Transform,
a technique for asymptotic methods, together with formal specification and verification techniques in
computer science, combining formal transformations and term rewriting and type theory. We aim at
taking into account a wide range of geometries combining thin structures, periodic structures with the
possibility of multiple nested scales and any combination of these features. In this paper we present the
principle of our methods and our first results.

Mots clefs : Multi-scale methods ; MEMS arrays ; symbolic computation

Résumé :

Nous développons un logiciel dédié à la modélisation multiphysique et multi-échelles de matrices de
micro- et nanosystèmes. Contrairement aux logiciels existants, qui opèrent sur des modèles prédéfinis,
ce nouveau logiciel permet de construire des modèles. Il est fondé sur la transformation mathématique à
deux échelles, une technique pour les méthodes asymptotiques, couplée avec des méthodes informatiques
de spécification et de vérification formelle, combinant transformations formelles, réécriture et théorie
des types. Notre objectif est de prendre en compte un large éventail de géométries, combinant des
structures minces et des structures périodiques à plusieurs échelles imbriquées. Dans cet article nous
présentons les principes de nos méthodes et nos premiers résultats.

1 Introduction

Simulation software available on the market does not take

Figure 1 – An array of micro-levers
for parallel AFM applications. A cour-
tesy of A. Meister from CSEM Swit-
zerland.

into account large arrays of micro and nanosystems such
as that shown in Figure 1. From the point of view of geo-
metric features, the software we develop aims at filling this
gap. In fact, it will aid to design multiphysics systems with
high contrast in equation coefficients and complex geometries
including thin structures, periodic structures with possibly
many nested scales, and combinations of these. The produced
simulations should be light enough to be inserted into para-
meter identification and optimization loops. The software is
based on multiscale models, especially on models obtained by
asymptotic methods. An asymptotic model is derived from a
system of partial differential equations (PDEs) when taking
into account that at least one parameter is very small, as for
a thin structure (small thickness) or for a periodic structure
(small ratio of cell size to global size). The resulting model,
another system of PDEs, is obtained by taking the mathematical limit of the nominal model, in some
energy sense, when the small parameters are going to zero. This approach provides a reasonably good
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approximation and has the advantage to be rigorous and systematic which are factors of reliability.
The resulting PDEs can be implemented in simulation software as for instance a finite element based
simulator, and simulations turn to be fast as needed. We quote that the literature in this field is vast
and that a large number of techniques have been developed for a large variety of geometric features
and of physical phenomena. However, none of them have been implemented in a systematical approach
to render it available to engineers as a design tool. In fact, each published paper focus on a special case
regarding geometry or physics, and very few works are considering a general picture. In our software,
we treat the problem of systematic implementation of asymptotic methods in the software by imple-
menting the construction of models rather than the models themselves. This approach would cover
many situations from a small number of bricks. It combines two types of tools, namely the mathema-
tical Two-scale Transform originally introduced in [1, 2, 3] (also referred as the Unfolding Method)
to model asymptotic periodic structures together with formal specification techniques in computer
science, combining term rewriting, λ-calculus and types [4]. The software is written in the symbolic
computation language MapleTM. Regarding the Two-Scale Transform technique, we have extended its
domain of application to cover in the same time homogenization of periodic media, see for instance
[5], and methods for asymptotic analysis for thin domains, see [6]. Compared to other techniques, ours
requires more modular calculations and avoids any non-constructive proof. In the paper we present
each aspect of our method as well as our first results.

2 The mathematical tools used for model derivation
To date, the program covers only the elliptic second order PDE, −

∑d
i,j=1

∂
∂xi

(aij(x)
∂

∂xj
u(x)) = f(x),

posed in a region Ω in Rd consisting of subregions each of which may have a periodic structure, be
thin or combining these two features. The coefficients aij of the equation may also be periodic. The
boundary conditions can be Dirichlet conditions u = g on a part Γ1 of the boundary ∂Ω for a given g,
and Neumann conditions

∑d
i,j=1 njaij(x)

∂
∂xj

u = h on the other part Γ2 of the boundary with outward

unit vector (n1, .., nd) for a given h. This partial differential equation appears in a number of physical
models such as the stationary diffusion equation, the equation of electrostatics or a model for elastic
beam in torsion. We assume that all small parameters of the problem are expressed in terms of a single
one denoted by ε.

Example : For the sake of illustration, we present the example of thermal equilibrium of the AFM
array, shown in Figure 1, connected to a thin bar and placed in a vacuum, see Figure 2(a). The bar
thickness is in the same range as the cell sizes. A heat source is placed in each cantilever to model the
presence of actuations by thermo-elastic coupling. The heat flux at all boundaries is vanishing (h = 0)
except at the bar end and at the left and bottom sides of the lever array where a temperature is imposed
at g = 0◦C. Modeling is done in two dimensions, so that the matrix a represents the two-dimensional
thermal conductivity and f the two-dimensional density of thermal source.

Here, we do not detail the mathematical steps of construction of asymptotic model, but we will just
review the mathematical objects that are manipulated in order to explain, in Section 3, how they
are treated in terms of formal computing. Several proofs have been published in [7], [8], [3], [9], and
[10]. Here we adapt the proofs of the paper [9] where an effort has been made to formulate proofs
in a modular form and to avoid any non-computational steps. The steps in this formal method are
rigorously specified at a high level of generality, that make them independent of the domain geometry
and applicable to other equations. The model derivation starts from the weak formulation associated
to the above classical formulation boundary value problem. Find u ∈ V such that

d∑
i,j=1

∫
Ω
aij

∂u

∂xi

∂v

∂xj
dx =

∫
Ω
fvdx (1)

for all v ∈ V where V represents the set of admissible functions V = {u | u = 0 on Γ1}. We observe
that we have dropped the question of function regularity that should be taken into account in the set
of admissible functions because this has not yet been taken into account in the implementation.

The weak formulation (1) requires the definition of regions as Ω and their boundaries as Γ1 and Γ2,
of variables as x = (x1, .., xd), of functions as w(x) and v(x), of set of functions as V , and then of
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operations associated with them. Beyond simple operations such as addition or multiplication between
functions, it is required to define formally the integral over a region and the sum over a set of indices.
Once these mathematical objects have been defined, we also introduces properties as Green’s formula,
the natural extension of the integration by part formula,

∫
Ω

∂w
∂xi

v dx = −
∫
Ωw ∂v

∂xi
dx+

∫
∂Ωw v ni dx,

that may be used during the proof.

(a) Geometry and boundary conditions for an array of can-
tilevers connected to a beam

(b) Flowchart representing the Two-Scale Transformation
of the region Ω

Figure 2 – Running example

On the other hand, the model derivation relates to the Two-Scale Transform whose principle is shown
in Figure 2(b). It consists of a phase of region splitting into several sub-regions (Ω1∪Ω2 in the example)
requiring different treatments. If a subregion is not subject to any simplification when its processing
stops. Otherwise, it is partitioned into a family of periodic cells, even if it does not undergo a sim-
plification to the periodicity, and is transformed (by a process not detailed here) into the product of
so-called macroscopic and microscopic regions. The latter contains all the information on the micro-
structure of the sub-region while the first is only used to locate the position of the cells so that in the
case of a thin structure its dimension is that of the neutral axis or plane. Figure 2(b) illustrates this
construction process on the example where Ω1 is a periodic region and Ω2 a thin region. Their image
pairs are denoted by (Ω̃1, Y1) and (Ω̃2, Y2) respectively. By composition with the above operation, a
function defined on a sub-region is transformed into a function defined on the product of its macrosco-
pic and microscopic regions. This defines the linear operator T named the Two-Scale Transform. For
demonstration purposes, we defined the adjoint T ∗ of T . Since T is a linear operator which transforms
a function defined on a subdomain Ω1 into a product Ω̃1 × Y1, conversely its adjoint for the L2-inner
product is defined from Ω̃1 × Y1 to Ω1 by the equality

∫
Ω1

T ∗w v dx =
∫
Ω̃1×Y1

w Tv dxdy for w and

v respectively defined in Ω̃1 × Y1 and Ω1. To derive the approximate model, we require the concept
of approximation of a function v by another function w in the sense of the small parameter ε, that
we denote by v = w + O(ε), together with the algebraic rules on O(ε). Finally, the linearity of some
operators is used repeatedly.

3 Software architecture

This section presents our software design methodology and its theoretical foundations. The software
will transform a nominal multiphysic model, composed of a geometry and PDEs, into a multiscale
(MS) asymptotic model approximating the initial one. This transformation depends on specifications
about periodic and thin parts of the model, which are formulated by the designer.

The software will implement the sequence of modelling steps depicted in Figure 3. The Data Structure

Constructor is in charge of importing the nominal model from a finite element analysis and simulation
software package of physics and engineering applications, e.g. COMSOL. Conversely, a Geometry &

Equation Generator will export the derivated multiscale model towards COMSOL after being adapted
so that the simulation with COMSOL can be done effectively. Finally the results of this simulation
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will be brought back to the physical domain by means of a Inverse MS Transform.

The modelling step named Multiscale Data Struc-

Figure 3 – Flowshart of the modelling steps

ture Constructor is essentially devoted to the ex-
tension of the internal data structure with ad-
ditional multiscale data. Its input is a symbolic
representation of the geometry produced by the
Data Structure Constructor from the numerical data
from COMSOL. The multiscale data structures
are designed and implemented to be complete,
flexible and able to describe complex geometries,
but without redundancies. They describe the ma-
thematical objects (e.g. functions, variables . . .)
and their properties, the geometrical regions and
their boundaries, the admissible functional spaces,
and the algebraic properties of the two-scale ope-
rators. The purpose of the modelling step named
Multiscale (MS) Model Constructor is to automati-
cally construct the asymptotic multiscale model
from the multiscale data structures. Yet this purpose is not completely fulfilled since it requires a uni-
fication of multiscale methods. However two parts of this modelling step are already built and tested,
namely a symbolic transformation package and a type-checker.

3.1 Symbolic transformation package

Most of the transformations performed by multiscale methods are based on quasi-systematic deri-
vations of equalities. The classical way to automate these derivations is to consider mathematical
expressions as symbolic ones, called terms, and to give a computational meaning to mathematical
equations. The idea is to orient the equality x = y into a rewrite rule x → y which states that every
occurrence of an instance of x can be replaced with the corresponding instance of y. Consequently
equational derivations are reduced to a series of term rewritings.

Term rewriting provides a theoretical and computational framework which is very useful to express,
study and analyze a wide range of complex dynamic systems. It is characterized by the repeated
transformation of a data object such as a word, term or graph. Transformations are combinations
of rules specifying how to transform an object into another one when it follows a specific pattern.
Rule application can be restricted by additional conditions and rules can be combined by specifying
strategies controlling the order and the way rules are repeatedly applied. Term rewriting is used in
formal semantics to describe the meaning of programming languages and more generally in computer
science to describe program transformations and to perform automated reasoning. It is central in
systems where the notion of rule is explicit such as expert systems, algebraic specifications, etc.

We have implemented a Maple package, named symbtrans, extending Maple with rewriting-based
programming where rules, strategies and usual Maple functions can be freely combined [11]. The
transformation language provided by the symbtrans package is deliberately an adaptation for Maple
of popular strategy languages such as ρ-log [12] or Tom [13]. The common theoretical basis for all
these works is the ρ-cube [4]. The current version of our transformation language corresponds to the
untyped version of the ρ-cube, called the ρ-calculus.

Each mathematical tool introduced in Section 2, namely the integral and PDE calculus, the algebraic
rules on O(ε) and the algebraic properties of the two-scale operators, is expressed in the software by
means of the notion of strategy. Roughly speaking, a strategy is a combination of rewriting rules. It
expresses the way the rules are applied. Thanks to the notion of strategy the formal proof is close to
the mathematical one in terms of size and nature of steps.
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3.2 Type-checker
This section shows the interest of a typing discipline for the formalization of multiscale methods. In
computer science type systems complete grammatical descriptions of programming languages with
additional contextual conditions of well-formedness. For example, the fact that a mathematical ex-
pression under an integration sign has to be integrable is a contextual information that is better
detected by well-formedness rules than by grammatical rules. The set of rules that relate the type of
a mathematical expression with the one of its sub-expressions is called a type system. The reader is
invited to see [14] for more information on type theory. We propose a first type system which basically
corresponds to the Basic Extended Simple Type Theory [15]. In this system region names (Ω, Ω1, Ω2,

Ω̃1, Ω̃2, Y1 and Y2 in the example) are considered as type constants, i.e. atomic type names. The other
type constants are ∗ for Booleans and R for real numbers. The notation e : A asserts that e is an
expression of type A. The type A → B denotes the set of functions whose domain is A and co-domain
is B. Moreover, any Cartesian product of region names also forms a type. For instance, the functions w
defined on Ω̃1×Y1 in Section 2 are expressions of type Ω̃1×Y1 → R. It is denoted by w : Ω̃1×Y1 → R.
For any region Ω, any variable x such that x : Ω and any expression e such that e : A or e : A → B,
where A is a Cartesian product composed of other regions than Ω, the expression

∫
Ω e u dx (where u is

any expression) can be rewritten as e
∫
Ω u dx and the expression ∂e/∂x as 0. Such simplification rules

of major importance are made possible thanks to the typing information. The type checking process
requires that the user declares the type of all the mathematical objects used in the proof. These
objects are the constants, variables, functions, O(ε) terms, etc. For all the possible software inputs the
types of the standard mathematical operators such as derivation and integration are predefined in the
type system. For each region Ω we can define the type of the Two-Scale Transform TΩ of functions
defined on Ω as (Ω → R) → (((ν(Ω)× µ(Ω)) → R) where ν(Ω) (resp. µ(Ω)) denotes the macroscopic
(resp. microscopic) region of Ω.

4 Validation
When applying our software to Eq. (1), we spe-

(a) Nominal model (b) Two-scale model

Figure 4 – Results for u0 by FEM simulations

cify that the Two-Scale Transforms to be used
are T 1 and T 2 corresponding to Fig. 2(b). The
two-scale model provided by the software in-
cludes the microscopic equation posed in the Y1
cell with the coefficient a1 = T 1a, the function
space W 1 = {v defined in Y1 | v is Y1-periodic}
and the variational formulation :

Find w1
i ∈ W 1 such that

∑2
k,ℓ=1

∫
Y1

a1kℓ
∂w1

i

∂yk

∂v
∂yℓ

dy = −
∑2

k,ℓ=1

∫
Y1

a1kℓδik
∂v
∂yℓ

dy for all v ∈ W 1. It also includes a problem posed in the microscopic

cell of the thin part Y2 even if the latter has not the periodicity feature. This problem is written in
a similar manner not detailed here and leads to the definition of a2 and w2

i . It follows the definition
of homogenized thermal diffusion coefficient and density of heat source per unit area in the first

macroscopic part Ω̃1, a
H
ij =

∑2
k,ℓ=1

1
|Y1|

∫
Y1

a1kℓ(δik + ∂w1
i

∂yk
)(δjℓ +

∂w1
j

∂yℓ
) dy and fH = 1

|Y1|
∫
Y1

T 1f dy.

Similar formula yields aH and fH in Ω̃2 the second macroscopic part. The two-scale model also includes
the macroscopic problem posed on Ω̃1 ∪ Ω̃2 the macroscopic region with V 0 = {v defined in Ω̃1 ∪ Ω̃2 |
v = 0 on Γ1 ∩ (Ω̃1 ∪ Ω̃2)} the macroscopic admissible function space and the variational formulation :

Find u0 ∈ V 0 such that
∑2

i,j=1

∫
Ω̃1

aHij
∂u0

∂x̃1
i

∂u0

∂x̃1
j
dx̃1+

∫
Ω̃2

aH11
∂u0

∂x̃2
1

∂u0

∂x̃2
1
dx̃21 =

∫
Ω̃1

fHv0 dx̃1+
∫
Ω̃2

fHv0 dx̃21 for

all v ∈ V 0. The final approximation in the physical region Ω is u ≈ B1(u0+ε
∑2

i=1(yi+w1
i )

∂u0

∂x̃1
i
) in Ω1,

where w1
i = w1

i − 1
|Y1|

∫
Y1

w1
i dy and B1 is the approximate inverse two-scale transform defined for any

Y1-periodic function v(x̃1, y) by (B1v)(x) = v(x̃1, x−ε/2
ε ). A similar approximation is built in Ω2. Now

we compare the results obtained with the nominal model and the simplified model, see Fig. 4. To obtain
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sufficient accuracy of calculations with the software COMSOL we used meshes with 459,840 elements
to model the complete problem, of 7664 elements for both microscopic problems and with 305 elements

for the macroscopic problem. The relative quadratic error
(∫

Ω |u− u0|2dx
)1/2

/
(∫

Ω |u|2dx
)1/2

between

u, the model nominal solution, and u0, this of the homogenized model, is 6.85%. The computing
time on a laptop for the three problems are respectively 3.734s, 0.046s and 0.015s, giving a ratio of
computation time of the nominal model and simplified model of 0.029.

5 Conclusion

We presented the basic principles of a new software dedicated to the generation of multiscale models
for applications to MEMS arrays and their illustration on an example. The symbolic transformation
package and the type-checker have been successfully applied together to a couple of models. In par-
ticular, the asymptotic model from the running example has been produced from Eq. (1) with the
assistance of these tools. To conclude, we underline that there are a number of interests with our ap-
proach. Clearly, the final model is “correct-by-construction”, human errors are avoided, and the model
derivation effort is dramatically reduced. In the point of view of a MEMS designer, this software will
generate simplified analytical and numerical models corresponding to a design and to a set of requested
simplifications. Since the computation will be fast enough, he will test a variety of simplifications and
retain the one satisfying the best tradeoff between simulation time and precision.
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