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Abstract

In this paper, we present new tools and results developed for Arrays of Microsystems and especially
for Atomic Force Microscope (AFM) array design. For modeling, we developed a two-scale model of
cantilever arrays in elastodynamics. A robust optimization toolbox is interfaced to aid for design before
the microfabrication process. A model based algorithm of static state estimation using measurement of
mechanical displacements by interferometry is stated. Quantization of interferometry data processing
is analyzed for FPGA implementation. A robust H∞ filtering problem of the coupled cantilevers is
solved for time-invariant system with random noise effects. Our solution allows semi-decentralized
computing based on functional calculus that can be implemented by networks of distributed electronic
circuits as shown in a previous paper.

1 Introduction

Since its invention [1], Atomic Force Microscopes (AFM) have

Figure 1 – (a) optical image of a 4
×17 probe array with SiN cantilevers
anchored on parallel-beam base. The
dark square at the end of each cantile-
ver corresponds to the pyramidalsha-
ped tip. (b) SEM images of a probe
arrays with SiN cantilevers anchored
on a gridlike base.

became very powerful tools for specimen imaging and nano-
manipulation. But these devices suffer from relatively low
speed of operation, and from low reliability of their mea-
sures. So, modeling and model-based optimization or filte-
ring constitute a relevant issue to improve their performances.
Now, a number of research laboratories are developing large
arrays of AFMs, as this represented in Fig. 1, that achieve a
same task in parallel, and improve operation speed. One of
the design problems encountered in such systems comes from
global effects namely from deformation of the common base
mainly in static regime, and from cross-talk between canti-
levers in dynamic regime. For model-based optimization or
filtering, the full device must be represented by a single mo-
del. To prevent prohibitive computation time, in a previous
work, we introduced a two-scale model yielding fast simula-
tions. Now, we present our results related to parameter optimization, and to H∞ filtering problem for
real-time control of AFMs, both being based on our two-scale model.

Our simplified two-scale model has been introduced in [2], and its derivation is detailed in a submit-
ted paper. It is rigorously justified thanks to an adaptation of the two-scale approximation method
introduced in [3], and to further results in [4]. Its main advantage is that it requires little computing
effort, and that it is reasonably precise for large arrays. A first investigation for real-time vibration
control of a one-dimensional cantilever array has been carried out in the Linear Quadratic Regulation
(LQR) framework. In view of real-time control applications, we have derived a Semi-Decentralized
Approximation of the controller based on functional calculus, and formulated its realization through
a Periodic Network of Resistors, see [5]. This approximation method has been carefully validated. In
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this paper we focus on the filtering problem or state estimation. In the past decade, a number of linear
filtering techniques have been developed for finite or infinite-dimensional systems. In this paper, we
formulate a model-based H∞ filtering problem for an AFM array in a classical way but applied to an
infinite dimensional system. The objective is to estimate the displacement in base though observing
the displacement in cantilevers. We formulate the theoretical framework of functional calculus for
computing the estimator in a semi-decentralized manner as in [5]. The numerical results are drawn
from this formulation but obtained more directly using a modal decomposition instead of using the
full framework of semi-decentralized approximation. Regarding sensing, in some AFM arrays, the de-
flection of cantilever was measured by piezoresistive sensor integrated in the cantilever. On the other
hand, an interferometric readout method with imaging optics is provided in [6] and is used in this
paper. Interferometry data processing requires heavy computation which represents a barrier to rapid
operation. In order to FPGA implementation we study their quantization.

2 A Two-scale Model for One-Dimensional AFM arrays

2.1 The Direct Model Formulation

We consider a one-dimensional cantilever array comprised of an elastic

Figure 2 – A one-
dimensional view of (a) an
Array and (b) a Cell

base, and a number of clamped elastic cantilevers with free end equipped
with rigid tips, see Fig. 2. Assuming that the number of cantilevers is
sufficiently large, a homogenized model was derived using a two-scale ap-
proximation method. This principle is exploited in the detailed paper [4]
devoted to static regime. The corresponding model extended to dynamic
regime is introduced in the letter [2]. Both papers were written in view of
AFM application. Our models are formulated from the Euler-Bernoulli
beam model of the whole structure, and we will always assume that the
ratio of cantilever thickness hC to base thickness hB is small, namely
hC

hB
≈ ε∗4/3. The simplified model is an approximation of the full model

in the sense of small ε∗, the ratio of the cell size ε to array size µ ; i.e. ε∗ = ε/µ.

The two-scale approximation of deflection component of the vector of mechanical displacement fields
is denoted by u(t, x1, y) where t represents the time variable. From the asymptotic analysis yiel-
ding the two-scale model, it appears that u is independent of y3 everywhere. Moreover, we consider
cantilevers made of an isotropic material and neglect variations of y1 7→ u(t, x1, y). So their mo-
tions are governed by a classical Euler-Bernoulli beam equation in the microscopic space variable
y2, mC∂2

ttu + rC∂4
y2...y2

u = FC with mC their linear mass density, rC their linear stiffness coef-

ficient, and FC their load per unit length. This model holds for all x1, and therefore represents
motions of an infinite number of cantilevers parameterized by x1. For y varying along the base,
y 7→ u(t, x1, y) is constant and there the displacement u(t, x1) is governed by an equation posed on a
line Γ = {(x1, y2)|x ∈ (0, LB) and y2 = 0} where LB is the base length in the macroscale x1-direction,
ρB∂2

ttu+RB∂4
x1···x1

u+ ℓCr
C(∂3

y2y2y2
u)|junction = fB. Here ρB, RB, fB and ℓC are respectively its effec-

tive length mass, its homogenized stiffness tensor, its effective load per unit surface, and the cantilever
width in the reference cell.

The base is assumed to be clamped, so the boundary conditions are u = ∂x1
u = 0 at both ends. The

term rC(∂3
y2y2y2

u)|junction is a distributed load originating from shear forces exerted by cantilevers at
the base at base-cantilever junctions. Base-cantilever junction condition states as u|cantilever = u|base
and ∂y2

u|cantilever = 0. Other cantilever ends are equipped with a rigid part (the tip of Atomic Force

Microscopes), thus JR∂2
tt

(
u

∂y2
u

)
+ rC

(
−∂3

y2y2y2
u

∂2
y2y2

u

)
=

(
f3

f3(y
tip
2 − LC)

)
at junctions between

elastic parts and rigid parts. Here, JR is a matrix of moments and f3 is a point load at the tip apex
located at y2 = ytip2 in the microscale domain.
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2.2 Base/Cantilever Displacement Decomposition

We introduce the extension y 7→ u(., y) of the restriction y 7→ u|base(., y) the displacement in base
(which is in fact independent of y) to the values taken by y in cantilevers. So, u is defined in the
whole two-scale domain and we can define its difference with u, ũ = u− u, also defined in the whole
domain. In the base, it is obvious that ũ = 0 and ∇yu = 0 since u is independent of y. We formulate
the equations satisfied by the couple (u, ũ), ρB∂2

ttū + RB∂4
x1···x1

ū + ℓCr
C(∂3

y2y2y2
ũ)|junction = fB in

base and mC∂2
ttũ +mC∂2

ttū + rC∂4
y2...y2

ũ = FC in cantilever. In practice we will work on a model re-
duced at the microscopic scale through modal decompositions on cantilever modes {ϕk(y2)}k=1..N

in L2(0, LC), where the parameter LC represent the cantilever length in the microscale domain,

ũ(t, x1, y2) ≈
N∑
k=1

ũk(t, x1)ϕk(y2) and FC(t, x1, y2) ≈
N∑
k=1

fC
k (t, x1)ϕk(y2). In this approximation, the

above equations yields ρB∂2
ttu + RB∂4

x1···x1
u + ℓCr

C(∂3
y2y2y2

ũ)|junction = fB in base and mC∂2
ttũk +

mC∂2
ttūϕk + rC λC

k

(LC)4 ũk = fC
k for each k, where ϕ̄k =

∫ LC

0 ϕk dy2 and ϕk(y2) = φk(y2/LC). The ei-

genelements (λk,φk)k∈N are solutions to the eigenvalue problem, posed in (0, 1), φ′′′′
k = λC

k φk in

(0, 1), φk(0) = φ′
k(0) = 0,

(
−φ′′′

k
φ′′
k

)
= λkQ

(
φk

φ′
k

)
at 1 where Q = N

(
J0 J1
J1 J2

)
N with

N =

(
1 0
0 1/LC

)
and Ji =

∫
YR

(y2 − LC)
i dy, i = {0, 1, 2}.

3 The Robust Parameter Optimization Toolbox

The parameters of the array, such as the length, spring constant and

Figure 3 – One-dimensional
Cantilever arrays with tips

deflection angle of the cantilevers, footprint of the array, must satisfy
requirements for good operation. Thanks to a recent development de-
sign decision making tools, we can perform sensitivity, multi-objective
optimization, as well as uncertainty quantification and robustness
analysis. The objective of these tools is to support the analyst in
specifying an AFM array design which meets the performance requi-
rements in the presence of uncertainty due to both manufacturing
tolerances and lack of knowledge in the modeling process. In this pa-
per, we illustrate a design optimization problem for a one-dimensional array of cantilevers, see Fig.
3.

The array is designed to make F Gap the gap between two cantilevers

Figure 4 – Multi-objective
analysis with Monte-Carlo
sampling

and F Gapcell the ratio of the void part to the area of each cell as
large as possible, the static displacement at tip apexes at base F Base
as small as possible. The static cantilever deflection angle should be
smaller than three degrees. The parameters F Gap and F Gapcell
must be more than half of the cantilever width and 0.4 respectively.
Fig. 4 shows the Pareto plot for the two objective functions F Gap and
F Gapcell based on Monte-Carlo sampling. A best design is achieved
, the compromise of the two objectives has to be considered.

4 Measurement by Interferometry

The setup of the measurement scheme is an interferometric system. It is sensitive to the optical
path difference induced by the vertical displacements of cantilevers. In each cantilever, we neglect the
variations of displacements u with respect to x1. We write the intensity of a fringe pattern written
in the two-scale frame, I(t, x1, y2) = A cos (2πfx1 + θ(t, y2)) with θ = 2π

λ̄
(b − u). It is measured in a

band perpendicular to the cantilever axis and parameterized by y2 ∈ (α, β). The parameters f and
θ are two unknowns representing the spatial carrier frequency and the phase modulation of fringes,
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A is the modulation amplitude, λ̄ is the wave-length and b is related to the constant path difference
between the two interfering waves.

An algorithm was developed to determine both the spatial frequency f
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Figure 5 – Error of quan-
tization on phases varying
in (0, π/2) for 3 values of
the period (p)

and the phase modulation θ which yields an approximation of the average

displacement along the measurement zone Y = 1
|β−α|

∫ β
α u(x1, y2) dy2

which is used hereafter in the static state estimation and filtering pro-
blems. The algorithm, determining the spatial frequency f (or period
T = 1

f ) and the phase θ, is intended to be implemented on a quite small
FPGA, where computations will be achieved out using integers only.
Initially, the algorithm was written using high level functions. All steps
have been rewritten and simplified in order to minimize costly operations
as divisions, and to use integer numbers instead of floating point num-
bers (quantization). This was achieved by multiplying each number by a
same power of 2 (refered as the scaling factor) and then by truncation.
We compare the two algorithms. Figure 5 represents the percentage er-
rors between the phases provided by the algorithm using floating point
numbers and the one using integer numbers based on a 28 scaling factor. Experiments are reported
for three periods 1

f ∈ {6, 4.5, 3} and for phases varying between 0 and π
2 .

5 Static State Estimation
We provide the mean to estimate base displacements from interferometric measurements in cantilevers
using our two-scale model in the static operating regime. The latter is derived by eliminating the time
terms from the elastodynamics model, presented in Section 2. We assume that there is no body load

i.e. FC = 0 which yields the analytical solution ũ(x1, y2) = y2
2

6rC

(
3ytip2 − y2

)
f3 where ytip2 is the tip

position. We require two measures along two parallel lines y2 = y0,12 and y2 = y0,22 corresponding to

two phases θ1 and θ2 to build their difference δθ = θ2 − θ1. We observe that u(x1, y
0,2
2 )− u(x1, y

0,1
2 ) =

ũ(x1, y
0,2
2 ) − ũ(x1, y

0,1
2 ) = − λ̄δθ

2π which yields an expression of the tip force f3 = − λ̄δθ
2π(K(y0,2

2 )−K(y0,1
2 ))

.

From this force we can determine the base displacement from the elasto-static equation.

6 Robust Filtering

6.1 Filtering Problem Statement
For the filtering problem in AFM array application we take into account unknown noise associated
to interferometry measurements as well as other noise sources as air or liquid environment, thermal
effect, electromagnetic noise. To deal with these uncertainties, we uses an H∞ theory which is based
on the worst case approach. We set UN = (u, (ũk)k=1,..,N , ∂tu, (∂tũk)k=1,..,N )T the state variable,

AN =

(
0 I

AN
21 0

)
the state operator, with AN

21 =

(
−Ax1

−AN
x1y

Ax1
ϕ̄k −AN

y

)
, Ax1

= RB

ρB ∂4
x1···x1

, AN
x1y =

ℓCrC

ρB (∂3
y2y2y2

ϕk(0))k=1,..,N , AN
y = (− ℓCrC

ρB ∂3
y2y2y2

ϕk(0)ϕ̄k+
rC

mC(LC)4 λC
k )k=1,..,N and BN = (

0
0

0
0

I
0

0
I
)T the perturbation operator. The perturbations in the state system being denoted by wN

1 ∈ W1 =

L2(Γ)×L2(Γ)N , the state equation is ∂tU
N = ANUN +BNwN

1 for t ∈ R+ and UN (0) = UN
0 . Here AN

is the infinitesimal generator of a continuous semigroup on the separable Hilbert space H = H2
0 (Γ)×

L2(Γ)N× L2(Γ)× L2(Γ)N with dense domain D(AN ) = H4(Γ)∩H2
0 (Γ)×L2(Γ)N ×H2

0 (Γ)×L2(Γ)N .
The perturbations operator BN ∈ L(W1,H). The observation comes from interferometry measurement

Y = 1
|β−α|

∫ β
α u(x1, y2) dy2 but take into account an additional unknown noise w2.

Then, using the modal decomposition with respect to y2, the noise disturbed measurement turns
to be given by Y N = CNUN + DNwN

2 ∈ Y = L2(Γ) the space of measurements, with the ob-

servation operator CN = (I, 1
β−α

(∫ β
α ϕk dy2

)
k=1,..N

, 0, 0) ∈ L(H,Y), wN
2 ∈ W2, and the weight
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operator for the measurement noise DN = I ∈ L(W2,Y). We assume that (AN ,BN ) is stabilizable
and that (CN ,AN ) is detectable. The output operator is L : H −→ Z, and the partial state to
be estimated is ZN = LUN . Here, we estimate the displacement at base, so L =

(
I 0 0 0

)
and Z = H2

0 (Γ). We define the estimation ẐN of ZN and the worst-case performance measures

as J = sup(UN
0 ,W1×W2)

||ZN−ẐN ||2Z
||wN

1 ||2W1
+||wN

2 ||2W2
+UN

0
TRUN

0

, where R = RT > 0 is the weight matrix. The filte-

ring problem is stated as : Given γ > 0, find a filter Y N −→ ZN , such that J < γ2. This problem
has a solution if and only there exists a unique self-adjoint non-negative solution P to the operatio-
nal Riccati equation (ANP + PAN∗ − PCN∗CNP + 1

γ2PL∗LP + BNBN∗)z = 0 for all z ∈ D(AN∗).

The adjoint AN∗ of the unbounded operator AN∗ is defined from D(AN∗) ⊂ H to H by the equality
(AN∗z, z′)H = (z,ANz′)H for all z ∈ D(AN∗) and z′ ∈ D(AN ). The adjoint BN∗ ∈ L(H,W1) of the
bounded operator BN is defined by (BN∗z, w)W1

= (z,BNw)H, the adjoint CN∗ ∈ L(Y,H) being defi-

ned similarly. The filter Y N 7→ ẐN is given as follows ∂tÛ
N = AN ÛN +K(Y N − CN ÛN ), ÛN (0) = 0

and ẐN = LÛN for t ∈ R+, where the filter gain is K = PCN∗.

6.2 Functional Calculus Based Approximation
This subsection is devoted to apply the approximation method introduced in [7] and [8]. We denote
by Λ, the mapping : Λ : f −→ v, where v is the unique solution of ∂4

x1···x1
v = f in Γ with the boundary

conditions v = ∂x1
v = 0 for x1 = {0, LB}. The spectrum σ (Λ) is discrete and made up of positive

real eigenvalues λk. They are solutions to the eigenvalue problem Λϕk = λkϕk with ||ϕk||L2(Γ) = 1.

In the sequel, Iσ = (σmin, σmax) refers to an open interval that includes the complete spectrum. For
a given real valued function g, continuous on Iσ, g(Λ) is the linear self-adjoint operator on the space

X = L2(Γ) defined by g(Λ)z =
∞∑
k=1

g(λk)zkϕk, where zk =
∫
Γ zϕk dx.

We introduce the factorization of the filter gain K under the form of a product of a matrix of functions

of Λ. To do so, we introduce the change of variable operators ΦH =

(
ΦH11 0
0 I

)
∈ L

(
X 2N+2,H

)
(where ΦH11 =

(
Λ

1

2 0
0 I

)
), ΦW = I ∈ L

(
XN+1,W1

)
, ΦZ = Λ

1

2 ∈ L (X ,Z) , and ΦY = I ∈ L (X ,Y),

from which we introduce the matrices of functions of Λ, a (Λ) = Φ−1
H ANΦH , b (Λ) = Φ−1

H BNΦW ,

c (Λ) = Φ−1
Y CNΦH and ℓ (Λ) = Φ−1

Z LΦH , simple to implement on a semi-decentralized architecture.

A straightforward calculation yield a (λ) =

(
0 a12 (λ)

a21 (λ) 0

)
(with a21 (λ) =

(
−ax1

−aNx1y

ax1
ϕ̄k −aNy

)
,

a12 (λ) =

(
λ−1/2 0
0 I

)
), b (λ) =

(
0 0 I 0
0 0 0 I

)T

, c (λ) = (λ1/2, 1
β−α

(∫ β
α ϕk dy2

)
k=1..N

, 0, 0) and

ℓ (λ) = (I, 0, 0, 0) where ax1
= RB

ρB λ−1/2, aNx1y = ℓCrC

ρB (∂3
y2y2y2

ϕk(0))k=1,..,N and aNy = (− ℓCrC

ρB ∂3
y2y2y2

ϕk(0)ϕ̄k

+ rC

mC(LC)4λ
C
k )k=1,..,N . EndowingH,W1, Y and Z with the inner products (z, z′)H =

(
Φ−1
H z,Φ−1

H z′
)
X 2N+2 ,

(w,w′)W1
=

(
Φ−1
W w,Φ−1

W w′)
XN+1 , (y, y

′)Y =
(
Φ−1
Y y,Φ−1

Y y′
)
X and (ℓ, ℓ′)Z = (Φ−1

Z ℓ,Φ−1
Z ℓ′)X , we find

the subsequent factorization of the filter gain K which plays a central role in the approximation. The
approximation of the functions of Λ is detailed in [5].

Proposition 1 The filter gain K admits the factorization K = ΦH p cT ΦY , where p(λ) is the unique
symmetric non-negative matrix solving the algebraic Riccati equation ap+paT−p(cT c− 1

γ2 ℓT ℓ)p+bbT =
0.

Remark 1 We indicate how the isomorphisms ΦH , ΦY , ΦW and ΦZ have been chosen. The choice of
ΦH comes directly from the expression of the inner product (z, z′)H =

(
Φ−1
H z,Φ−1

H z′
)
X 2N+2 and from

(z1, z
′
1)H2

0 (Γ)
=

(
(∆2)

1

2 z, (∆2)
1

2 z′
)
L2(Γ)

. The choice of ΦZ is similar. For ΦY , we start from CN =

ΦY c (Λ)Φ
−1
H and from the relation (y, y′)Y =

(
Φ−1
Y y,Φ−1

Y y′
)
X which implies that 1 = (ΦY )1,1c1,1(Λ)Λ

− 1

2 .
The expression of ΦY follows. Choosing ΦW is straightforward.
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6.3 An Illustrative Example
We present the numerical results of the H∞ filtering problem for
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Figure 6 – Comparison (a) and
Absolute error (b) between true
and estimated outputs

a silicon array comprised of 10 elastic cantilevers. The base di-
mensions are LB × lB × hB = 500µm × 16.7µm × 10µm, and
those of cantilevers are LC × lC × hC = 25µm× 10µm× 1.25µm.
The other model parameters are the bending coefficient RB =
1.09× 10−5N/m, RC = 2.13× 10−4N/m and the masses per unit
length ρB = 0.0233kg/m, ρC = 0.00291kg/m. We set the initial

condition UN (0) =
(
10−6 10−6 10−6 0 0 0

)T
and γ = 1.2.

The computation is based on a modal decomposition of Λ with 10
modes together with 2 cantilever modes. In this example, the dis-
placement are measured in the interval (α, β) = (36, 40)µm. The
simulation have been carried out in the time interval [0, 1µs] with
a time step 0.1ns. The comparison between the displacement and
the estimated displacement in base is presented in Fig. 6 (a) and
the estimation error is described in in Fig. 6 (b).

7 Conclusions
In this paper, we have studied the problem of state estimation in an array of AFMs based on a
two-scale model. The measurement of displacements is done by an interferometric readout method.
Positive quantization results related to the algorithm of interferometry have been reported, they allow
to consider its FPGA implementation in view of real-time measurements. The full solution of the state
estimation in the base has been provided for static operating regime. For dynamic operating regime,
we have stated the mathematical framework of functional calculus dedicated to semi-decentralized
computation of the solution of a robust H∞ filtering problem and shown encouraging preliminary
results. Finally, an application of our toolbox of robust optimization has been madeto illustrate the
functionality it provides to a designer to achieve design objectives satisfying design requirements.
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