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Résumé : 

La macro dispersion est le résultat de la diffusion moléculaire et des processus dispersifs. De l'échelle des 

pores à l'échelle de Darcy, la dispersion est modélisée par des dispersivités constantes. A des échelles 

supérieures, la dispersion est à la fois due à la dispersion locale et à l'hétérogénéité de l'écoulement. Dans 

ce travail, nous étudions l'influence relative de la dispersion locale et de l'hétérogénéité de la perméabilité 

sur la macro dispersion avec une diffusion moléculaire négligeable pour une large gamme de dispersivités et 

des fortes hétérogénéités de la perméabilité. Pour des faibles dispersivités, l'influence relative de la 

dispersion locale sur la macro dispersion est inférieure à 5% de la macro dispersion due uniquement à la 

perméabilité hétérogène. Pour des larges dispersivités, les effets de la dispersion locale sont limités à 25% 

de la macro dispersion due uniquement à l'hétérogénéité de la perméabilité. 

Abstract : 

Macrodispersion is the result of molecular diffusion and dispersion processes. From pore scale to Darcy 

scale, dispersion is commonly modeled by fixed longitudinal and transverse dispersivities. At larger scales, 

dispersion comes both from the smaller scale dispersion and from the heterogeneity of the flow. In this study, 

we investigate the relative influences of the pore-scale dispersion and of larger scale permeability 

heterogeneities on the macrodispersion when neglecting the molecular diffusion for a large range of 

dispersivities and permeability levels of heterogeneity. For smaller dispersivities, the relative influence of the 

pore-scale dispersion on the macrodispersion is smaller than 5% of the macrodispersion due only to 

permeability heterogeneities. For larger dispersivities, the effects of the local dispersion are limited to 25% 

at most of the macrodispersion due only to permeability heterogeneities. 

Key words : Solute transport, macrodispersion, parallel computing, hydrodynamic dispersion. 

1 Introduction 

Dispersion results from the variations in fluid velocity occurring from the pore scale to the formation scale 

and from molecular diffusion [11]. It is modeled by an equivalent diffusion law parameterized by the 

dispersion tensor D [1]. This formalism is mostly used at two scales. At the local scale, the dispersion 

coefficient results from the effects of the variations of the pore-scale fluid velocity. At field scale, the 

dispersion coefficient also called macrodispersion comes both from the previous local effects and from the 

variations in fluid velocities due to permeability heterogeneities. In this study, we focus on the effects of the 

local dispersion on the macro-dispersion for highly heterogeneous 2D porous media. We take the most 

classical synthetic model of porous media. It consists in an exponentially correlated lognormal isotropic 

permeability field [9]. The originality of this work does not rely on the correlation structure but on the 

magnitude of the heterogeneity. We investigate the high heterogeneity cases while most previous studies 

dealt with the low heterogeneity cases [4, 12]. For low levels of heterogeneity and local dispersivities much 

smaller than the correlation length, the first-order perturbation analysis of Gelhar and Axness [1983] shows 

that the local dispersion does not modify the longitudinal macrodispersion DLA and lets the transverse 

dispersion DTA increase according to DLA/u=² and DTA/u=²/8(L+3T) where the index A stands for 
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asymptotic dispersion equivalent here to macrodispersion and u is the mean velocity. The longitudinal and 

transverse macrodispersions are proportional respectively to the correlation length  and to the local 

dispersivities, L and T. When introducing non-ergodic conditions in the form of an injection window 

smaller than the correlation length, DLA has been found to be reduced by no more than 10% for /L=20 [8]. 

Semi-analytical approaches accounting in the dispersion term for velocity variations confirm the low 

dependence of the longitudinal macrodispersion on ² [16]. Salandin and Fiorotto [2000] show that the local 

dispersion induces an increase of both the longitudinal and transverse macrodispersions for ²<1. 

Differences with the solution of Gelhar and Axness [1983] are more important for the transverse component 

than for the longitudinal component of the macrodispersion. For high heterogeneity cases, Salandin and 

Fiorotto [2000] use their semi-analytical solution to predict a decrease of the longitudinal macrodispersion. 

They also give an estimate of the transverse macrodispersion. Still for ²>1, the sole numerical simulations 

have been performed for single realizations with L=0.15 m and T=0.015 m on a 2047 m by 511 m grid 

with 1 m by 1 m square grid cells [17]. For =2 m and 8 m corresponding respectively to /L≈13.5 and 

/L≈54, the normalized time-dependent dispersion DL(t)/(u²) ranges between 1.2 and 1.4 in the first case 

and between 1 and 1.75 in the second case for 0.25<2
<4. No conclusion can be drawn from the time-

dependent transverse dispersion coefficient DT(t) because of its high variability due to the strong influence of 

local fluctuations in the velocity field. The main difficulty of numerical studies comes from the necessity to 

perform large scale and finely resolved Monte-Carlo simulations. 

 

2 Model, numerical scheme and algorithms 

In this paper, we use a basic non intrusive Monte-Carlo method. Lognormally and exponentially correlated 

permeability fields are generated with a Fourier transform method [13] using the parallel library FFTW [10]. 

The computation domains are regular square or rectangular grids of sizes Lx and Ly with square grid cells 

(dx=dy=lm). The aspect ratio of the system Lx/Ly ranges from 1 to 2 from square to rectangular domains. The 

total number of grid cells varies between 2048 by 2048 and 16384 by 8192. The key characteristic scale is 

the permeability correlation length  giving sense to the other scales. Lx/ is the number of correlation length 

in the main flow direction taken here as x. /lm is the grid cell resolution per correlation length. Ideally Lx/ 

and /lm should be both as large as possible. Flows follow the classical steady-state diffusion equation 

(Kh)=0 with K the permeability and h the hydraulic head. Boundary conditions are like those on a 

permeameter with a fixed head on the vertical sides and no flow on the horizontal sides of the domain. The 

flow equations is discretized with a finite volume scheme and harmonic intermesh permeabilities [5]. The 

finite volume discretization yields a large-scale linear system solved with the algebraic multigrid 

implemented in HYPRE [2]. Velocity is first computed on each grid face and then derived within the grid 

cells from linear interpolations both in x and y directions as it is the sole interpolation scheme that verifies 

the continuity equation [14]. Solute transport follows the classical advection dispersion equation with the 

dispersion tensor given by equation. We assume a constant porosity. Injection is instantaneous on a large 

segment of length I=0.4Ly perpendicular to the main flow direction and centered on the domain medium line. 

The segment is shifted downstream from the domain inlet by a distance of  to avoid border effects. Injection 

is proportional to flow. Conditions are thus ergodic, meaning that the injection window is much larger than 

the correlation length as I/ ranges from 80 to 320. The rate of advection to hydrodynamic dispersion is 

measured by the Peclet numbers, PeL=/L and PeT=/. We define also the Peclet number that 

characterizes the rate of advection to diffusion and is defined by Pe=u/d with d the diffusion coefficient. 

Transport was simulated by a random walk particle tracking method fully described in several review papers 

[15]. We use the reflection method of Uffink [1985] to handle the discontinuities of the dispersion gradient. 

This choice is however not critical as it has been shown that dispersion results are not very sensitive to the 

method chosen for the lognormally and finitely correlated permeability fields even for 
2
 values as large as 4 

[15]. Particles are injected according to flow in the injection window and are tracked using a parallel 

algorithm with synchronized communications of particles between cpus [3]. Our results rely on the effective 

dispersion coefficient [8]. The effective dispersion coefficient is obtained by averaging the dispersion 

coefficients obtained on a realization basis. The advantage of the effective dispersion is to avoid the 

dispersion of the mean solute plume positions between realizations. The longitudinal and transverse 

dispersion coefficients are first derived on a realization basis according to: 



20
ème

 Congrès Français de Mécanique                                                                  Besançon, 29 août au 2 septembre 2011 

  3 

Di
L(t) = 1/(2u) d(<x²(t)>i-<x(t)>²i)/dt                                   (1) 

Di
T(t) = 1/(2Tu) d(<y²(t)>i-<y(t)>²i)/dt                                 (2) 

where <x
k
(t)>i and <y

k
(t)>i are the k

th
 moments of the solute plume of the i

th
 simulation. We underline that 

the longitudinal and transverse dispersion coefficients are normalized respectively by u and u. These 

different normalization factors are deduced from the low heterogeneity approximations. In the absence of 

dispersion (L==0) but with diffusion (d>0), we normalize the transverse macrodispersion by the diffusion 

coefficient d. Equation 2 is replaced by: 

Di
T(t) = 1/(2d) d(<x²(t)>i - <x(t)>²i)/dt                                  (3) 

The average over Ns Monte-Carlo simulations is performed in a second step:  

DL(t) = <Di
L(t)>i=1,Ns and DT(t) = <Di

T(t)>i=1,Ns                      (4) 

<x
k
(t)>i and <y

k
(t)>i are approximated from the random walkers position moments computed on realizations 

basis. All time-dependent dispersion results will be presented against tN defined as the time t normalized by 

the characteristic time necessary to cross a correlation length u (tN=tu/

3 Results and discussion 

As our objective is to find the influence of local dispersion on macrodispersion, we use for the longitudinal 

component the relative difference DLA = [DLA(PeL,PeT,Pe=)/DLA(PeL=,PeT=,Pe=)] - 1 between the 

macrodispersions obtained with local dispersion and with neither dispersion nor diffusion. As the transverse 

macrodispersion in pure advection cases is null [6], we keep for the transverse component the quantity DTA. 

Because of its normalization, DTA can be interpreted as the ratio of the transverse macrodispersion to the 

local transverse dispersion. All values of macrodispersion given hereafter have been checked for 

convergence on their corresponding time-dependent dispersion chronicle.  

3.1 Isotropic local dispersion (PeL=PeT) 

DLA and DTA display opposite tendencies. DLA decreases with ² (see Fig.1a) while DTA increases with ² 

(see Fig. 1b). These tendencies are qualitatively similar to those obtained with semi-analytical approximation 

methods [16] and to those obtained with diffusion instead of dispersion [6]. For ²equal to 0.25 and 1, the 

semi-analytical approximation and numerical results of the longitudinal macrodispersion are very close 

together. More precisely the difference is of the order of 4% for ²=0.25 and 8% for ²=1. The close results 

of the semi-analytical and numerical longitudinal macrodispersions are a partial a posteriori validation of the 

numerical methodology. For the transverse macrodispersion, values of DTA for ²=0.25 and 1 are at the 

resolution limit of the numerical methodology and cannot be reliably compared to the analytical 

approximation. For ²=2.25, the isotropic local dispersion does not induce any discernable effect on the 

longitudinal macrodispersion. For ²≥4, the isotropic local dispersion induces a slight reduction of the 

longitudinal macrodispersion. The reduction is limited to around 30% at most for ²=9 and PeL=PeT=10. The 

increase of the transverse macrodispersion is much more significant as the transverse macrodispersion is null 

for pure advection. For 2 values larger than 1, the deviation of the semi-analytical and numerical results is 

larger for the transverse macrodispersion than for the longitudinal macrodispersion. Transverse 

macrodispersion is specifically triggered by the local dispersion. The macrodispersion is however from 2 to 

50 times larger than the local dispersion (DTA [2,50]). The effect of the local dispersion is amplified by the 

heterogeneity of permeability as DTA increases with ². DTA also increases with less local dispersion (lower 

PeL values). It does not mean that transverse macrodispersion is lower with more local dispersion but that its 

amplification is lower with more local dispersion. The amplification is thus linked to the existence of local 
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dispersion or diffusion rather than to their magnitude. The same trends are observed with diffusion instead of 

dispersion. As said previously, the effect of isotropic local dispersion is qualitatively similar to the effect of 

diffusion. For 2≥1, local dispersion like diffusion induces a reduction of the longitudinal macrodispersion 

and an increase of the transverse macrodispersion.   
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FIG. 1 – (a) Relative difference of longitudinal macrodispersion coefficients and (b) absolute difference of 

transverse macrodispersion coefficients as functions of ² for various values of Pe and PeL=PeT. Dashed 

lines come from the analytical approximation of Salandin and Fiorotto [2000]. 

We have reported on Fig. 1 the macrodispersions obtained for diffusion with the same Peclet numbers for 

local dispersion (PeL and PeT) and for diffusion (Pe). The objective is to compare more quantitatively the 

relative effects of diffusion and dispersion. Globally, diffusion induces a reduction of the longitudinal 

macrodispersion twice as large as local dispersion. On the contrary the dispersion triggered by permeability 

heterogeneities amplifies the transverse local dispersion to the transverse macro-dispersion 1.5 to 3 times as 

much as diffusion. We explain these opposite tendencies by the fact that the local dispersion is larger than 

diffusion in the high velocity zones whereas diffusion is larger than the local dispersion in the low velocity 

zones. The longitudinal macrodispersion is especially sensitive to the solutes trapped in the low velocity 

zones. Adding diffusion releases them from their trap and significantly reduces the longitudinal 

macrodispersion [6]. As local dispersion is proportional to velocity, it is less effective than diffusion as a 

releasing factor and the reduction of the macrodispersion is smaller. In the transverse direction, solutes in the 

high velocity zones are spread laterally further away with dispersion than with diffusion. This could explain 

the increase of the transverse macrodispersion. 
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3.2 Anisotropic pore-scale dispersion (PeL<PeT) 

Anisotropic local dispersion has little influence on longitudinal macrodispersion for values of 2 smaller or 

equal to 2.25 (see FIG. 2). For ² equal to 0.25, the modification of dispersion induced by local dispersion is 

nincreased by 50% when reducing the transverse dispersion by two orders of magnitude, corresponding to 

less than 10% of the global longitudinal macrodispersion. For ² equal to 1 and 2.25, the longitudinal 

macrodispersion is close to 0 for isotropic as well as for anisotropic local dispersion. For ² larger than 2.25, 

anisotropy lets the longitudinal macrodispersion increase (see FIG. 2a). The increase is significant at least for 

the qualitative influence of dispersion. In fact, for high levels of heterogeneities ies (²>1), the anisotropic 

local dispersion (PeL/PeT≥10) induces an increase of longitudinal macro-dispersion, whereas isotropic local 

dispersion has the opposite effect, i.e. a decrease of the longitudinal macrodispersion. The same tendencies 

have been obtained for PeL=10 and 100. In the transverse direction, a decrease of the transverse local 

dispersion systematically induces a decrease of the transverse macrodispersion (see FIG. 2b). From the local 

scale to the macro scale, the reduction decreases with more permeability heterogeneity. For low 

heterogeneity cases (2
≤1), the decrease is of the order of 70% for one order of magnitude decrease of the 

transverse local dispersion (i.e. from PeL/PeT=1 to PeL/PeT=10), the case for which the analytical solution of 

transport equation predicts a decrease of 67,5%. For the high heterogeneity cases (2
>1), the reduction of the 

transverse macrodispersion is more limited to at most a factor of 2 for one order of magnitude decrease of the 

transverse local dispersion. 
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FIG. 2 – (a) DLA and (b) rate between the transverse macrodispersion coefficients obtained with anisotropic 

local dispersion (PeT>PeL) and without isotropic local dispersion (PeL=PeT) as functions of PeL/PeT.  

4 Conclusion 

We find that the contribution of local dispersion to the longitudinal macrodispersion remains highly limited. 

Quantitatively, the contribution reaches at most 25% for the highest heterogeneity but is more generally 
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limited to 10%. Qualitatively however, local dispersion may induce opposite effects on the longitudinal 

macrodispersion. For 
2
>1, the longitudinal macrodispersion is reduced when the local dispersion is 

isotropic whereas it increases when the local dispersion is anisotropic, provided that the transverse local 

dispersion at least one order of magnitude smaller than the longitudinal local dispersion. The transverse 

macrodispersion only comes from the existence of local dispersion and diffusion. Neglecting the local 

dispersion would yield a zero transverse macrodispersion. Adding it simply to the estimates without local 

dispersion leads to strong underestimates of the transverse macrodispersion.The transverse macrodispersion 

is much larger than the local transverse dispersion. Most of the amplification factors are in the interval [2,15] 

even if they can reach 50. Surprisingly for 2
>1 the decrease of the transverse local dispersion by two orders 

of magnitude induces only a reduction of the transverse dispersion by at most a factor of 4. It shows the 

contribution of the longitudinal local dispersion to the transverse macrodispersion. 
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