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Résumé : 

L'interaction avec friction entre deux sphères élastiques est un problème fondamental de la mécanique du 

contact. Le déplacement tangentiel dépend de la force normale et tangentielle de manière complexe et, 

habituellement, hystérétique. Nous analysons en détails la caractéristique clef de la mémoire du système (la 

distribution de la contrainte de cisaillement sur la zone de contact) et nous identifions les différents régimes 

qui apparaissent en fonction des conditions variables de chargement. La distribution complète de la 

contrainte de cisaillement dépend du régime actuel et, en plusieurs cas, d'un certain régime passé. Le 

schéma général de l'organisation de la mémoire est établi, ce qui permet de décrire de manière universelle 

le comportement mécanique du système et cela quelque soit l'historique du chargement. Les diagrammes de 

mémoire proposés ici permettent d'obtenir sous forme algorithmique une solution générale analytique du 

problème. 

Abstract : 

Frictional interaction of two elastic spheres is a fundamental problem of contact mechanics. The tangential 

displacement depends on the normal and tangential force in a complicated and, in general, hysteretic 

manner. We analyze in detail the key memory characteristic of the system (the traction distribution in the 

contact zone) and identify various regimes appearing under various loading conditions. The full traction 

distribution depends on the current regime and, in many cases, on some previous regime. A general scheme 

of memory organization is established that enables to describe in a universal way the system's behavior for 

all possible loading histories. The memory diagrams proposed here provide a computer-assisted general 

solution to the problem. 

Mots clefs : Hertz-Mindlin, contact mechanisms, hysteresis, friction, stick-slip 

1 Introduction: basic particular solutions 
The history of the contact problem for two rough spheres (frequently called the Hertz-Mindlin or HM 

problem) dates back to 1880s when H. Hertz found the classical solution [1] for purely normal compression. 

As it was shown, the normal displacement a and the contact radius c are linked to the normal force N by 

relationships 

 ( )
2/3

1/ 2a KR N−= ,  ( )
1/3

c KRN=  (1) 

respectively, in which R is the sphere's radius and K=3(1-ν2
)/(4E) where ν and E are the Poisson’s ratio and 

the Young’s modulus of the material. The distribution of the normal stress in the contact spot is given by 

 ( ) ( )
1 2 23 2 KR cσ ρ π ρ

−
= − , (2) 

with ρ, the polar coordinate. Thus, the values a, c, and the distribution σ(ρ) always depend on the normal 
force N in a simple and nonhysteretic manner. 

This is not so for the tangential displacement b and the shear stress (traction) τ(ρ) that are created if a 

tangential force T is added. Then, as it has been shown by Cattaneo [2] and Mindlin [3], even a small force 

T>0 will result in a creation of a slip annulus s<ρ≤c that propagates inward (s decreases) as T increases. The 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by I-Revues

https://core.ac.uk/display/15523574?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


20
ème

 Congrès Français de Mécanique                                                                  Besançon, 29 août au 2 septembre 2011 

  2 

rest ρ≤s of the contact zone remains stuck. The boundary s between stick and slip zones can be found [4] as 

 ( )
1/3

s KR N T µ= −   , (3) 

and the traction distribution 

 ( ) ( )

2 2 2 2

2 2

,

3
,

2
0,

s

c

c s s

H c s c
KR

c

ρ ρ ρ
µ

τ ρ ρ ρ ρ
π

ρ

 − − − <



= ≡ − ≤ ≤
 <


, (4) 

is given by the Cattaneo-Mindlin function Hc
s
(ρ) that guaranties the Coulomb friction law τ(ρ)=µ σ(ρ) in the 

slip zone. The application of the tangential force results in the tangential displacement 

 ( ) ( )2/3 2 2
b KR c sκ

−
= − , (5) 

where κ is a combination of material constants, κ=(2-ν)µK
2/3

/[2(1-ν)R
1/3

]. The original demonstration [3] 
addresses the case N=const. 

The incremental procedure proposed in [4] that consists in assuming small variations ∆N and ∆T and 

application of the solution (3)-(5) makes it possible to prove [4,5] that this solution holds for changing N as 

well, in the case µ dN/dT<1 (T>0). If µ dN/dT≥1 the incremental procedure provides the following result: the 
slip zone is absent i.e. s=c, and 

 ( ) ( )( )

(0)

c T

cRτ ρ ρ= , (6) 

where 

 ( ) ( ) ( )
( )

( )
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2 2( )
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,
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0,
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c T

c T
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c T c TR dT

c T

ρ
π ρρ

ρ


′≤

′ ′′ −≡ 


′ <

∫ , (7) 

with the c(T) resulting from N(T) according to (2). Note that the existence of functional dependence N=N(T) 

is an important applicability condition for the whole theory. The displacement b can be obtained by 
integration of 

 ( ) ( )
1 1/3/ 2 3db dT N Tκ µ

− −= . (8) 

Equations (3)-(5) and (6)-(8) represent particular solutions (called here H-regime and R-regime, respectively) 

valid for a first loading curve, i.e. when the contact zone initially was free of traction. Another important 

requirement is that one of the conditions µ dN/dT<1 for the H-regime or µ dN/dT≥1 for the R-regime must be 

satisfied during all loading history. The main problem of the HM system is how to extend these solutions for 

the case when µ dN/dT can be lower and higher that 1 at different moments of time, and for the case when 

sgn(dT/dt) changes i.e. the first loading curve is completed. Here we call these events "regime 
transformations" and "switching". 

2 Regime transformations 

Here we consider several examples for regime transformations that enable to understand the general 

principle and then construct memory diagrams containing the complete information about the history of the 
system. 

The simplest example is switching during the H-regime. Suppose that the initial loading of the system by a 

decreasing force T was followed by an increasing branch that started at minimum T=T1. At that point 1, with 

the stick-slip boundary s=s1 and the contact radius c=c1, the traction distribution ( ) ( )1

11

s

cHτ ρ ρ=  satisfied 

two conditions: for ρ≤s1, points at the opposite contact faces do not slip, and, for s1≤ρ≤c1, the traction is 

given by the Coulomb friction law τ1(ρ)=-µ σ1(ρ). It is straightforward to show that, by addition of the 
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combination ( ) ( )
1

s s

c cH Hρ ρ+  to the traction, two other conditions will be met: absence of slip for ρ≤s and 

the Coulomb friction law τ(ρ)=µ σ (ρ) in the slip annulus s≤ρ≤c. Therefore, the result for traction is 

 ( ) ( ) ( ) ( )
11

s s

c cH Hτ ρ τ ρ ρ ρ= + + , (9) 

hence, by integration over the contact spot, 

 ( )( ) ( )( )1 13 3

1 1T T N KR s I N KR sµ µ
− −

= + − + − , (10) 

from which s can be easily found, and 

 ( )( ) ( )( )2/3 2 /32/3 2 2/3 2

1 1b b N KR s N KR sκ κ
− −

= + − + − . (11) 

Suppose then that at point 2 at T=T2 the combination µ dN/dT exceeds 1, so that the system enters into the 
reversible regime. In this case, the traction distribution is given by 

 ( ) ( ) ( )
( ) ( )

2
2

c T

c T
Rτ ρ τ ρ ρ= + . (12) 

where τ2(ρ) is obtained from (9) by assuming T=T2. In the reversible regime, no special efforts are needed to 

guarantee the Coulomb relationship in the slip zone, since this zone is absent (s=c). The displacement 

 
( )

2

2 1/3

2

3

T

T

dT
b b

N T

κ

µ

′
= +

′∫ , (13) 

in accordance to (8). 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 1 – Traction distributions in the considered example and corresponding memory diagrams. (a) Traction 

distribution (10) with its components that illustrate stitching in the H-regime (H+H transformation); (b) 

traction distribution (13) in the zone with µ dN/dT>1, i.e. after H+R transformation; (c) traction (15) after 

R+H transformation. Filling styles used in the diagrams are defined in the legend at the bottom of the plot. 

Now suppose that at the point 3 (T=T3) the combination µ dN/dT becomes again less than 1. Then slip has to 

develop anew, again from the contact boundary c, and, similarly to the first case considered, the Coulomb 
relationship has to be satisfied by addition of the compensation term in the form 

 ( ) ( ) ( ) ( ) ( )3

3

c T s

s cR Hτ ρ τ ρ ρ ρ= − + , (14) 

in which some part 
( ) ( )3c T

sR ρ  of the previously added traction ( )
( ) ( )3

2

c T

c T
R ρ  is removed. It can be shown that 

the new stick-slip boundary s is obtained via the system 
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( ) ( )( )

( )

1 3 3

3

3

C

C

T T T KR c T s

c T T s

µ
− = − + −


− =

, (15) 

in which TC is the tangential force corresponding to the compensation term 
( ) ( )3c T

sR ρ . 

The details of this example can be found in [5]. The three regime transformations are illustrated in figure 1. 

Here for us the essential issue is that the full traction distributions can be coded is a way shown at the bottom 

of figure 1. In this compact representation, a sequence sm (m=1...M) of the previously memorized stick-slip 

boundaries is plotted on the ρ-axis. A complete organization of memory in our problem would also include 

the information on a regime (H or R) responsible for the creation of each of points sm and the signs Im of the 

derivative dT/dt during these regimes. We call the proposed scheme a memory diagram; the principle of its 

creation and evolution is discussed below. 

3 Memory diagrams 

The memory diagram is a sequence of points {s1, s2,..., sM, s} placed on the horizontal bar representing the ρ-

axis between ρ=0 and ρ=c. The previously memorized stick-slip boundaries sm (memory s-points) are 

marked with filled rectangles; they do not move with changing T. The last, hollow rectangle represents the 

movable s-point. The bar consists of sections colored with different color styles: white, H-style, and R-style 

(the latter two are chosen here as gray and hatched filling). At the first moment of time, the horizontal bar 

was colored in white; application of T resulted in appearance of the movable s-point shifting to the left that 

repaints the bar on its right in the H-style. At the moment 1, at which the sign of dT/dt changes, the moving 

s-point freezes and becomes a memory s-point (filled rectangle); a new movable point appears at ρ=c and 

starts shifting from the right to the left. This situation is shown in figure 1 (a) at the moment 2 when 

overloading (R-regime) is about to occur. At this time, two memory points are created: the first one s2 is the 

former hollow point that becomes black and freezes, and the second one corresponds to the contact radius at 

the moment 2, s3=c2. Another, movable s-point coincides with contact radius (figure 1 (b)) that moves to the 

right. The section [s3,s=c] created by the moving point s is colored in R-style. Leaving the R-regime and 

return to the H-regime make the points ρ=s and ρ=c to separate which is shown in figure. 1 (c); the movable 
point travels to the left and again repaints the bar in the H-style. 

 

 

 

 

 

 

 

 

 

FIG. 2 – Memory diagram for the HM problem for an arbitrary loading protocol T(t). The memorized stick-

slip boundaries sm (m=1..M) are placed on the ρ-axis and marked with filled rectangles, while the actual 

stick-slip boundary s (moving) in depicted with a hollow rectangle. Filling style of sections between points 

sm and sm+1corresponds to the regimes responsible for the creation of the point sm. Signs Im of dT/dt in these 

regimes and current I=sgn(dT/dt) are marked below. 

The considered example, despite on its simplicity, illustrates all possible regime transformations: H+H, H+R, 

and R+H. As we have seen, the H+H transformation creates one memory point and an H-styled section of the 

bar, the H+R transformation creates two memory points and an R-styled section, and the R+H transition does 

not produce any new memory point but repaints the R-style in the H-style. In the H-regime, the movable s-

point always goes to the left and is different from the contact radius c. In the R-regime, the movable s-point 

always coincides with c and can move both to the left and to the right. In the H-regime, the last section 

- + + - + - 

0 s2 s4 s5 sM s c s6 

+ 

s1 s3 

+ 

... 

memory s-points movable s-point 

signs Im sign I 
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s<ρ<c is always in the H-style. In the R-regime, the last section sM<ρ<s=c is always in the R-style. 

An application of a more complicated protocol T(t) would result in a picture similar to those shown in figure 

2. Such a portrait completely determines memory effects that can be encountered in the HM problem with 

2D loading. Since the solution b(T) to the problem at any moment of time depends only on the regime and 

the type of the compensation term, only the diagram ending (dashed window in figure 2) is essential for 

building up the curve b(T). The rest of the memory diagram becomes important only if some memory points 

sm, m=1...M, are erased. This happens if s suddenly becomes less than sM. The process of erasing points is 

considered in detail is [5]. If one or more memory points are erased, M decreases, and new memory points 

with lesser m fall into the zone called "the diagram ending" and plotted in figure 2. All possible diagram 
endings are shown in figure 3. 

 

 

 

 

 

 

FIG. 3 – Memory diagram endings corresponding to modes 0H, HH, RH, and R. 

4 Analytical solutions for different modes 

Using the expressions (9)-(15) from the considered example, is it possible to derive the analogous solutions 

for various modes depicted in figure 3. So, for a given memory diagram with the ending of the type 0H, the 
resulting expressions for traction, stick-slip boundary and the tangential displacement are 

 ( ) ( )s

cIHτ ρ ρ= , (16) 

 ( )
1/3

s KR N IT µ= −   , (17) 

 ( )
2 /32 /3 2b I N KR sκ

− = −
 

. (18) 

The same characteristics in the HH mode are 

 ( ) ( ) ( ) ( )( )
M

s s

M c c
I H Hτ ρ τ ρ ρ ρ= + + , (19) 

 ( ) ( )
1/3

1

2 2
M M

I
s KR T T N N

µ

  
= − + +  

  
, (20) 

 ( )( )2/32/3 2 /3 22M Mb b I N N KR sκ
−

= + + − ; (21) 

and for the R mode: 

 ( ) ( ) ( ) ( )
M

c T

M cRτ ρ τ ρ ρ= + , (22) 

 
( )1/3

2

3
M

T

M

T

dT
b b

N T

κ

µ

′
= +

′∫ , (23) 

while the stick slip boundary s=c. Finally, in the RH mode, 

 ( ) ( ) ( ) ( )
M

s s

M c cR IHτ ρ τ ρ ρ ρ= + + , (24) 

                            
( ) ( )( )

( )

1* 3 3

*

T T I KR c T s

c T s

µ
− = + −


=

.  (25) 
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In the last expression, T
*
 corresponds to the terms ( ) ( )

M

s

M cRτ ρ ρ+  of (24) integrated over the contact spot. 

The displacement 

 
( )

( )
*

2 /32/3 2

1/3

2

3
M

T

M

T

dT
b b I N KR s

N T

κ
κ

µ

−′  = + + −
 ′∫ . (26) 

The developed method, supplemented by the complete algorithm [5] for building up memory diagrams, 

enables to obtain in an automated way the solution b(T) for any protocol T(t) and loading condition N(T). An 

example is given below (figure 4) for the situation when the protocol T(t) creates two internal hysteretic 

loops, and the loading condition N(T) is such that µ dN/dT>1 in certain range of T. 

 

 

 

 

 

 

 

 

 

 

 

FIG. 4 – Hysteretic curve b(T) for the protocol T(t) (upper inset) that traces two internal congruent loops 

confined between the same extremum values. The loading condition (lower inset) is chosen such that in the 

whole T-range one overloading interval µ dN/dT>1 takes place for increasing T (gray hatched band). 

In the future, we intend to apply a general formalism describing hysteretic dependencies (Preisach space) to 

the HM problem similarly to as it was done in [6], in order replace the single-purpose memory diagrams 

description by a standard well-known procedure. 

We address these results to a wide range of mechanical scientists or engineers dealing with contact 

mechanics, micro-scale contacts, vibrations of rough contacting surfaces with friction, granular materials, 

nonlinear acoustics including NDT applications, etc. 
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