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Résumé :

Ce travail concerne la propagation des ondes acoustiques dans des milieux poreux. Les développements
théoriques de travaux précédents sont généralisés pour établir des équations dynamiques poro-élastiques
pour un fluide compressible dans ’espace éventuellement constitué de pores multiples indépendants,
fermés ou percolants. Ces équations impliquent plusieurs coefficients effectifs a déterminer en résolvant
des problemes de fermeture a ’échelle microscopique. Des applications systématiques sont présentées
pour des milieux reconstruits et réels.

Abstract :

This work addresses the propagation of acoustic waves in porous media. The theoretical developments
of earlier works are generalized to establish dynamic poro-elastic equations for a compressible fluid in
a pore space which may consist in multiple independent pore components, closed or percolating. These
equations involve several effective coefficients, to be determined by solving closure problems on the
microscale. Systematic applications are presented, for various kinds of model reconstructed media, and
for real media imaged by microtomography.

Mots clefs : Porous medium, acoustics, poro-elasticity

1 Introduction

This work addresses the propagation of acoustic waves in saturated porous media, along the same
lines as the earlier works [1, 2], with two significant extensions : the influence of the interstitial fluid
compressibility is taken into account, and the pore space is not supposed to be totally connected.
Instead, it may consist in multiple independent pore components, closed or percolating.

The first step is to derive the generalized dynamic poro-elastic equations, which describe on the Darcy
scale the coupled medium deformations and fluid displacements under stress. On the microscopic
scale, the governing equations are Navier’s elastodynamic equation in the solid, which is considered as
isotropic and linearly elastic, and Navier-Stokes equations in the interstitial Newtonian fluid. These
equations are coupled by displacement and stress continuity conditions at the fluid/solid interface.

2 Acoustic properties of saturated media

The upscaling to Darcy scale is conducted in the framework of homogenization theory, and follows the
methodology of [3]. The typical scale [ of the microstructure is supposed to be much smaller than the
wave length A. In addition, the medium is supposed to be macroscopically uniform, and therefore it can
be regarded as spatially periodic in the theoretical developments and in the numerical determination
of the effective coefficients. Hence, a two-scale expansion can be used for all the quantities such as the
stresses or displacements, in terms of a slow and a fast varying space variables x and y associated
with the length scales A and [, respectively. For instance, for an harmonic deformation with pulsation
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w, the displacement field u is a power series of the small parameter n = [/27 ),
u(x,y) = > 7'u(x,y)e" (1)
=0

where u)’s are y-periodic. This development gives rise to a series of problems at successive orders
in 7. Their solution yields the effective coefficients involved in the macroscopic equations, which are
obtained by a spatial averaging of the local problems. The dynamic, Darcy-scale poro-elastic equations
are obtained eventually in the following form.

V- -D:EU)+ XN,V alPl = —(p)w?U — ppu?sd Wi
wW' = — LK (VP — pjw?U)  (fori=1,...,N) (2)

V-W'=A":E(U)+%¥,BIPI —€cpP (fori=1,...,N)
where the index i refers to the pore component. P is the fluid pressure, W the fluid displacement

relative to the solid, K the permeability tensor, U the solid displacement, € the pore volume fraction,
¢ the fluid viscosity and cy its compressibility.

These equations involve several effective coefficients, to be determined by solving closure problems on
the microscale. D is the effective elastic tensor of the dry porous medium. It can be calculated by
solving the elastostatic equations in the solid space, when prescribed macroscopic strain tensors E(U)
are imposed. A’ : E(U) is the change of the pore volume 7 induced by the global deformation E(U),
within a change of sign, and can be readily obtained when computing D. Six problems with shear and
compressional loads should be solved in order to determine all the components of D and A (Figure
la-b)
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F1Gg. 1 — Porous media submitted to a shear (a) and a compressional (b) loads used to determine the
complete tensor of elastic properties D. (¢) Porous medium submitted to interstitial pressure to obtain
interaction coefficient BY and tensor a. (d) The flow under imposed pressure gradient to determine
the permeability K.

The tensor o' is the mean stress induced by a unit pressure imposed in pore i and the interaction
coefficient B% is the change of the pore volume j induced by a unit pressure in pore 4, within a change
of sign (Figure 1c). Their determination requires the solution of an elastostatic problem, with zero
mean strain and a unit pressure imposed successively in each of the N pore components.

Finally, K’ is the permeability tensor of the pore component i, complex and frequency dependent, to
be determined by solving the flow equations for three prescribed pressure gradient directions, in each
pore component and for each frequency under consideration (Figure 1d).

The last closure problem is the most demanding numerically. Fortunately, in most practical situations,
there is at most one percolating pore component with a permeability to be determined (Figure 2).
The other K" are zero.
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Fia. 2 — Example of the media with 5 pore components where only one is percolating.

The elastic coefficients D, o, A’ and BY have many properties and mutual relationships. Some of
them are theoretical results, others are empirical observations. They can be used to reduce the number
of closure problems to be solved, which can be very desirable in the case of many closed pores.

The first and most important property is ‘ ‘

a'=A’ (3)
This is a general result, which can be shown by using the Maxwell-Beti reciprocal theorem. Since ol
is a stress tensor, o and A’ are symmetric, as well as the matrix B

BY = BJt (4)

which is negative and diagonally dominant. These properties, their consequences and different ap-
proaches at various levels of approximation are described in a fully worked out example.

3 Simplifications and Applications
In the case of plane harmonic waves propagating along a direction p, the solid and fluid displacements
are of the form
U = Uet — [eilwt—kxp) 5)
= We' = Wellvi=hxp) (6)

The wave characteristics can be obtained by solving an eigenvalue problem corresponding to the
Christoffel equation in the most general form

g "B (8- 1)(8) 0

—u%fp.K1 (EfilG“A") p- /%fp.Klan. wl TR wl

where G'' = (BJ* — Cfc?"je")fl and D% =D — %,%;a/GY AJ.
The usual compression and shear waves can be observed, as well as the slow compression wave predicted
by [4]. In anisotropic media, when the principal directions of the various tensors D, a’ and K" are not

aligned, the eigenmodes are always mixed waves. However, they are generally very close to one of the
aforementioned simple waves.

Figure 3 is an example of compression and shear wave velocities, calculated from a sandstone sample
which had been imaged by X-ray microtomography, in the low and intermediate frequency range where
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they do not depend on w. These general charts give the velocities as functions of the interstitial fluid
density and compressibility. The positions of several real fluids of interest are marked, as well as that
of water regarded as incompressible. Note that the shear wave velocity does not depend on the fluid
compressibility.
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Fia. 3 — Compression (left) and shear (right) wave velocities calculated for a sample of sandstone
imaged by X-ray tomography, in the low and intermediate frequency range, as functions of the fluid
density and compressibility. The velocities are normalized by the corresponding values in the solid
material. The position of some usual fluids is marked. The black dot corresponds to water regarded
as incompressible.

The results for the two real rock samples and for unimodal reconstructed media are compared in
Figure 4.
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Fia. 4 — The fast compression (a) and shear (b) wave velocities as functions of the porosity for
various interstitial fluids, in two real rock samples and in unimodal reconstructed media with various
correlation lengths. The data for the real sandstone are for a subsampling of the tomographic image
into 1283 voxels of 5.6um () or into 643 voxels of 11.2um (x). The straight lines are linear fits of the
data for reconstructed media.

The agreement is good for ¢/, except for the sandstone saturated with water regarded as incompressible,
but this is a rather unphysical case.

Although the hierarchy according to the kind of interstitial fluid is preserved, the agreement is quan-
titatively poorer for the shear wave velocity c,. It is smaller (resp. larger) in the sandstone (resp.
carbonated rock) than in a unimodal medium with the same porosity.
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4 Conclusions

The global wave properties, namely velocity and attenuation coefficients, were derived by solving the
Christoffel equation. Three types of waves were observed during propagation through the saturated
media. The wave velocities were expressed explicitly which allows to analyze the effect of various
parameters.

The theory has been applied to various kinds of porous media to study the influences of the me-
chanical properties of the interstitial fluid, the microstructures on the global characteristics of wave
propagations. The numerical results are in good agreement with the analytical predictions.
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