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Abstract—This paper presents a search-based method for
generating maps for the popular real-time strategy (RTS) game
StarCraft. We devise a representation of StarCraft maps suitable
for evolutionary search, along with a set of fitness functions
based on predicted entertainment value of those maps, as
derived from theories of player experience. A multiobjective
evolutionary algorithm is then used to evolve complete Star-
Craft maps based on the representation and selected fitness
functions. The output of this algorithm is a Pareto front
approximation visualizing the tradeoff between the several
fitness functions used, and where each point on the front
represents a viable map. We argue that this method is useful
for both automatic and machine-assisted map generation, and
in particular that the Pareto fronts are excellent design support
tools for human map designers.

Keywords: Real-time strategy games, RTS, procedural
content generation, evolutionary multiobjective optimization

I. INTRODUCTION

Procedural content generation (PCG) refers to the automatic
or semi-automatic generation of game content. PCG comes
in many flavors, as there are many types of game content
that can be generated (such as levels, adventures, characters,
weapons, planets, plants, histories) and many ways in which
it can be generated (many based on AI/CI methods such as
constraint satisfaction, planning or evolutionary computation,
others on e.g. fractals). PCG can also be used in different
ways in games, for example for offline content creation
during game development, support tools for human designers
or fully automatic online content creation based on player
actions. Similarly, there are different motivations for using
PCG, such as speeding up game development, saving human
designer effort/cost, saving main memory or DVD storage,
academic curiosity or the making possible of completely
new types of games. What is clear, however, is that PCG
is gaining increasing attention among both commercial game
developers, indie developers and academic game researchers.

This paper contributes to the flora of PCG approaches
by presenting a search-based approach to generating maps
to real-time strategy games. More specifically, we use a
multiobjective evolutionary algorithm to generate maps for
the game StarCraft, using fitness functions based on theo-
ries of player entertainment. We believe this approach has
significant merits over previous approaches to generating
terrains, and also that we are the first to automatically
generate complete maps for a specific strategy game. We
extend previous work published in [1] by devising a new
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map representation compatible with StarCraft, and a new set
of fitness functions tailored to this map representation.

A. Procedural map and terrain generation

Maps are central to many computer games, including
First-Person Shooters (FPS) and many Role-Playing Games
(RPG), in which the player experiences the world from a
first-person perspective as he navigates a typically hostile
environment. But they are perhaps most important for strat-
egy games, both of the turn-based variety and Real-Time
Strategy (RTS) games. In these games, the player views the
playing area from a third-person perspective (usually from
above) while directing one or several units as they traverse
an area and perform missions, usually involving battle. In
this paper, we will mainly be concerned with RTS games.

Most strategy games come with a set of hand-crafted maps,
used both in single-player “campaign” mode and multi-player
matches. However, there are numerous reasons for wanting
to automatically generate maps. Perhaps the most obvious
reason is that by generating a fresh map each time the game
is played, you extend the life-span of the game by permitting
the player to explore a fresh map and the specific challenges
it entails each time the game is played. This also means that
any advantages a player has accrued through learning a map
by heart are nullified.

A slightly less obvious reason is that maps could be
tailored to suit specific players or groups of players, and/or
to generate particular gameplay experiences. For example,
a player that has proven adept at a particular form of
strategy might be presented with a freshly generated map
that challenges her to develop other aspects of her strategic
thinking; or, if she has been determined by the game to be
less motivated by challenge and more by easy progress, a
new map could be generated that plays to the strengths of
her particular playing style while seemingly dissimilar to
previous maps she has played. In a multi-player game, maps
might be generated that balance out the strengths of of differ-
ent players’ playing styles and levels of proficiency, without
resorting to explicit handicapping in terms of game rules
or units supplied. Such a mechanism would place particular
demands on models of player behavior and preferences, as
well as on how the map creation algorithm can be controlled.

But one might also want to use procedural map gener-
ation algorithms as authoring and design support tools, to
complement human creativity. In this case the PCG tools
would be used off-line, before a game is shipped or before
new high-quality maps are made available for download. The
role of the algorithm would be to suggest new map designs
according to specified parameters or constrains, which could
then be modified and refined by human map designers.
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While most strategy games stick with prefabricated maps
(possibly complemented with an end-user map editor), a
significant minority are based on random map generation.
An influential example is the Civilization series of epic turn-
based strategy games, in which the default game mode sees
the player playing on a newly randomly generated world
map. No details have to the authors’ best knowledge been
released about Civilization’s map generation algorithm, but
the very short time taken to generate a map suggests a
relatively uncomplicated algorithm. The available parameters
for map generation are relatively few, the most important one
relating to size and connectedness of the world’s landmass.

The probably simplest way of generating maps similar to
those used by Civilization is to seed the ocean with embry-
onal islands, and having them grow out in random directions
a predefined number of steps [2]. Slightly more advanced
approaches involve using fractals, such as the diamond-
square algorithm [3]. The diamond-square algorithm works
by iteratively subdividing areas of space and offsetting the
midpoint by random amounts. An advantage of this family
of algorithms is that they are so fast that they can often be
used for real-time terrain generation [4].

Recently, Doran and Parberry suggested the use of soft-
ware agents for generating terrain [5]. In their approach, a
large number of agents are let loose on an initially featureless
piece of terrain and collectively shaping it. Each type of agent
has a particular task, and the workings of some of them
resemble forces of nature; so for example the river agents
travel from mountains to coast following the steepest descent
gradient. This approach is claimed to be more controllable
than fractal-based terrain generation algorithms.

The roguelike genre of games (the original Rogue game
as well as countless successors, such as Nethack, Moria
and Diablo) is unique in being fundamentally based on
random map generation. In these games the player fights
through a randomly generated dungeon – walls, placements
of monsters, traps and treasure are all generated at the
beginning of each game or play session. The dungeon gener-
ators used here often work either similarly to fractal terrain
generation approaches (generate a straight line from start to
exit, iteratively deform the path a number of times, and then
grow randomly branching paths until the room is filled), or
by glueing together a number of prefabricated segments [2].

B. Search-based procedural content generation

The above examples represent what can be called con-
structive PCG. This means that the generation algorithm
only makes one attempt: it proceeds from start to finish with
none or only insignificant backtracking. In contrast to this,
generate-and-test algorithms make several attempts, and only
keep those candidate maps content instances that pass some
sort of test. One example is Tarn Adams’ ambitious game
Dwarf Fortress, for which initial fractal map generation is
usually repeated a couple of times, and the user is shown
screenshots of “failed” maps along with explanations of what
went wrong, e.g. wrong elevation distribution.

Search-based procedural content generation (SBPCG) is
a particular type of generate-and-test PCG, where the gener-
ated candidate content is not simply rejected or accepted by
the test but graded on one or several numeric dimensions,
and where a search algorithm is used to find better content
based on the evaluations of previously generated content.

Usually, some sort of evolutionary algorithm (e.g. a genetic
algorithm or an evolution strategy) is used as the core algo-
rithm for SBPCG. In these cases, a population of candidates
(e.g. maps) is created randomly at the beginning of a run of
the algorithm, and at each generation the worst candidates
(according to some fitness function) are replaced with new
candidates generated through mutation and/or recombination
from the best candidates. Core concerns when devising an
SBPCG solution to some content generation task is how to
represent the content and how to devise the fitness function.
An overview of SBPCG can be found in [6].

One of the main arguments for SBPCG is that it allows
the designer to formulate the desired properties of the content
more explicitly than with other content generation methods.
Another argument is that it allows the use of content rep-
resentations that sometimes yield infeasible solutions (e.g.
unusable maps), as such candidates can be discarded but still
form the basis for later, better candidates. The main argument
against SBPCG is that it can be very time-consuming,
making it less suitable for real-time PCG – but choosing
the fitness function and the search space carefully can allow
content to be generated in a fraction of a second.

There have been a few previous attempts to use evolution-
ary algorithms to generate height maps for terrains before.
Frade et al. used genetic programming to evolve terrains,
with the evolved expression tree mapping coordinates on
a grid to elevation at that point. The fitness function was
based on “accessibility” meaning that all flat areas should be
connected while no individual flat area grows too big. Only
the height map was evolved, no other features of the map [7].

Sorenson and Pasquier evolve simple dungeon layouts for
e.g. rogue-like games, using a map representation where
rooms and hallways of different sizes are placed on a two-
dimensional surface which is by default untraversable. The
fitness function is simply the length from start to finish, and
the only constraint that the path should be connected [8].
Similarly, Ashlock et al. evolved path-planning problems in
which the objective was to maximize distance from start to
finish by placing walls at various positions and angles [9].

In the above examples, only parts of game environments
(e.g. height maps and walls) are evolved – not complete,
playable levels with e.g. items, monsters, resources. This
is probably why the fitness functions are only tangentially
related to actual game playability and entertainment; path
length and accessibility do not alone make for a well-
designed level. In contrast, some recent SBPCG papers have
explicitly been based on notions of player entertainment.
Togelius et al. evolved racing game tracks based on objec-
tives inspired by Malone’s entertainment dimensions [10];
Pedersen et al. evolved levels for Super Mario Bros based
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on a data-driven model of player affect [11]; Hastings et al.
evolved weapons for a 2D shooter based on player activity in
the game [12]; Togelius and Schmidhuber evolved predator-
prey games [13]; and Browne evolved board games based
on measures derived from studies of successful games [14].
None of these studies concerned maps or terrains, however.

C. Multiobjective evolution

In standard evolutionary computation a single fitness func-
tion is used to evaluate candidate solutions. However, for
many problems it is hard to combine all demands into a
single objective measure; e.g. when we want a car to be
cheap, fast and safe, we need to optimize in three fitness
dimensions. Several objectives are typically conflicting, for
example a faster car is typically less cheap.

The intuitive solution is to simply add the fitness mea-
sures together (using some weighting of each measure),
and optimize for the resulting composite measure. This
method has several drawbacks. One is that you do not
know the appropriate weighting of the fitness dimensions
until you have investigated the distribution of solutions
among each dimension. Another is that optimization along a
single dimension does not allow for exploration of the often
complicated ways in which the various fitness dimensions
interact (e.g., above a certain price threshold faster cars might
not be less cheap).

Multiobjective evolutionary algorithms (MOEA) were in-
vented to solve this problem, and are now a major research
direction within evolutionary computation as well as com-
mon in industrial applications. An MOEA presumes at least
two fitness functions and proceeds towards the Pareto front
of Pareto-optimal solutions, i.e. solutions satisfying that there
is no other solution being equal or better in all dimensions.
The valuable result of an MOEA is its final set of solutions,
whose subset of non-dominated solutions (optimal within the
set) presents an approximation of the Pareto front.

When using two or three objectives1, the Pareto front
can be conveniently plotted in a graph, allowing visual
exploration of the tradeoffs between these objectives. Visual
or automated inspection of Pareto fronts helps to detect
situations where a small improvement in one objective would
lead to a huge loss in another, which is usually undesired.
The possibility to visualize the tradeoffs inherent in a design
problem makes multiobjective optimization via MOEAs a
great but underused tool for design and authoring support.

Optimizing some aspect of a game for playability is inher-
ently a multiobjective problem, as it is very hard to formulate
a single-dimensional automatic measure of how entertaining
a game is; it is indeed not trivial to formulate partial measures
of game enjoyability. When designing game content, it would
seem invaluable for a designer to be able to conveniently
visualize the tradeoffs inherent in a design problem; when
automatically generating game content tailored to particular

1More than three objectives are usually hard to handle for any MOEA, as
the number of incomparable solutions—better in some objective, but worse
in another—grows exponentially with the number of objectives.

players, it would also seem ideal to first generate a selection
of candidate content from which appropriate game content
for the particular player could then be chosen, based on their
previous playing style and experience model. Despite this
seemingly perfect fit, we have not seen any examples of
MOEAs used for PCG; the closest we can find are examples
of multiobjective evolution of NPC behavior [15].

D. This paper

In this paper, we show that search based procedural content
generation can be used to automatically create playable maps
for a very popular real-time strategy game. In order to do
this, we propose and motivate a number of fitness measures
for such maps, which we argue can also be generalized
to maps in other games. We also show how multiobjective
evolution can be used as a design support tool, by exploring
the tradeoffs between the proposed fitness functions.

In the following sections, we describe: the StarCraft game,
which we use to test our maps; the map representation and
genotype-to-phenotype mapping; our fitness functions; the
multiobjective evolutionary algorithm we use; our experi-
ments, and finally what we can learn from all this.

II. THE STARCRAFT REAL-TIME STRATEGY GAME

StarCraft is one of the most famous strategy games ever. It
was released by Blizzard Entertainment in 1998 and has, as
of 2009, sold more than 11 million copies [16]; it is famous
for its fine balance between the different playable factions,
and very popular for tournament play.

The game features three factions; terrans, humans that have
left planet earth to travel to distant areas of our galaxy; zerg,
a race of insectoid like creatures; and protoss, a humanoid
race with very advanced technology and psionic abilities.

In the game the player has to plan and build a base
with different structures, each with a specific purpose. To
afford structures and building units the player has to gather
resources from minerals and vespene gas, located around
the game map. Units must be created to defend the home
base and to attack and defeat the enemy players. Different
units have different strengths and weaknesses; e.g., some are
good defenders, some deal plenty of damage but are not very
mobile, others are fast but don’t do very much damage. The
game also features a technology tree in which players can
spend resources to research upgrades for units and structures.

The game can be played in a single-player story line mode,
or a skirmish mode where the player battles against other
players or computer controlled enemies. A large world-wide
fan base has contributed large amounts of player generated
content, such as multiplayer maps and map editors.

III. MAP REPRESENTATION

In these experiments we evolve maps containing all of the
crucial elements for a StarCraft map. These are: locations for
bases and for two types of resources (minerals and Vespene
gas), and areas of impassable terrain (mountains and rivers).

We use two different representations of the map — an
indirect representation used for searching (the genotype), and
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a direct representation for fitness testing and visualization
(the phenotype). Each time fitnesses are calculated, a pheno-
type is created from each genotype. The genotype (indirect)
representation is a fixed-length array of real values between 0
and 1. The length of the array is decided by the number and
types of map elements. Four types of elements are possible,
with parameters as follows:

• Base: φ and θ coordinates of each base
• Mineral source: x and y coordinates of each mineral

source.
• Gas well: x and y coordinates of each gas well.
• Impassable area: These represent water or rocks in the

finished map. Each impassable area has five parameters,
namely x and y start coordinates, probability of left turn,
probability of right turn, and probability of gap.

For our experiments, we generated maps with three bases,
four resources of each type and five impassable areas, leading
to genomes of length 3 · 2 + 5 · 2 + 5 · 2 + 5 · 10 = 76.

This map representation has the advantage that it can be
efficiently searched by many common global optimization
algorithms, such as evolution strategies and particle swarm
optimization. In particular, many of these algorithms assume
a real-valued representation, and that local changes in the
genotype have local effects in the phenotype. For example,
when changing the φ coordinate of the base, the positions
of nearby resources are not changed, and neither are the
mountains; it is easy to imagine representations where this
would not be the case, such as many fractal representations.
Additionally, this representation is scale invariant; a pheno-
type of any size can be created out of the genotype.

The phenotype (direct) representation is designed to be
easy to base fitness calculations on, and to convert to
StarCraft’s internal map format. The representation consists
of a heightmap in the form of a 64× 64 grid (the size of a
small StarCraft map) where each cell can be either passable
or impassable and three lists of x and y coordinates of
bases, mineral sources and gas wells, respectively. The lists
of resource sites are populated from the corresponding lists
in the genotype representation by simply multiplying each x
and y coordinate by 64.

The coordinates for each base are generated using a
method based on polar coordinates. The two parameters for
the base are treated as angle and length of an axis extending
from the center of the map, at the end of which the base
is placed. Additionally, the representation is constrained so
that each base is forced to be within its own arc of the circle,
meaning that for three bases each base is placed within its
own 120 degree arc; the length of the axis is constrained to
between 1/2 and 1 of the radius of the map, meaning that
bases cannot be place too close to the center of the map. By
means of polar coordinates, we restrict base placement so
as to make neighboring bases unlikely in order to increase
the chances of obtaining a playable map. Coordinates lying
outside the map are simply mapped to the outermost cell of
the map in that direction. This increases the probability of
placing bases on the map borders and is a desired effect.

All cells of each map phenotype are by default passable.
Impassable areas are then “drawn” in a manner similar to
turtle graphics [17]. The drawing of each impassable area
starts at its designated x and y position by marking that cell
as impassable. The “pen” then repeatedly moves one step in
its current direction (starting direction is right) and marks the
new cell as impassable, until it reaches a cell which is already
impassable or the border of the map. At each cell, it decides
whether to turn left, turn right and/or “lift the pen” and leave
a gap in the line according to its designated probability for
each of these actions. Only one of these actions is taken
at each step, with a turn angle of 45 degrees. That is, if
the turtle turns left, the next step starts over again at the
same position without painting. If it does not turn left, the
probability for a right turn is checked, and if it does not turn
right, the probability for a gap is checked. If none of this
applies, the turtle just moves one step forward in its current
orientation and marks the new position as impassable. As
it often happens that the resulting line is not closed, one
attempt to draw towards the original x and y starting position
is made by simply setting the orientation according to the
vector between current and starting position and starting the
whole process over again. One further additional constraint
is used to prevent very long lines without turns: whenever
5 consecutive steps have been made into one direction, the
orientation of the turtle is changed by rotating it 45 degrees
into the direction to the starting position.

In order to ensure a completely deterministic genotype to
phenotype mapping, a fixed random number table with 200
entries is used to decide whether to turn and/or leave gaps.

The last steps in the generation of a complete Star-
Craft map are that (1) a GIF image file is generated
from the phenotype, in which each cell type has a dif-
ferent color, and that (2) the SCPM software (available at
http://www.clanscag.com) automatically creates a complete
StarCraft map from the image. Further manual editing is then
possible using StarCraft map editors. The maps shown in this
paper have been slightly edited for visual appeal, without
changing the functional structure of the evolved maps.

IV. FITNESS FUNCTIONS

In SBPCG, there is a distinction among three types of
fitness functions: interactive, simulation-based and direct [6].
Interactive fitness functions rely on human game players
playing the candidate content and providing direct or indirect
feedback about its quality. While in a sense the ultimate
type of fitness function, interactive fitness functions require
massive amounts of player input and are only possible in
some types of games, such as ongoing massively multiplayer
games [12]. Simulation-based fitness functions assess content
automatically through algorithmically playing the game or
some aspect of the game using the candidate content. Such
evaluations can potentially be accurate predictors of player
enjoyment, but require both artificial intelligence capable of
playing the game competently in a human-like manner and
often substantial computation time [10], [13]. Direct fitness
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functions base their fitness calculations directly on the pheno-
type representation of the content. Such fitness functions are
obviously much easier to implement and faster to compute
than simulation-based functions, but it is hard to devise direct
fitness functions that accurately predict key aspects of player
experience (except when basing them on data-driven player
models built from extensive user studies [11]).

For this paper, we do not have the luxury of having
human players sit through countless hours to test the tens
of thousands of candidate maps the evolutionary algorithm
generates, nor any reliable and efficient way of testing maps
through algorithmic playthrough of the full game. However,
we can simulate one key aspect of RTS gameplay: moving
between two points along the fastest possible path. We use
the classical A* algorithm for this task, which returns the
number of cells along the shortest path (avoiding impassable
areas) – if not otherwise specified, “distance” means number
of cells on the shortest path found by A* in the rest of the
paper. We defined eight different fitness measures (mainly
based on distance) intended to reflect various desired game
characteristics. It was at the time of their formulation not
clear to which degree the various functions conflicted or
induced searchable fitness landscapes. The experiments in
this paper investigate the interplay of pairs of these functions.

The designed fitness functions are motivated by a number
of desirable characteristics of good StarCraft maps:

• Playability: It should be possible to engage in normal
gameplay: building up a base, attacking enemies etc.

• Fairness: All players should have similar possibility of
winning the game given the same skill level. Note that
this does not necessarily mean that starting positions
should be or look similar.

• Skill differentiation: Superior tactics should win more
often, so the map should allow use of different tactics.

• Interestingness: Maps should not all look the same, and
should not be bland (e.g. symmetrical or featureless).

Before calculating any of the below fitness measures, the
map is “sanity checked” by ensuring that every base and
all resources are accessible (there exists a path which is not
blocked by impassable areas) from every other base. Any
map not satisfying these criteria is assigned a fitness of 0
in all objectives, effectively discarding it. This test ensures
basic playability. All fitness functions are to be maximized
and are normalized to values in [0, 1].

The first two fitness functions relate mainly to the prop-
erties of the placement of players’ starting bases, and to the
impassable area around and between bases.

• fb0: Base space. For playability, some space for other
buildings is required next to the base. Out of the 5 · 5
cells surrounding a base, the base space is defined as the
fraction of these cells that are passable and reachable
within 5 steps (using A*) from the base. This fitness
value is the mean of the base space of all bases.

• fb1: Base distance. The measure makes sure that the
bases are not too easy to reach from each other so
that the players have the opportunity to develop their

Fig. 1: Unsafe (left) and safe (right) resources. Bases are
depicted by pentagons, resources as circles. The lines mark
shortest possible paths for attackers/defenders.

base before clashing with the others. It contributes to
playability and skill differentiation as the game is more
difficult for all players when starting close to each other.
fb1 is the minimum distance between any two bases,
divided by the sum of the map’s width and height.

The next four fitness functions relate to the placement of
resources, relative to each other and to bases; all of these
measures mainly contribute to fairness.

• fr1: Distance from base to closest resource. The dis-
tance from each base to its closest mineral and its closest
gas wells is calculated. fr1 is the quotient between the
minimal and maximal distance to the closest resource
for all bases.

• fr2: Resource ownership. Each base is associated with
its closest resource (done separately for minerals and
gas wells) and the base is considered as the owner
of that resource. In case a resource is the closest to
more than one base, the bases own only a fraction of it
each (assuming fair sharing). fr2 is the average fraction
players own of their closest resources, where a value of
1 means that all resource are clearly assigned.

• fr3: Resource safety. Another measure of how clearly
resources are assigned to a single player, fr3 mea-
sures the average deviation of path lengths between
one resource and all bases (see Fig. 1). So, for bases
b1, ..., bn and resources r1, ..., rm we calculate all path
lengths between resources and bases and group them
by resource type: ∀j = 1, . . . ,m : Dj = {dist(rj , bi) |
i = 1, . . . , n} . fr3 = min{sgas, sminerals}, where sgas
and sminerals are simply the average standard deviations
of the respective sets Dj .

• fr4: Resource fairness. For each base, the shortest
distance to both types of resources is calculated. The
fitness is then calculated as 1 − (max −min), where
max and min are the maximum and minimum distances
between a base and its nearest resource.

The remaining two fitness functions deal with the character
of the paths of the map. These functions mainly contribute
to skill differentiation and interestingness.

• fp1: Choke points. We consider the average narrowest
gap on all paths between bases. The narrowest gap along
a path is calculated by first calculating a shortest path
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and then traversing along the path and counting the
width of the path at each cell. Path width is calculated
through determining whether the path is currently mov-
ing horizontally or vertically through comparison with
the previous cell in the path, and searching orthogonally
to the path direction until either an impassable cell or
the border of the map is encountered. Choke points
contribute to skill differentiation in that a good player
will be able to exploit such points through using a
smaller defending force to stop a larger attacking force,
which cannot use the strength of its numbers as they
have to pass sequentially through the narrow gap.

• fp2: Path overlapping. We consider the paths from the
bases to all resources and calculate to what extent they
overlap. In case many cells are used from different bases
we assume that the players’ units are likely to meet.
The value of fp2 is the average number of uses of the
map’s cells. It contributes to skill differentiation, as it
increases the number of possible flash points which the
player must monitor for conflicts.

V. MULTIOBJECTIVE EVOLUTIONARY ALGORITHM

Most MOEAs work relatively similarly. A population of
search points (called individuals for historical reasons) is
generated randomly at first, and then adapted to the problem
in order to move towards the Pareto front by a repeated cycle
of variation and selection. Variation creates new search points
by mixing information of existing ones (recombination) and
performing undirected steps with a defined expected length
(mutation). Selection choses the best of the old and new
individuals for the preceding iteration and deletes the others.
This working principle has its advantages in the minimal
necessary knowledge of the optimization problem (black box,
no algebraic form or gradients needed) with which it is
capable to handle complex problems. On the other hand,
black box algorithms are somewhat slower than classical
optimization algorithms on convex/very simple problems.

The most popular and long-established MOEA, NSGA-
II [18], has proved its worth in many benchmark and real-
world applications. However, it is nowadays outperformed by
state-of-the-art MOEAs, such as the SMS-EMOA [19] which
is known as a fast descendant of the NSGA-II.

The SMS-EMOA, which we use in this paper, generates
only one new individual per cycle and removes the individual
with the smallest hypervolume contribution, i.e. the one that
dominates the smallest objective space. To accommodate
the need for setting one or several constraints, we employ
a modified selection scheme here. Individuals outside the
allowed region get a penalty equaling their distance to
it. When considering which individual to remove, the one
with the largest penalty always gets precedence. Thus, valid
individuals are never removed in the presence of invalid ones.

We employ standard recombination/mutation operators
SBX and PM [20], and set the run length after some testing
to 50000 evaluations. In all experiments, we use populations
of 20 individuals, which we consider sufficient to achieve a
representation of the Pareto front.

VI. EXPERIMENTS

A. Initial Study

Before the main investigation of tradeoffs between our
fitness functions, we performed initial exploratory studies
to see whether the functions were possible to optimize,
whether they were trivial, and whether there seemed to be
any conflicts with other objectives at all.

We found that both of the base placement functions were
very simple to optimize to maximal or near-maximal values.
We therefore included both of them as constraints in the map
generation. fb0 (base space) is additionally not conflicting
with any other objective, so we made it a hard constraint
(maps with fb0 < 0.5 are discarded) and do not use it as a
proper objective. As there can still be some value to maps
with low fb1 (base distance), maps with fb1 < 0.5 are just
penalized by subtracting 0.5−fb1 from all their fitness values;
additionally, fb1 is used as an objective in its own right.

B. Main Study

The aim of our main study was to find out the degree of
conflict between the map objectives we have invented. We
performed a number of 2-objective runs, where we test pairs
of objectives against each other. All objectives except fb0

were tested, and each pair was used in 10 runs; the results
can be seen in tables I and II, using two different indicators
of the degree of conflict.

Table I shows the average sizes of the final Pareto front
approximations, i.e. the number of non-dominated solutions
in the last generation. In the absence of any conflict between
two objectives, the Pareto front would contain a single indi-
vidual that maximizes both objectives. We therefore consider
small fronts to be indicators of a low degree of conflict.

Table II shows the hypervolume of the final non-dominated
sets relative to the reference point (1, 1). A value of 1.0
indicates that both objectives are maximized to optimality (or
close enough regarding the numerical accuracy of the tables).
In case the Pareto front approximation is very accurate the
hypervolume value even reflects the shape of the front, e.g.
a diagonal line has a value of 0.5. For this indicator, low
values indicate high degrees of conflict.

Note that the algorithm might or might not be able to find
the true Pareto front, in general or within the allotted number
of generations. There is no way of knowing the accuracy of
the current Pareto front approximation; we can therefore not
say with absolute certainty that there is or is not a conflict.

Fitness function fr2 (resource ownership) is very easy to
optimize. It reached very high hypervolume values indicating
that there is little conflict with other objectives, and that it
might be more suitable as a constraint. However, surprisingly,
when combining fr2 with fp1 (choke points) the whole
population is non-dominated.
fp1 is itself very easy to optimize as having paths of

minimal width it just requires small gaps in some impassable
barrier; see figure 2 for examples. fr2 and fr3 are both
attempts at measuring almost the same underlying quality,
and predictably there is almost no conflict between them;
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Fig. 2: Example maps generated by simultaneous optimization of fp1 and fr4.

TABLE I: AVERAGE NUMBER OF NON-DOMINATED INDIVIDU-
ALS IN THE FINAL POPULATION FOR EACH FUNCTION COMBINA-
TION.

fr1 fr2 fr3 fr4 fp1 fp2

fb1 6.9 1.6 5.0 7.8 2.9 7.5
fr1 5.8 9.1 3.4 3.7 7.6
fr2 1.2 2.7 20.0 1.3
fr3 7.3 3.3 8.7
fr4 2.8 8.1
fp1 4.2

TABLE II: AVERAGE HYPERVOLUME VALUES OF THE NON-
DOMINATED INDIVIDUALS IN THE FINAL POPULATION.

fr1 fr2 fr3 fr4 fp1 fp2

fb1 0.675 0.724 0.394 0.673 0.644 0.075
fr1 1.000 0.452 0.993 0.895 0.107
fr2 0.504 0.993 0.900 0.114
fr3 0.473 0.479 0.053
fr4 0.891 0.108
fp1 0.099

the average Pareto front size is just over 1. All hypervolume
values involving fp2 (path overlapping) are very small,
maybe due to inadequate normalization. An improvement
would be to normalize with respect to free cells only rather
than all cells. Figure 3 shows a selection of Pareto front
approximations for the objectives (fb1, fr4) and (fp1, fr4).
The diversity is low and special mechanism are required to
improve it. For technical reasons, the objectives have been
negated and values transformed to [−1, 0] for minimization
in the SMS-EMOA.

C. Map Generation

Figure 2 depicts two maps resulting from the simultaneous
optimization of fr4 and fp1. The map was generated using
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Fig. 3: Pareto front approximations for (fb1, fr4), (fp1, fr4).
The upper plots depict the results of 10 separate runs; the
lower ones their combined non-dominated individuals.

the method described in section III but with only two bases.
These maps are used as training maps in the CIG 2010 RTS
StarCraft competition [21]. The large blue and red circles
mark the two bases. Minerals are indicated by light blue
diamonds, gas wells by a crater. The impassable areas are
drawn either as mountains (gray) or as water (dark blue).
The bases are situated close to the map borders (probably
due to the base placement method and the fb1 constraints),
the impassable areas are perforated with small gaps (fp1) and
the resources are very evenly distributed (fr4).
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D. Discussion

Our various fitness functions turned to differ greatly in how
easily they were to optimize and their potential for interesting
conflicts with other objectives. The base placement functions
fb1 and fb2, were so easy to optimize that they could be
converted to constraints.

The result of optimizing for the resource placement func-
tions looked very different upon visual inspection. We were
less than satisfied with functions fr1 and fr2; the latter
because it is too easy to optimize, and the former because
it results in maps that do not look very StarCraft-like. fr4,
which considers all resources rather than just the closest ones,
renders much more palatable results. This suggests that a map
generator could use something like fr4 to generate the global
resource placement, and then simple place one resource of
each type within a single-screen line of sight from each base.
A similar measure that allows the difficulty of the resources
to be scaled would be interesting as well.

Optimizing the choke point function fp1 tends to generate
scattered and disconnected impassable areas, suggesting that
optimizing for low values of the same functions could gener-
ate areas of compact impassable areas and open spaces. This
is a very nice feature, and when used together with a con-
flicting objective allows us to generate a continuum between
extremes in terms of both gameplay and visual appearance.
At the same time, a more refined choke point function could
be devised that aims for single gaps in otherwise connected
impassable barriers. We see some potential in maximizing the
interaction of players by the path sharing function, but in its
current form it is hampered by inappropriate normalization.
Yet other similar measures may help to design maps of
different character and complexity in order to scale between
different levels of player experience.

VII. CONCLUSIONS

In this paper, we used multiobjective evolutionary algo-
rithms, together with a relatively indirect map representation
to evolve complete playable maps for the RTS game Star-
Craft. A number of fitness functions measuring map qualities
connected to playability, fairness, skill differentiation and
interestingness were defined and their interplay investigated.
We believe this is the first time search-based procedural
content generation has been used to create playable game
maps, and possibly the first time multiobjective optimization
has been used for any sort of content generation for an actual
game. We have also shown that there exist a number of
interesting tradeoffs between map objectives, which can be
used together with multiobjective optimization to automati-
cally explore the boundaries of design space for a particular
class of content. Such a mechanism can be used both for
completely automated adaptive content generation, and to
assist human content designers.

Future work will deal with optimizing more than two
objectives simultaneously, and on combining direct fitness
functions (as used here) with simulation-based fitness func-
tions. We will also verify the quality of generated maps

through user studies. Maps generated by our methods will
be used in the CIG 2010 RTS competition on StarCraft [21].
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