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Abstract : 

We take into consideration a nonlinear magnetostrictive particle embedded in a piezoelectric matrix in order 

to obtain (stress mediated) magneto electric effects with applications to memory cells developments. The 

micromechanical analysis is conducted through the magneto-electro-elastic Eshelby tensor in a completely 

anisotropic environment. The results show the equilibrium orientations of magnetization inside the particle 

versus the applied fields and the boundary conditions. A bi-stable behaviour (controlled by the applied 

electric field) is in particular demonstrated with possible applications to memory cells design. 
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1 Introduction 

In scientific literature there is a large interest in determining the magnetic, electric, and elastic fields in a 

composite with piezoelectric and magneto-ordered phases. Typically the dispersed inhomogeneities are 

considered as ellipsoidal inclusions ranging from thin flakes to continuous fibres. Therefore, the magneto-

electro-elastic tensors analogous to the standard elastic Eshelby tensor has been introduced and largely 

applied for obtaining the effective properties [1]. It is found that such composites reveal interesting (stress 

mediated) magnetoelectric coupling which are absent in each constituent. Of course, this methodology has 

been applied in order to analyse the behaviour of linear composite structure, formed by linear constituents.  

 

 

Fig. 1 Structure of the system under investigation: a 

nonlinear magnetostrictive particle embedded in a 

piezoelectric matrix. The externally applied electric, 

magnetic and mechanical fields are indicated and 

they can possibly control the magnetization 

orientation inside the particle. 

  

 

On the other hand, numerous efforts are made in order to develop the next generation of random access 

memories, possibly non volatile, having low power consumption and high integration density. Recently, the 

different existing approaches and technologies have been compared and discussed [2]. One promising 

solution is based on nonlinear magnetostrictive (ferromagnetic) particles embedded in a piezoelectric matrix. 

Therefore, it is important to generalize the previous theories [1] in order to take into account nonlinear 

features of the dispersed particles [3]. In this paper, we outline a procedure able to evaluate all the physical 

field in the system represented in Fig. 1, where the magnetization orientation inside the particle can be 

obtained through ad hoc externally applied fields. In particular, a bi-stable behaviour (controlled by the 

applied electric field) can be obtained and it could be useful for applications to memory cells design.   
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2 Behaviour of the particle 

To begin, we take into consideration a single particle which exhibits ferromagnetic behaviour. We suppose 

that the size of the particle is small enough to assure that the particle can be treated as a single ferromagnetic 

domain. It means that, in any case, inside the inhomogeneity an uniform magnetization appears and it is 

given by 

        γ
rr

sMM =                                                                                                        (1) 

where Ms is the constant intensity of the magnetization (saturation depending on the material under 

consideration) and ( )321 ,, γγγγ =
r

 is the unknown unit vector fixing the direction of the magnetization. The 

principal aim of the following procedure is that of determining the orientation γ
r

in terms of the externally 

applied fields and of the boundary conditions. It can be obtained by minimizing the energy function of the 

single domain particle, as follows [4,5] 

 

{
)(ˆ:ˆ)()( 0 γεγϕγµγ µ

rrrrr

r

THMw

M

s −+⋅−=                                                         (2) 

the first term represents the magnetic interaction energy where H
r

 is the local magnetic field measured 

inside the particle: this is the Zeemann term and it describes the influence of the magnetic field on the 

orientation of the magnetization (µ0=4π·10
-7

 H/m is the vacuum magnetic permeability). The second term 

)(γϕ
r

 represents the anisotropic energy depending on the crystal class of the material. This magneto-

crystalline energy tends to force the magnetization to be aligned along particular directions, called easy axes. 

These directions are connected to crystallographic structure and the magneto-crystalline energy is minimum 

when γ
r

is parallel to the easy axis. The third term represents the elastic interaction energy where T̂ is the 

local stress tensor measured inside the particle and )(ˆ γε µ

r
 is the strain tensor induced by the magnetization 

(magnetostriction strain that would appear if the material was able to deform without external stress). Both 

T̂  and  )(ˆ γε µ

r
 are uniform within the single domain particle, as discussed below. 

The nonlinear minimization furnishes the direction in terms of the magnetic field and the stress tensor: 

( ) ( )THTHw ˆ,ˆ,;min
1:

rrrrr
rr γγγ
γγ

=⇒
=

                                                              (3) 

Moreover, the local magnetic field and stress tensor inside the particle depend on the environment where the 

particle is embedded and on the external fields applied to the structure. To conclude we can state the 

constitutive equations of the particle in the following way. For the magnetic point of view we have 

( )]ˆ,[)( 00 THMHMHB s

rrrrrr
γµµ +=+=                                                        (4) 

where B
r

is the magnetic induction. For the elastic point of view we have 

[ ]{ } [ ]{ })ˆ,(ˆˆˆˆˆˆˆ
0202 THLLT

rrr
γεεγεε µµ −=−=                                                  (5) 

where 0ε̂ is the local strain tensor (measured with respect to the demagnetized particle), 2L̂  is the stiffness 

tensor of the particle (exhibiting the symmetries of the crystal under consideration).  

3 Coupling with the external magnetic field  

As above stated, the magnetic field H
r

 entering the energy in Eq.(2) is the local (internal) magnetic field and, 

therefore, it is important to obtain its relationships with the externally applied magnetic field 
∞H

r
. To this 

aim we can utilize a recent results which is valid for an arbitrary nonlinear and anisotropic ellipsoidal particle 

embedded in a linear but anisotropic matrix [6]. In particular, we consider a nonlinear ellipsoidal 

inhomogeneity (having axes ax, ay and az) described by the (magnetic field dependent) permeability tensor 

( )H
r

22
ˆˆ µµ = , embedded in a matrix with permeability tensor 1µ̂ . In these conditions we have  

( )[ ] ∞
−−

−−= HISIH m

rr 1

2

1

1
ˆˆˆˆˆ µµ                                                                   (6) 

where mŜ is the so-called magnetic Eshelby tensor (adimensional) given by [6] 
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Here â  is a tensor defining the geometry of the ellipsoid: â =diag(ax, ay, az) and 2â =diag(ax
2
, ay

2
, az

2
). 

Interestingly enough, we note that the magnetic Eshelby tensor depends only on the geometry of the system 

and on the matrix permeability tensor. By using the definition of the nonlinear constitutive equation of the 

particle ( ) ( )MHHHB
rrrrr

+== 02
ˆ µµ  we can write Eq.(6) in a different form. In fact, from Eq.(6) we obtain    

( )[ ] ∞−
=−− HHISI m

rr

2

1

1
ˆˆˆˆˆ µµ                                                                  (8) 

or, equivalently 
∞−−

=++− HMSHSHSH smmm

rrrrr
γµµµµ 0

1

10

1

1
ˆˆˆˆˆ                                      (9) 

Finally, after straightforward calculations, we obtain 

( )[ ] [ ]γµµµµ
rrr

smm MSHISIH 0

1

1

1

0

1

1
ˆˆˆˆˆˆ −∞

−−
−−−=                                         (10) 

It means that the local magnetic field has been explicitly written in terms of the remotely applied magnetic 

field and of the internal magnetization orientation 

( )γ
rrrr

,∞= HHH                                                                                              (11) 

This is the most important achievement of this section and it will be used in the following for the 

development of the whole procedure. Eq.(7) can be simplified for an isotropic or crystalline cubic matrix. In 

such cases in fact we have Îˆ
11 µµ = where 1µ is scalar permeability and Î is the identity tensor and, 

therefore, we obtain the simpler version of the magnetic Eshelby tensor ( )321 ,,ˆ LLLdiagSm =  where the 

iL ’s are the so called depolarization factors 

( )
∫

∏

+∞

=

++

=
0

3

1

22

321

2

j

ji

i

aa

daaa
L

ηη

η
 with 1321 =++ LLL . 

Moreover, for a sphere we have ax= ay= az and therefore 3/1321 === LLL .                                        

4 Coupling with the external electric and elastic fields  

As above introduced, the coupling with the external electric and elastic fields is mediated by the piezoelectric 

matrix, where the particle is embedded. We begin its analysis by defining the constitutive equations. To this 

aim it is useful to use the compact Voigt notation for stress and strain tensors as follows  

[ ] [ ]TT
TTTTTTT 121323332211121323332211 2,2,2,,,~ and,,,,,

~
εεεεεεε ==         (12) 

So doing, the piezoelectric behaviour can be described by the following relation (stress-charge format) 
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                                                                           (13) 

where 1L̂ is the elastic stiffness tensor, 1q̂  is the tensor of the piezoelectric moduli and 1p̂ is the permittivity 

tensor of the matrix. The representation of the constitutive equation through the variables  [ ] [ ]EDT
rr

−,~ and ,
~

ε  

is particularly indicated since always allows to a symmetric generalized stiffness tensor, composed by the 

objects 1L̂ , 1q̂  and 1p̂ . Such a symmetry can be proved by thermodynamic-energetic arguments [7]. 

Alternatively, a different notation can be adopted by defining the following generalized variables 

 

  [ ]DT
r

ˆˆ =Σ   and   












−
=

E
Z r

ε̂
ˆ                                                                        (14) 

where Σ̂ is represented by a matrix 3x4 and Ẑ is represented by a matrix 4x3. Therefore, the matrix 

behaviour can be summarized through the relation 
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( ) MniJMniJ Z1Λ=Σ                                                                      (15)                                           

where i, n=1..3 and J, M=1..4. The tensor 1Λ̂ represents the overall piezoelectric behaviour of the matrix 

material and contains all the components  1L̂ , 1q̂  and 1p̂ . Now, it is important to observe that the particle is 

embedded into the matrix when it has a specific magnetization state identified by an initial direction 0γ
r

. We 

want to measure the strain with respect to such a configuration and, therefore, we define the local strain as 

)(ˆˆˆ
00 γεεε µ

r
−=  where 0ε̂ is defined in Section 2.  

 

Fig. 2 Scheme describing the Eshelby equivalence 

principle applied to the case of a piezoelectric matrix. 

The problem A corresponds to an uniform medium 

1Λ̂ with remotely applied fields 
∞

E
r

and 
∞ε̂ . In such a 

case we observe that the fields remain uniform in the 

entire space. The problem B represents an inclusion 

problem with eigenfield 
*

Ẑ and without external 

actions. In this case the generalized strain and stress 

are given by
*ˆˆˆ ZSZ = and ( ) *

1
ˆˆˆˆˆ ZIS −Λ=Σ , as 

predicted by the Eshelby theory. The superimposition 

of the two sub-problems allows us to solve the 

original problem of the particle described by 

( )µZZ ˆˆˆˆ
2 −Λ=Σ  embedded in the piezoelectric 

matrix. 

 

 

 

 

 

 

 

 

The same representation of Eq.(13) can be applied to the elastic-dielectric response of the particle. In this 

case we obtain 
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where 2L̂  and 2p̂ are the elastic stiffness and the permittivity tensor of the particle, respectively (for a 

metallic behaviour of the particle we can set Ipp ˆˆ
2= with p approaching infinity). The vector 

( )γε µ

r~ represents the Voigt form of the magnetostrictive strain )(ˆ γε µ

r
. As before, such a constitutive equation 

can be also written through the variables defined in Eq.(14), by obtaining 

( ) ( )MnMniJMniJ ZZ µ−Λ=Σ 2                                                                           (17) 

where i, n=1..3 and J, M=1..4 and the tensor 2Λ̂ represents the behaviour of the particle material, containing 

the components  2L̂  and 2p̂ . Here MnZµ  is the vertical juxtaposition of ( ) ( )0
~~~ γεγεε µµ

rr
−=  and 0

rr
=− E , 

as defined in Eq.(14). The analysis of this configuration can be conducted by applying the Eshelby 

equivalence principle. We suppose that the whole structure is subjected to an external uniform electric field 
∞

E
r

 and a remote uniform strain 
∞ε̂ . We are searching for the perturbation to these uniform fields induced 

by the presence of the inhomogeneity. The equivalence principle, which we are going to illustrate, has been 

summarized in Fig. 2. The actual presence of an inhomogeneity can be described by the superimposition of 
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the effects generated by two different situations A and B. The first situation is very simple because it 

considers the effects of the remote fields in an homogeneous matrix without the inhomogeneity. The 

situation B corresponds to an inclusion scheme (eigenfield uniformly distributed within the particle) where 

the eigenfield 
*

Ẑ  is still unknown and it can be determined by imposing the equivalence between the 

original problem and the superimposition A+B. The total fields inside the particle can be obtained summing 

up the two contributions A and B as follows 

( ) *

11

*

ˆˆˆˆˆˆˆ

ˆˆˆˆ

ZISZ

ZSZZ

−Λ+Λ=Σ

+=

∞

∞

                                                                             (18) 

where the eigenfield 
*

Ẑ must be obtained imposing the correct behavior of the particle, which means its 

constitutive equation  

( )µZZ ˆˆˆˆ
2 −Λ=Σ                                                                                             (19) 

By substituting Eq.(18) in Eq.(19) we obtain the tensor equation for 
*

Ẑ  

( ) ( )µZZSZZISZ ˆˆˆˆˆˆˆˆˆˆˆ *

2

*

11 −+Λ=−Λ+Λ ∞∞
                                                (20) 

By solving Eq.(20) we straightforwardly obtain the equivalent eigenfield  

( ) ( ) 



 ΛΛ−−



 −ΛΛ−=

−−∞
−−−

µZIZSIZ ˆˆˆˆˆˆˆˆˆˆ
1

1

1

2

1
1

2

1

1

*
                               (21) 

and, therefore, Eq.(18) (coupled with Eq.(21)) give us the complete solutions of the problem. As result, the 

local elastic stress depends on the external elastic and electric fields and on the magnetization direction 

through a function which is now available. It can be summarized as 

( )γε
rr

,,ˆˆˆ ∞∞= ETT                                                                                          (22) 

This is the most important result of the present section and it will be used to define the complete procedure 

discussed in the following. The Eshelby tensor, which appears in the previous calculations, is defined in such 

a way to describe the response of an inclusion problem (with a given eigenfield), as stated in the above 

defined sub-problem B. A very large amount of literature has been devoted to its evaluation and its 

properties [1,8,9].  

 

5 Complete system of equations 
 

The set of equations describing the magnetoelastic particle embedded into the piezoelectric matrix is given 

by the energy minimisation for the particle ( )TH ˆ,
rrr

γγ =  (see Eq.(3)), by the coupling with the external 

magnetic field ( )γ
rrrr

,∞= HHH  (see Eq.(11)) and by the coupling with external elastic and electric fields 

( )γε
rr

,,ˆˆˆ ∞∞= ETT  (see Eq.(22)). The problem is well posed: the three unknowns γ
rr

 and ,ˆ HT  can be found 

when the external fields 
∞∞∞ HE

rr
 and ,ε̂  are given.  

The problem can be simplified by rewriting the first equation in terms of the derivatives of w and by 

applying the method of the Lagrangian multipliers in order to take into account the constraint 1=γ
r

 

( ) ( )[ ] i

ii
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THMTHw λγ
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γ
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)(ˆ

:ˆ)(
01ˆ,; 0 =

∂

∂
−

∂

∂
+−⇒=−⋅−

∂

∂
rr

rrrr
                  (23)       

We can also exploit the linear dependences in the other two relations  

            
( )

( ) ( ) ( )[ ]0
ˆˆˆˆˆˆ,,ˆˆˆ

ˆˆ,

γεγεεγε

γγ

µµ

rrrrr

rrrrrr

−++==

+==

∞∞∞∞

∞∞

FEDCETT

BHAHHH
                              (24) 

where the tensors FDCBA ˆ and ˆ,ˆ,ˆ,ˆ can be obtained through the procedures outlined in the previous sections. 

The problem can be converted to a single minimization problem as follow. We substitute Eq.(24) in Eq.(23) 

and, since the tensors  FB ˆ andˆ  are symmetric, we can define a new energy function w~  as follows 
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So, the initial minimization problem stated in Eq.(5) has been converted to the following one 

),ˆ,(),ˆ,;(~min
1:

∞∞∞∞∞∞

=
=⇒ EHEHw

rrrrrrr
rr εγγεγ
γγ

                                         (26) 

which is much more convenient since it leads to the final magnetization orientation directly in terms of the 

external fields applied to the structure. In other words, the minimum of the energy function w~ represents the 

real orientation of the magnetization when all the external field are fixed. An example of implementation of 

Eq. (25) can be obtained for a two-dimensional system of possible interest for applications in memory cells 

design. It is described by the function  )(~~ ϕww =  where ϕ  is the orientation angle of the magnetization on 

the plane. It is composed by an elliptic particle exhibiting uniaxial anisotropy [10,11] with semi-axes ax 

(easy-axis) and ay < ax (hard-axis) aligned to the reference frame. We apply an external magnetic field fixed 

(in the direction of the y-axis, 2/πϕ = ) and an external electric field with intensity varying within a given 

range (in the fixed direction 4/πϕ = ) [12]. The anisotropic and magnetic terms are independent of the 

electric field intensity, while the elastic and total terms are strongly depending on it. As result, it is possible 

to prove that the electric field controls the orientation of the magnetization between two different states, 

generating a bistable behaviour very useful for applications in memory devices [12,13]. The details of this 

result will be published elsewhere in the near future. 
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