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Résumé :

Cette étude utilise le modelé de l’homogénéisation non linéaire du second-ordre (SOM) pour des
matériaux poreux (visco)plastique afin d’étudier l’influence du paramètre de Lode et de triaxialité
de contraintes sur la rupture ductile de matériaux métalliques. Ce modelé, basé sur la méthode de
l’homogénéisation non linéaire du “second-ordre” ou “sécant généralisée”, est capable de prendre en
compte la forme des pores ellipsöıdales (microstructures particulaires avec une anisotropie macrosco-
pique générale), ainsi que les conditions aux limites tridimensionnelles générales.

Abstract :

This work makes use of the recently proposed second-order nonlinear homogenization model (SOM) for
(visco)plastic porous materials to study the influence of the Lode parameter and the stress triaxiality
on the failure of metallic materials. This model is based on the “second-order” or “generalized secant”
homogenization method and is capable of handling general “ellipsoidal” void shapes (i.e., particulate
microstructures with more general orthotropic overall anisotropy) and general three-dimensional loa-
ding conditions.

Mots clefs : 3 maximum : Ductile fracture ; Porous materials ; Homogenization

1 Introduction

Failure and ductile fracture of metallic materials has received a lot of attention the last sixty years.
One of the main reasons for material failure is the presence or/and nucleation of voids and micro-cracks
which tend to evolve in volume fraction, shape orientation as a result of the applied loading conditions.
For several years, it was believed that the stress triaxiality, denoted here as XΣ and defined as the
ratio between the mean stress to the von Mises equivalent or effective deviatoric stress, is the main
loading parameter that controls ductile fracture. In particular, large amount of experimental data
[3, 4] has shown a monotonic decrease of material ductility with the increase of the stress triaxiality.
Nonetheless, recent experimental evidence [5, 6] indicate a substantial decrease of the material ductility
with decrease of stress triaxiality and certain shear loading conditions. In these studies, it has been
identified that a second loading parameter, the Lode parameter, L (or equivalently Lode angle, θ)
controls the ductile fracture mechanism at low stress triaxialities. The Lode parameter is a function of
the third invariant of the stress deviator and is used to distinguish between the different shear stress
states that can be present in a loading history (see details in the following section). In the present work,
we make use of the “second-order” model [1] (SOM) to study the influence of the Lode parameter and
the stress triaxiality on ductile failure.
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2 Modeling and results

We consider a porous material with initially spherical voids subjected to purely triaxial loading condi-
tions with the principal stresses σ1 = σ11, σ2 = σ22 and σ3 = σ33 (σij = 0 for i 6= j) being aligned with

the laboratory frame axes, e(1), e(2) and e(3), respectively. This allows for the definition of alternative
stress measures appropriate for dilatational plasticity, which is the case in the context of porous ma-
terials. The three alternative measures are the von Mises equivalent stress (or effective stress), σe, the
mean stress, σm, and the third invariant of the stress deviator J3 defined all by

σm = σkk/3, σe =
√

3J2 =
√

3 sij sij/2, J3 = det(sij) =
1

3
sij sik sjk, (1)

where sij = σij − σm δij is the stress deviator. Using these definitions, we can readily define the stress
triaxiality, XΣ, and Lode parameter, L, or equivalently the Lode angle, θ, via the following expressions

XΣ =
σm
σe

, L = − cos 3θ =
27

2

J3
σ3
e

. (2)

By definition, the range of values for the XΣ and L, (or θ) are

−∞ < XΣ < ∞, and − 1 ≤ L ≤ 1 or 0 ≤ θ ≤ π/3. (3)

Then, relations (2) can be used to express the principal stresses as functions of XΣ, σe and θ, such
that

3

2σe
{σ1, σ2, σ3} = {− cos

(

θ +
π

3

)

,− cos

(

θ −
π

3

)

, cos θ}+
3

2
XΣ{1, 1, 1}. (4)

Fig. 1 shows the normalized principal stresses defined in (4) as a function of the Lode parameter
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Figure 1 – Normalized principal stresses 3

2σe

{σ1, σ2, σ3}, as a function of the Lode angle θ or equivalently the
Lode parameter L. Parts (a) and (b) correspond to stress triaxialities XΣ = 0 and XΣ = 1, respectively.

L and Lode angle θ for (a) XΣ = 0 and (b) XΣ = 1. It is clear from Fig. 1a that for L = −1 or
θ = 0, the stress state is axisymmetric with one positive and two negative stresses (axisymmetric
tension). On the other end, when L = 1 or θ = π/3, the stress state is also axisymmetric but with
two positive and one negative stresses (biaxial tension with axisymmetric compression). Note that
these two different axisymmetric states lead to different evolution of the underlying microstructure
and therefore to different overall responses as the deformation progresses. When, L = 0 or θ = π/6,
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the stress state is in-plane shear with one stress identically equal to zero (e.g., plane stress state).
The rest of the states are between axisymmetric and in-plane shear states. It should be noted that
when the stress triaxiality is nonzero then the principal stresses are simply translated by a constant
either upwards for XΣ > 0, as shown in Fig. 1b for XΣ = 1, or downwards for XΣ < 0 (not shown
here for brevity). Note also that |XΣ| → ∞ and XΣ = 0 correspond to purely hydrostatic and purely
deviatoric loadings, respectively.
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Figure 2 – (a) Limit load and (b) loss of ellipticity maps as predicted by the SOM model as a function of
the stress triaxiality XΣ and the Lode parameter L (or θ). The limit load locus is identified with the critical
equivalent plastic strain εp

e
where the overall hardening rate of the porous solid is H = 0. The loss of ellipticity

locus is identified with the critical equivalent plastic strain εp
e
where the constitutive equations lose strong

ellipticity leading to localized bifurcated solutions and long-wavelength instabilities. The hardening exponent is
N = 0.1 and the initial porosity f0 = 1%.

Making use of the SOM model, one may construct failure maps for elasto-plastic porous materials
that are subjected to the above-described triaxial loading conditions. In this connection, Fig. 2 shows
SOM maps of the critical equivalent plastic strain εpe attained when (a) the limit load (i.e., maximum
in the σe − εe curve or equivalently overall critical hardening rate of the porous solid is H = 0) and
(b) the conditions for localization [7] and loss of ellipticity (LOE) are reached as a function of the
stress triaxiality XΣ and the Lode parameter L (or Lode angle θ). We find that the overall strain at
localization depends strongly on the Lode parameter as well as on the stress triaxiality. According
to the SOM model, these effects are due to the collapse of voids at low stress triaxialities where
the initially spherical pores tend to become micro-cracks. This void collapse mechanism leads to the
formation of shear or dilation localization bands depending on the value of the Lode parameter. On the
other hand, at large stress triaxialities the main mechanism of failure is the increase of porosity, which
leads to the overall softening of the porous material. The interplay of these two different mechanisms
of localization (i.e., void shape change and porosity growth), leads to sharp, high-ductility corners on
the localization locus map.

3 Conclusions

The main finding of this work is that failure can occur by two very different mechanisms at high-
and low-triaxiality. In agreement with well-established results, at high triaxialities, the model predicts
significant void growth leading to a softening effect which eventually overtakes the intrinsic strain
hardening of the solid material and produces overall softening. Thus, a limit load is reached at a critical
strain that decreases with increasing triaxiality and is found to be independent of the Lode parameter.
This limit load point is then followed by a significant reduction in the load-carrying capacity of the
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material and loss of ellipticity at least for negative values of the Lode parameter. On the other hand, at
low triaxialities, the model predicts void collapse due to an abrupt flattening of the initially spherical
voids with decreasing porosity, which in turn leads to a sharp drop in the load-carrying capacity of the
porous solid. The precise value of the strain at the onset of the instability, which determines the overall
ductility of the material, depends on the competition of the hardening produced by the reduction of
the porosity and the softening due to the change in shape of the pores, and is highly sensitive to the
value of the Lode parameter. Thus, for biaxial tension with axisymmetric compression (L = 1), the
onset of the limit load instability, as well as the loss of ellipticity shortly thereafter, decreases as the
triaxiality is reduced toward zero, while for axisymmetric tension (L = −1) no void collapse is possible
and therefore no instability is observed for small values of the triaxiality. Moreover, for fixed, small
values of the triaxiality (XΣ < 0.6), the ductility of the porous material increases as the value of the
Lode parameter decreases from +1 to −1. In addition, a sharp transition is observed as the failure
mechanism switches from void collapse to void growth for intermediate values of the stress triaxiality
(0.3 < XΣ < 0.7), depending strongly on the value of the Lode parameter leading to high-ductility
peaks in the failure maps. In this regard, the theoretical predictions are found to be in qualitative
agreement with recent experimental observations by [5] and [6], even though it should be emphasized
that the stress and deformation fields are not uniform in these tests and that the values of the
triaxiality and Lode parameter are not controlled independently in these experiments. In this sense, the
theoretical predictions presented in this work strongly suggest the need for experiments where the fields
are made as uniform as possible and the triaxiality and Lode parameter are controlled independently
of each other. Finally, results indicating clearly the effect of the evolution of microstructure will be
detailed elsewhere.
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