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Résumé : 
Dans cette communication, nous présentons une approche micromécanique utilisant un schéma 
autocohérent basé sur le modèle de la double inclusion pour prédire les constantes élastiques 
macroscopiques des nanocomposites polymère-argile. Le modèle micromécanique incorpore la 
nanostructure des piles d’argile, modélisées comme des sphéroïdes isotropes transverses, et la région 
contrainte, modélisée comme une interphase autour des renforts. Pour prendre en compte les effets de taille, 
l’épaisseur de l’interphase et les dimensions des particules sont prises comme des paramètres explicites du 
modèle. Au lieu d’une résolution itérative de l’équation implicite du schéma autocohérent, notre formulation 
aboutit à un système d’équations qui peut être résolu simultanément pour déterminer les constantes 
élastiques macroscopiques. Les capacités du modèle sont discutées par des comparaisons avec des données 
expérimentales et l’approche de Mori-Tanaka largement utilisée dans la littérature récente pour cette classe 
de matériaux. 

Abstract : 
In this communication, we present a micromechanical approach for the prediction of the overall moduli of 
polymer-clay nanocomposites using a self-consistent scheme based on the double-inclusion model. The 
micromechanical model incorporates the nanostructure of clay stacks, modeled as transversely isotropic 
spheroids, and the so-called constrained region, modeled as an interphase around reinforcements. To 
account for length scale effects, the interphase thickness and the particle dimensions are taken as explicit 
model parameters. Instead of solving iteratively the basic implicit homogenization equation of the self-
consistent scheme, our formulation yields to a pair of equations that can be solved simultaneously for the 
overall elastic moduli. The model capabilities are critically discussed by comparisons with both experiments 
and the Mori-Tanaka approach widely used in recent literature for this class of materials.  
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1 Introduction 
In the past few years, a considerable amount of research has been conducted to provide a better 
understanding of the mechanical behavior of polymer composites with nanoscale reinforcements such as 
nanotube-reinforced, silica nanoparticle-reinforced and nanoclay-reinforced composites. These materials are 
termed nanocomposites because one or more of the dimensions of the reinforcing particle is about a few 
nanometers of magnitude. Among them, the most promising composite materials could be polymer-clay 
nanocomposites based on organic polymers and inorganic clay minerals consisting of silicate layers, see for 
instance Refs [1-2]. Polymer-clay nanocomposites have attracted during recent years great consideration 
from researchers and industrials since they exhibit enhanced mechanical properties. This improvement is 
observed for a very low weight fraction of nanofillers (nanometric fillers) compared to conventional 
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microcomposite materials containing larger particles. Their lightweight and the high availability of the 
reinforcing phase make this new class of materials as a perfect candidate in several structural and functional 
applications. It is also shown that polymer-clay nanocomposites, compared to pure polymer, present 
remarkable physical and chemical properties such as high thermal stability and excellent barrier properties 
against gases and water [2]. The stiffening effect of the nanoclay particles is generally explained in terms of 
its intense interactions with the polymer matrix (leading to a reduced chain segment mobility in the vicinity 
of clay nanoplatelets), aspect ratio, nanoscopic size, spatial distribution and arrangements of intercalating 
polymer chains in the intersilicate layers. Depending on the state of clay dispersion, the nanocomposites can 
be sorted into three typical structures:  
• Conventional microcomposites, when the clay is in its originally aggregated state with no intercalation of 
polymer chains into the silicate interlayer space. 
• Intercalated nanocomposites, when polymer chains fill the silicate interlayer space forming a well-ordered 
multilayer with alternating organic/inorganic slices. 
• Exfoliated nanocomposites, when silicate platelets are individually delaminated and fully dispersed in a 
continuous polymer matrix. 
The morphology of the nanocomposites, i.e. intercalation or exfoliation, mainly depends on the achievement 
process (e.g. polymerization, compounding and solution methods), the type of the clay (and/or the 
corresponding surface treatment), the type of the polymer matrix, the thermodynamic interaction between the 
polymer matrix and the clay but also the clay concentration into the matrix material. The best performances 
in the mechanical properties are commonly observed with the fully exfoliated structures [1-9], resulting in 
very thin particles with large aspect ratios. The major difference between nanocomposites and composites 
with microscopic size particles is the surface area per unit volume and the number of particles embedded in 
the matrix material for a given volume fraction. Most investigations were focused on nanoclay-reinforced 
composite materials processing and on their microstructural and mechanical characterizations [2]. In the 
meantime, there is still a need to establish predictive mechanical tools for an accurate optimization of this 
recent class of materials. Whereas continuum mechanics models are successfully applied to microcomposite 
materials, the modeling of the overall elastic properties of polymer-clay nanocomposites has been less 
addressed to date. The used models include the rule of mixtures, the Halpin-Tsai equation and the Eshelby-
type micromechanical models [3-7]. Although these models were found to be able to reproduce the elastic 
response of nanocomposites, several crucial physical issues, such as length scale effects and active 
interaction between the nanofillers, remain to be solved to definitely confirm the micromechanical based 
modeling as a pertinent approach for such materials. Indeed, inherent to their structure, these models are not 
able to account for the inter-inclusion interaction in the composite materials. Although there is generally a 
low dilution of clay particles in the nanocomposites, the interaction between particles cannot be overlooked 
because of the nanoscale of one dimension resulting in a large surface area per unit volume. In the present 
paper, we propose a formulation of the overall moduli of composite materials reinforced with transversely 
isotropic spheroids using a self-consistent approach based on the double-inclusion model proposed by Hori 
and Nemat-Nasser [10]. This approach is used in order to take into account not only the particle-matrix 
interaction, but also the interaction between particles. 

2 Model formulation 
In this section, we give the prediction of the elastic constants of composite materials reinforced with 
randomly oriented transversely isotropic spheroids with arbitrary aspect ratio. This prediction is based on the 
double-inclusion model proposed by Hori and Nemat-Nasser [10] using the consistency condition, in which 
the infinite reference medium is replaced by the overall composite material. As shown schematically in 
figure 1 each inclusion I with stiffness tensor IC  is surrounded by a coating of matrix material named 
coated-inclusion (CI) with stiffness tensor MC  to form a double-inclusion (DI), which is in turn embedded in 
an infinite reference medium having a stiffness tensor 0C  and subjected to the same boundary conditions 
than those of the material. For general basis of the double-inclusion model, the reader may also refer to the 
book of Nemat-Nasser and Hori [10]. In the case of multiphase composites, considering the double-inclusion 
model using consistency condition, the basic formula giving the stiffness tensor C  of the composite can be 
written as: 
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FIG. 1 – Topology of the double-inclusion model. 

When each inclusion I  ( )1,2...,=I n  and its double-inclusion DI  are coaxial and have similar spheroidal 
shapes, the strain concentration tensor IA  is defined as: 

 
11: ( ) :
−−⎡ ⎤= + − −⎣ ⎦I I I IA I S C C C S  (2) 

in which IS  is the Eshelby tensor corresponding to the inclusion I . Details for expressions of IS  for the 
inclusions of various shapes can be found in the book of Nemat-Nasser and Hori [10]. We assume that all the 
inclusions I  in the multiphase composite have the same shape and the same elasticity. Consequently, the 
material becomes a two-phase composite composed with the matrix material to which we confer the 
subscript 1 and the inclusions to which we confer the subscript 2. This notation will be implemented in the 
whole paper. For a two-phase composite material reinforced with randomly oriented transversely isotropic 
spheroid particles, the formula (1) can be re-written as: 

 ( ){ }1 2 2 1 2:= + −fC C C C A  (3) 

Curly brackets { }•  represent an average over all possible orientations of term ( )• . The volume fraction of 
the spheroid particles is given by:   
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where a  and b  are the half-lengths of the major and minor axis of the spheroids, respectively, and V  is the 
volume of the double-inclusion DI . To greatly facilitate the tensorial computations in the equation (3), the 
Walpole [11] symbolic notation for transversely isotropic tensors is employed. The reader is referred to Refs. 
[5, 8] for more details. In the case of a randomly orientation of the reinforcements in the matrix material, the 
overall stiffness tensor C  in the equation (3) becomes a fourth-rank isotropic tensor: 

 ( )3 2 3 ,2κ µ κ µ= + ≡C J K  (5) 

in which κ  and µ  are the overall bulk and shear moduli and, J  and K  are two fourth-rank tensors related, 
respectively, to the spherical part and the deviatoric part. 
The matrix material being isotropic, the relation (3) can be re-written as: 

 ( ) ( ) { }1 1 23 ,2 3 ,2κ µ κ µ= + f T  (6) 

After a series of lengthy but straightforward derivations, the overall bulk and shear moduli κ  and µ  can be 
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evaluated: 
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where { } ( ){ } ( )2 1 2: ,= − = Φ ΨT C C A .  

The explicit expressions of Φ  and Ψ  can be found elsewhere [8]. The pair of implicit equations (7) can be 
simultaneously solved via any mathematical software (e.g., Mathematica or Matlab), thus we avoid the 
cumbersome iterative resolution required by the self-consistent scheme. Using the self-consistent scheme, a 
closed formulation was given by Walpole [11] for the overall moduli of composite materials reinforced by 
disc-like particles, i.e. transversely isotropic spheroids with zero aspect ratio. Note that the developments 
drawn in this paper give a general formulation, function of an arbitrary aspect ratio, which lead to the 
Walpole solution [11] if the aspect ratio is zero.  

3 Results and discussion 
As noted above, there are in general three types of nanocomposite materials reinforced by silicate layers. In 
the case of the intercalated nanocomposite structure, a hierarchical morphology of the silicate stacks was 
explicitly introduced in the theoretical formulation from an equivalent stiffness method in which the silicate 
stacks are replaced by homogeneous equivalent particles containing several silicate layers and interlayer 
matrix [8]. It relies on clay structural parameters, including the average silicate interlayer spacing 001d  and 
the average number N of silicate layers per clay stack. This hierarchical structure was also suggested for 
individual silicate layer surrounded by a constrained region in the case of the exfoliated nanocomposite 
structure [8]. The inputs for the developed micromechanical model are given elsewhere [8-9]. 
The effect of the aspect ratio on the overall stiffness of composite material reinforced with randomly oriented 
spheroids is investigated without the consideration of the constrained region. Figure 2 shows the evolution of 
the overall bulk and shear moduli as functions of the particle volume fraction and for various aspect ratios. It 
is seen from this figure that the smaller the aspect ratio, the stronger its impact on the overall moduli of the 
composite material. Our predictions are contained within the Hashin-Shtrikman (H-S) and Voigt-Reuss 
bounds.  

FIG. 2 – Effect of the aspect ratio on the overall (a) bulk and (b) shear moduli of composite materials 
reinforced with randomly oriented isotropic spheroid particles. 

The effect of the particle size is investigated by varying its length from 200 to 1000 nm while keeping its 
aspect ratio constant and equal to 1/200. We consider the exfoliated nanocomposite with 0.02 volume fraction 
of silicate, surrounded by the constrained region. For a given interphase thickness, the effect of particle length 
on the overall elastic modulus of the exfoliated nanocomposite can be clearly seen in figure 3. When the 
interphase is stiffer than the bulk matrix material (figure 3a), it can be seen that the smaller the particle length, 
the higher the composite stiffness enhancement. At the micrometer scale, i.e. for high particle length, the 

  (a) (b) 
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particle size effect is less predominant. When we assign to the interphase a weaker stiffness than that of the 
bulk matrix material (figure 3b), decreasing the particle size leads to a softening of the nanocomposite. 

FIG. 3 – Effect of particle length sd  and the interphase thickness e  (in nm) on the overall Young’s modulus 
of composite materials reinforced with randomly oriented isotropic spheroid particles: (a) iE  = 10× 1E , (b) iE  

= 0.1× 1E . 

In figure 4a are shown our theoretical predictions, the Mori-Tanaka predictions according to Wang and Pyrz 
[5] and the experimental overall Young’s modulus of polyimide-MMT clay nanocomposite materials 
characterized by Tyan et al. [12]. For both models, two values of the particle aspect ratio are considered: 
1/200 and 1/100. Based upon X-ray diffraction curves, Tyan et al. [12] indicate that exfoliated silicate 
platelets are homogeneously dispersed in the polyimide matrix. The Mori-Tanaka predictions of Wang and 
Pyrz [5] underestimate the experimental data for the two aspect ratios. Wang and Pyrz [5] explained this result 
simply by the alignment of the silicate platelets even if they are homogenously dispersed in the matrix 
material. However, there is no real indication in the paper of Tyan et al. [12] of any preferential orientation of 
silicate platelets. While the Mori-Tanaka model underestimates the experimental points, it can be clearly 
observed that our theoretical predictions with a platelet aspect ratio of 1/200 are very close to the experimental 
data. While, according to our theoretical predictions, it is very hard to see any contribution of the constrained 
region, this latter is required in the Mori-Tanaka model in order to get more stiff predicted values and 
therefore to correct the underestimation. 

FIG. 4 – Theoretical predictions of the overall Young’s modulus compared to experimental data of (a) 
polyimide-MMT clay nanocomposites characterized by Tyan et al. [12] and (b) polyamide-6-MMT clay 

nanocomposites characterized by Anoukou et al. [9].  

In figure 4b are shown our theoretical predictions and the experimental overall Young’s modulus of 
polyamide-6-MMT clay nanocomposite materials characterized by Anoukou et al. [9]. The effect of the 
average number N of silicate layers in the equivalent particles on the overall Young’s modulus is shown in the 
figure, with N ranging from 1 to 4, from completely exfoliated (N = 1) to well intercalated (N ≥ 2) 
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nanocomposite. The theoretical predictions are represented as functions of the weight fraction of silicate to 
take into account the intercalated structure [9]. Note that the average silicate interlayer spacing 001d  was taken 
equal to 4 nm. Increasing N results in a drastic diminution in modulus. The theoretical predictions taking into 
account the clay stacks structure seem to give credence to the idea that the nanocomposite tends to be 
intercalated when clay content increases. Obviously, the structural parameter values found for the clay must 
be seen as average values incorporating the fact that aggregates and exfoliated platelets are coexisting in the 
material. 

4 Conclusion 
In this work, dealing with polymer composites reinforced with nanoclay, we have presented a 
micromechanical approach using a self-consistent approach based on the double-inclusion model. Our 
development accounts both for the randomly orientation of reinforcements and for the contribution of the 
constrained region. The resulting formulation yielded to a pair of equations solved simultaneously for the 
overall elastic moduli of nanocomposite materials. The proposed model falls within the H-S bounds and 
reduces to that proposed by Walpole [11] when the constrained region is disregarded and the inclusion aspect 
ratio tends to zero. The proposed model relates the overall elastic stiffness of nanostructured material with its 
structural parameters. Using the general proposed formulation, a parametric study was achieved to evaluate 
the respective effects of clay structural parameters, nanoscopic size of particles and interphase characteristics 
on the overall nanocomposite stiffness. The efficiency of the proposed model to predict the experimental 
elastic response of polymer-clay nanocomposites was shown. 
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