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Abstract: 
In this paper, we present a theoretical and numerical analysis of frictional contact problems for large 
deformation elastoplastic based on the finite element method (FEM) and the mathematical programming. 
The study is done on an elastoplastic material obeying to the von Mises criterion. The Coulomb’s friction 
contact is used to implement the frictional boundary conditions and is formulated by the bipotential method, 
which leads to only one principle of minimum in displacement. 
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1 Introduction 
A large number of algorithms for the modeling of contact problems by the finite element method have been 
presented in the literature.  

See for example the monographs by Kikuchi and Oden [1], Zhong [2], Wriggers [3], Laursen [4] and the 
references therein. De Saxce and Feng [5] have proposed a bipotential method, in which an augmented 
Lagrangian formulation was developed. In this work, the boundary condition for contact law with Coulomb’s 
friction in the interface is taken into account and is described by the bipotential concept leading us to 
minimize only one principle of minimum. On the other hand, the problem of the large deformation is solved 
by the updating of the geometrical configuration of the structure after each sequence. For reasons of clarity, 
this article is divided into six sections. We detailed the governing equations for problems of evolution 
elastoplastic coupled with Coulomb’s frictional contact in section 2. The variational formulation for 
elastoplastic materials with frictional contact is presented in section 3, and the implementation of the finite 
element method discretization is discussed in section 4. The performance of the proposed methods is 
examined in section 5, and a conclusion is given in section 6. 

2 Governing equations 
Let d ( 2 or 3)d   be elastoplastic structure with a regular boundary  ; submitted to a body 

force f ; imposed displacement increments u  to a portion u ; imposed traction increments t  to a 

portion t  and on the part c u t      of boundary such as  c t u     , contact may occur. 

We have the following basic equations in domain 1 2   such as 1 2and   are the contacting bodies, 
one of which may be a rigid foundation (see [6]). 
 Equilibrium equations 

 0        div( ) f in  (1)  

 Boundary conditions 

         uu u on the essential boundary  (2) 

            tt( ) n t on the natural boundary   (3) 
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in which n is the outward unit normal to domain and  is the stress increment. 
 Elastoplastic constitutive equations 

 epC     (4) 

where  is the Cauchy stress increment tensor, epC is called the tangential stiffness matrix and   is the 
strain increment tensor can be decomposed into elastic and plastic parts: 

 e p        (5) 

The elastic constitutive relations: 

 e e
ij ijkl klC     (6) 

where e
ijklC denotes elastic modulus tensor.  

In this work, elastoplastic material model is considered. As a plasticity model, von Mises yield model is 
adopted. The yield function is written as  

 0.53( , ) ( ) ( )
2

p p
ij ij Yf         (7) 

where ij  denotes deviatoric stress and Y  the yield stress. p  indicates equivalent (or effective) plastic 

strain, and its time rate is defined as 

 0.52( )
3

p p p
ij ij      (8) 

From the associative flow rule, plastic strain can be written as follows: 

 p
ij

ij

f 



  (9) 

where  denotes plastic multiplier. 
The expression of tensor epC can be written as 

  
T T

ep e e e ef f
C C C N C C N

 
           

 (10) 

where ( )
f f

N 
 
 


 

 is the unit flow direction.  

 Frictional contact condition 
The relative velocity u and the contact traction t can be decomposed in their normal and tangential 
components as follows: 

            t n t nu u u n and t t t n  (11) 

where nu  and tu  are, respectively, normal and tangential components of the relative velocity ,   and n tu t t  
indicate normal and tangential components of the contact traction t.  
The complete contact law with Coulomb’s friction can be written in the following form: 

 

         0    0                                                                            ,

  0    0                                               

  

  




n n

n t n

if t then u separating

else if t and t t then u            ,

     ( 0  ),  ( 0  0     







       



  n t n n t t t

sticking

else t and t t u and such that u t t sliding

endif


 (12) 

where µ indicates the friction coefficient and   is a positive multiplier. 

The inverse law can be described as 
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         0    0                                 - ,

 0                                 ,

     0,   0    .    

  

  

    





   

n

t n

t n t n t t

if u then t non contact

else if u then t t contact with sticking

else u u and t t u u con





 

  









tact with sliding

endif

 (13) 

In a compact form, the unilateral contact law with Coulomb’s friction and its inverse will be rewritten by 
means of the contact bipotential, denoted ( , )cb u t  , which is defined as follows [7]: 

 
       0

( , )
           

     


 
 n t n

c

t u if t K and u
b u t

otherwise


 (14) 

where K denote Coulomb’s cone defined by 

  2( , )        0   n t t nK t t R such that t t   (15) 

Therefore, the complete contact law with friction becomes 

      ( ,  )    ( ,  )      t c u cu b u t and t b u t  (16) 

The incremental formulation of the contact law with Coulomb’s friction is expressed by the incremental 
bipotential: 

 
0 0

0 0 0

( , ) ( , ) ( )

                     ( )

c c

n n t t n n t

b u t b u t t t u

t u t u t t u

         

       
 (17) 

where nu  and tu  denote, respectively, normal and tangential components of the displacement increment 
u  such that in the case of the application of the schema of integration implicit 1 0 1u u u u       

with  is the increment of time, index 0 (resp. 1) is relative to beginning (resp. to the end) of the step ; 0nt  
and 0tt  indicate initially normal and tangential components of contact traction t. 
The corresponding incremental contact laws take the form 

 ( , )    ( , )          t c u cu b u t and t b u t   (18) 

3 Variational Formulation 
The use the incremental formulation with the bipotential method leads to the following bifunctional; more 
details can be seen in reference [8]:  

  ( , ) ( ) ( ) ( , )
u t c

cu u f u d t ud t ud b u t d    
   

                            (19) 

The exact solution of boundary value problem, defined by Eqs. (1) to (3) and the contact laws (18), is also a 
solution to the kinematical variational principle: 

 
 

( , )
k

k

u KA

uInf  


    (20) 

where ku is the displacement field kinematically admissible (KA). 
For the variational formulation in terms of displacements, the terms which do not depend on the incremental 
field u disappear and the Eq. (19) is reduced to 

 ( ) ( ) ( ) ( , )
t c

T ep
cu u C u f u d t ud b u t d 

  
                       (21) 

Therefore, the kinematical variational principle becomes 

 
 

( )
k

k

u KA

uInf


   (22) 
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4 Finite Element Discretization 
The displacement and strain increment fields are expressed with respect to an unknown nodal displacement 
increment vector U as (see [9]): 

 ( ) ( )      ( )     u x x U and B x U   (23) 

where ( )x is the matrix of the shape functions, ( ) ( ( ))sB x x  and s  is the symmetric gradient operator. 

Let us introduce the generalized nodal force increment vector: 

 
t

T TF fd td 
 

         (24) 

The discretized form of the Eq. (21) is then a set of nonlinear equations:     

 ( ) ( , )
c

T ep
cU B C B Ud F b U t d

 
               (25) 

The bipotential of the contact with friction isn’t differentiable everywhere which poses problems at the 
mathematical programming level. In order to overcome this difficulty, we suggest using the regularization 
method by penalization. For this purpose, we can introduce the following differentiable function, which will 
be added, by using the inf-convolution concept, to the incremental bipotential cb  proposed by Boudaia and 
al. [6]. 

 2 2( ) ( )
2 2

f ft n
t t n n

K K
b u u u u          (26) 

where tK  and nK  are the penalization factors, f
nu and f

tu are the fictitious increments computed from the 
actual displacement increment u  and the previous contact forces increments t , so that 

      
        f fn t

n n t t
n t

t t
u u and u u

K K
 (27) 

We show that cb  can be written as follows: 

 c n tb b b      (28) 

with   

 

2
0

-

2
0 0

-

( ) ( ) ,
2

( ) ( ) ( )
2

n
f

n

t
f

t

f fn
n n n n

u

f f ft
t t n n t t t

u

K
b t u u u

K
b t u t t u u u

Inf

Inf 





           
 


               

 (29) 

In addition, the problem of coupling of traction increments with those of displacements is solved by using an 
iterative procedure based on the fixed-point method. We note that the problem resolution of optimization 
(25) is realized using the Minos code [10].  
Also, the problem of the large deformation is solved by the updating of the geometrical configuration of the 
structure. Let ix be the vector position occupied by a particle P at the configuration " "i of the body 
corresponding to the sequence number " "i  and 1ix   its position that will be occupied by the same particle at 
the next configuration " 1",i   the two successive vector positions of the same particle P are related via the 
velocity vector iu and the time increment  such as: 

 1 .i i ix x u      (30) 

5 Numerical Result 
In this example, the size of the block is 2

0 0 10 10L D mm   (height × diameter) as shown in Fig. 1. The 

yield stress is 300 ,Y MPa   Poisson’s ratio is 0.3   and Young’s modulus is 421 10E MPa  . The 
cylindrical block is compressed by the rigid punches. Because of the workpiece is axisymmetric, only a 
plane subdomain is considered for computational finite elements. For this, 100 quadratic quadriclateral 
elements are used for the mesh model, with seven Gauss’s point integration. 
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FIG. 1- Geometry and loading (left); Mesh model and boundary conditions (right). 

 

FIG. 2- Distribution of nodal velocity field at 45% reduction in height for different friction coefficients 
0.1µ  (left) and 0.3µ   (right).    

From Fig. 2, we can notice that the finite elements kept their initial geometrical form without distortion until 
45% reduction in height was reached. For this reason, it is not necessary to remesh the structure. 

6 Conclusion 
The Finite Element Method formulation is presented with the theory of elastoplastic mechanics for the 
simulation of metal forming processes. Special emphasis is placed on the treatments of friction boundaries. 
However, the large deformation is introduced in a sequential way by updating of the geometry after each 
sequence of elastoplastic problem resolution. In addition, the non-differentiable of the bipotential 
representing the contact with friction is surmounted by the use of the regularization procedure by 
penalization. A second difficulty which does not miss importance is the presence of a term of coupling 
between the contact and friction in the bipotential function. This problem of coupling is solved by the use of 
an iterative procedure based on the fixed point method.  
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