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Résumé : 

Les microarchitectures naturelles et artificielles (mousses, os etc.) suscitent un intérêt considérable dans les 

applications nécessitant la création de propriétés de matériaux sur mesure. La méthode développée par les 

auteurs permet d’obtenir une homogénéisation de larges domaines inhomogènes et les caractéristiques 

obtenues par ce procédé peuvent aussi être visualisées afin de mettre en valeur les variations de ces 

propriétés. En découpant le problème en sous-volumes indépendants, il est possible de paralléliser cette 

méthode de caractérisation et de réduire son utilisation mémoire considérablement. 

Abstract : 

Synthetic and natural micro-architectures (e.g. foams, bone, etc.) are becoming increasingly popular for 

applications requiring tailored material properties. The method developed by the authors enables the bulk 

response of large inhomogeneous domains with two distinct length-scales to be obtained through 

characterisation. The characteristics obtained from the process can also be visualised to highlight the 

variation of properties. By considering independent sub-volumes the characterisation technique provides a 

high degree of parallelism and considerably reduced memory requirements. 

Mots clefs : micro-architectures, homogenization, characterization 

1 Introduction 

When dealing with micro-architectures one issue likely to eventually arise is the analysis of the mechanical 

properties of macroscopically inhomogeneous multi-scale structures. Structures of this class may be naturally 

occurring, such as bone, or computationally generated. The generated micro-architectures are an obvious 

target for numerical optimization due to their flexibility. The optimization of these structures will inevitably 

introduce macroscopic inhomogeneities at some stage in the process. The bulk response of these structures 

can be determined by performing ‘full’ finite element analysis that is with the entire geometry discretized at 

a resolution high enough to ensure mesh independence. However, these full models may easily exceed 

hundreds of millions, potentially billions, of degrees of freedom. A problem only exacerbated by the fact that 

the number of degrees of freedom grows with the cube of the resolution. Solving problems of this magnitude 

is possible with the use of supercomputing facilities, although they will likely require hundreds of hours of 

CPU time. For a very limited number of simulations this may be an acceptable solution, with the added 

advantage of also capturing localized effects. However, in an iterative optimization process where the 

‘performance’ of the structure may be evaluated thousands of times the use of full FEA simulations becomes 

highly impractical. When the performance of a structure is evaluated in an optimization process typically 

only some aspect of the bulk response, such as deflection, is considered. For such properties full FEA 

simulations model the problem in an excessive amount of detail. Thus, there is a need for a method to 

approximate the models in order to reduce the time required to evaluate the structure. 

The approach taken for this work will be to treat sub-volumes of the structure as actual elements and, 

through a series of tests, infer appropriate effective material properties. 
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2 2D Problems 

To demonstrate the proposed homogenization technique we first concentrate on developing it for 2D 

problems. While there may not be such demand for producing 2D approximate models, as very large 2D 

linear problems can be solved with modest hardware requirements, the simplicity of 2D problems provides a 

good starting point for explaining the proposed technique. 

2.1 Constitutive Matrix Recovery from a 3 Noded Triangle Element 

To highlight the basic principle of the proposed homogenization method this section will demonstrate how 

the material properties of a simple 3-node element can be recovered by way of virtual testing. This in itself 

has little to no direct practical use, but the principle is fundamental to the proposed homogenization method. 

The Constant Strain Triangle (CST) element is chosen due to its simplicity. 

We know that the material matrix and element geometry determine the behavior of the element. This is clear 

from how the element's stiffness matrix is formed: 

 [K] = tA[B]
T
 [D][B] (1) 

where A is the area of the triangle, [D] the constitutive (or stress/strain) matrix and t the thickness of the 

element (assumed to be equal to 1 hereon in). The [B] matrix is constructed from the element's shape 

functions, a set of linear displacement functions. 

In this problem we have a triangle element of known geometry consisting of an unknown (assumed) 

homogeneous material. As previously stated, the aim of this exercise is to demonstrate that the material 

properties of the element can be recovered using a series of virtual tests. The only tests which can be 

performed using the finite element method in this instance involve either applying displacements or forces to 

nodes. 

We know that applying a displacement to one of the element's nodes will result in a force, as described by 

Hooke's Law. As this is more straightforward than applying forces to nodes ([K]
-1

 need not be computed) the 

virtual tests will described in terms of nodal displacement. With a known displacement vector the only 

values which remain unknown are those in the constitutive matrix [D], as expected. Thus, it is possible to 

express the nodal forces in terms of [D]. These forces must be equal to those measured by way of virtual 

testing:  

 Fn([D], {U}n) = {Fn({U}n)} (2) 

where {Fn({U}n)} is the vector of measured forces for the displacements {U}n and Fn([D], {U}n) is the force 

in terms of [D]. It is known that, in 2D, three tests must be performed to recover all unknowns. For 

simplicity we choose single node, single DOF tests, which can be shown to be more than sufficient. The 

choice of test is important though. Depending on the macro element's geometry certain combinations of tests 

can results in linear dependent equations being created.  

To find the actual values of the constitutive matrix the following system must be solved:  

 [M] ∙ {d} = { F } (3) 

where [M] is the coefficient matrix, {d} the vector of unknowns (i.e. D1,1,…,D3,3) and { F } the vector of 

measured forces. As the system is over-determined (i.e. contains more equations than unknowns) the 

coefficient matrix is non-square and hence the value of {d} cannot be computed by {d} = [M]
-1

 ∙ { F }. To 

solve this system it is possible to use the method of least squares. Thus we have:  

 d = ([M]
T
 [M])

-1
[M]

T
 { F } (4) 

2.2 Multi-Scale Triangle Elements 

We have previously demonstrated how the constitutive matrix of a 3-node triangle element can be recovered 

by way of virtual testing. In each of these virtual tests a single node is displaced along one axis. The resulting 

forces are then equated to the nodal forces in terms of the effective constitutive matrix in order to find the 

matrix values. As has been noted, this in itself has little direct practical use since the constitutive matrix to be 

recovered must first be known. 
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For practical applications we aim to recover an effective constitutive matrix from a sub-volume bounded by 

a triangle (now referred to as the macro element). This macro element will contain smaller triangles used to 

discretize the sub-volume, which we shall refer to as micro elements. To adapt the method described in the 

previous section we must impose appropriate boundary conditions on the micro mesh such that it is 

constrained to the displacement of the macro element. 

 

FIG. 1 – Macro triangle (bold) discretized using micro triangles 

Given the displacement functions of the macro element and a macro displacement vector (which defines the 

virtual test) the displacement of the external micro nodes can be calculated. 

To follow the same methodology as with the single homogeneous triangle element we must also calculate the 

forces on the macro triangle, for each test. We achieve this using weighted summation of the micro forces, 

again using the element's shape functions. This then provides sufficient information to recover the effective 

homogeneous properties as in the previous section. 

3 3D Problems 

The previous sections presented the principle of the homogenization technique in 2D. We also extended the 

method to 3D and the recovery of effective material properties of inhomogeneous sub-volumes. In the 

previous section the multi-scale example given had been manually constructed for a fictitious domain 

conforming exactly to the macro element. However, in real-world applications where the geometry to be 

homogenized has been acquired (or generated) using an imaging technique it is unlikely to conform exactly 

to the chosen macro element. To address this, a method for ‘cutting’ image volumes to accurately fit macro 

elements will also be developed. As with the 2D case we choose use a simple element to use as the macro 

element for the homogenization, the 4 node linear tetrahedron. 

3.1 Multi-Scale Triangle Elements 

For practical applications of the homogenization the sub-volume within the macro element will likely be a 

multi-phase structure, such as a solid/void micro-architecture. The geometry of which can be specified using 

image data, either generated or acquired using one of the various imaging modalities (e.g. MRI, or CT). 

Traditionally, for any characterization or homogenization, the sub-volume of interest is cropped to fit either a 

cubic or cuboidal domain. For image data, where the domain is aligned with the primary axes, the cropping 

process is trivial - voxels inside the domain are simply extracted. However, when the domain is not aligned 

with the image data, or as in this case is non-cuboidal, simply extracting the voxels considered inside leads to 

a surface which conforms very poorly to the macro element. A distance function based algorithm is used to 

improve this. Fig. 2 shows an example micro-architecture cropped to fit a tetrahedral macro element. 
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(a)         (b)  

FIG. 2 – (a) Example micro-architecture conforming to (b) a tetrahedral macro element 

After the sub-volume has been extracted a volume mesh must be generated to act as the micro mesh in the 

homogenization. The sub-volume is meshed using Simpleware's ScanIP+FE. To ensure the mesh consists of 

good quality elements the "off surface" option is used which allows nodes to deviate from the iso-surface for 

the purpose of improving element quality. Consequently, when locating nodes which lie on the macro 

element's surface a small tolerance must be used. A tolerance of appropriately 1 unit spacing appears suitable. 

Following the creation of an appropriate micro mesh, the same methods presented in Section 2 can be 

directly extended to 3D with the linear tetrahedral element. 

4 Validation 

In order to validate the developed homogenization method we compare it to the often used kinematic uniform 

boundary conditions (KUBC). Further details of how these boundary conditions are applied can be found in 

[1]. The structure chosen for this validation is a periodic micro-architecture known as the Schoen Gyroid. A 

sample equivalent to 8 x 8 x 8 unit cells is tested at a number of volume fractions. Results are presented in 

Fig. 3. The Voigt and Hashin-Shtrikman (HS+) bounds are also included. 

 

FIG. 3 – The effective properties of the Schoen Gyroid unit cell at various volume fractions 

It can be seen, in Figure 3, that the results obtained using the developed methods are in good agreement with 

those obtained using KUBC. The results for both techniques also appear to ‘overtake’ the Hashin-Shtrikman 

bounds beyond a volume fraction of 0.5. This is likely due to the Hashin-Shtrikman bounds providing an 

upper limit for an isotropic distribution of phases, whereas the Schoen Gyroid may no longer be considered 

as such in this range. 
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5 Approximate Models 

With the ability to determine an effective constitutive matrix for an arbitrary tetrahedral sub-volume we can 

now address the issue of multi-scale problems. Of particular interest are the set of problems having an 

irregular (i.e. non-cuboidal) domain. While problems of a more regular nature may be addressed with more 

conventional methods of determining effective constitutive matrices, they are never the less addressable 

using the methods developed in this paper. Fig. 4 shows the results of characterizing a large functionally 

graded structure using the methods described in this paper. 

(a)      (b)      (c)  

FIG. 4 – Visualizing the variation of Young's modulus over a functionally graded structure: (a) original, (b) 

interpolated and (c) volumetric 

These approximate models may then be exported directly to a finite element package, such as Abaqus, where 

macroscopic simulations on the domain can be performed. 

6 Conclusions 

This paper has presented a novel approach to large multi-scale characterization problems in irregular 

domains. By dividing the domain of interest into smaller sub-volumes, based on a coarse macroscopic mesh, 

large problems can be processed efficiently either in parallel or series. The processing of problems using this 

method in series has the advantage that hardware requirements can be considerably reduced as they need 

only be sufficient for the largest sub-volume to be homogenized. In comparison to more classical approaches, 

the developed method is well-suited for multi-scale problems in which macroscopic inhomogeneities prevent 

a single, suitable, representative volume element from being established. Such problems often occur in 

natural structures. For instance, a single RVE cannot be used to model the cancellous bone in the femoral 

head as homogeneous. However, the drawback to this is the requirement that each macro element must itself 

be sufficiently large to be considered an RVE. This in-turn tends to lead to macroscopic meshes consisting of 

a small number of large elements and therefore an over-stiffening of the macroscopic model. An issue 

addressed by introducing additional degrees of freedom to the model. Approximate models produced using 

this technique are exportable to existing finite element packages for macroscopic simulations. They may also 

be used with existing visualization packages where a number of techniques may be used to visualize the 

distribution of effective properties over the domain and hence the influence of any macroscopic 

inhomogeneities, as shown in Section 5. 

The homogenization method itself has been shown to yield effective properties comparable to those achieved 

when using KUBC. The potential application of this approach to additional properties, such as permeability, 

permittivity, thermal, etc... is to be investigated in future work. 

References 

[1] Kanit T, Forest S, Galliet I, Mounoury V, Jeulin D. Determination of the size of the representative 

volume element for random  composites: statistical and numerical approach. International Journal of Solids 

and Structures.2003;40;3647-3679. 


