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Résumé :

La récupération assistée d’hydrocarbures par injection de polymères est modélisée à l’échelle du pore.

L’écoulement incompressible de deux fluides immiscibles est simulé dans un réseau de microcanaux.

Le mouvement du fluide newtonien est régi par les équations de Stokes. Le modèle Oldroyd-B est

utilisé pour simuler le comportement viscoélastique du fluide non newtonien. L’interface entre les deux

fluides est suivie à l’aide de la méthode Level Set. La dynamique du point triple s’appuie sur l’analyse

théorique de Cox. Des résultats de simulations réalisées en deux dimensions sont présentés.

Abstract :

This work is motivated by the need for better understanding the Polymer Enhanced Oil Recovery tech-

nique at the pore-scale. We consider two phase immiscible and incompressible fluids in a microchannel

network. The Oldroyd-B rheological model is used to capture viscoelastic behavior. The interface bet-

ween the two fluids is followed by a Level-Set method. The dynamics of the triple point is modeled by

the Cox’s theory. Numerical simulations in a two dimensional microfluidic pore network are presented.

Mots clefs : Two-phase flow ; Level-set method ; Oldroyd-B model

1 Introduction

This work is motivated by the need for better understanding the polymer Enhanced Oil Recovery
(EOR) technique at the pore-scale. In the polymer EOR, polymers are injected into the reservoir to
modify fluid properties to make them more favorable for oil recovery.

In the oil recovery industry, is very important to understand multiphase flow processes at the pore-
scale to better describe its behavior at the macroscopic scale. Microchannels network are frequently
used as a laboratory model to reconstruct the flow conditions in a porous medium at pore-scale. Ex-
perimental results on two-phase flow in microfluidic devices, composed of straight microchannels, with
controlled size heterogeneities can be found in [5].

The modeling of two phase flow at microfluidic scale has already been studied in the past (for example
[11], [12]). At this scale, the flow is generally laminar and the movement of the interface between the
two fluids is controlled by the effect of the surface tension. The works of [11] and [12] deal with the
modeling of two immiscible and newtonian fluids in microfluidic, the first one in 2D and the second
one in 3D. In the context of ink jet plotters, a two phase flow with a newtonian and a viscoelastic
fluid, has been modeled and compared to experiments, [13].

One of the most important aspects to consider in two phase flow simulation, is the moving contact
line problem. Many attempts to simulate the dynamic of the contact line have been developed, a very
good review of these methods can be found in [7]. The dynamic contact angle model used in this work
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is based on the theoretical analysis of Cox [6]. Cox provides a general hydrodynamic description of a
moving contact line, that links the triple point velocity to the dynamic contact angle.

Our aim is to describe a pore scale numerical model to simulate a two phase flow of newtonian and vis-
coelastic fluids into a porous media, incorporated with a dynamic contact angle model which describes
the fluid-fluid-wall dynamics. Then, we perform simulations with realistic parameters to compare them
with experimental results.

We consider two phase immiscible fluids in a microchannel network. The low Reynolds number due
to the small dimensions and small velocity at this scale allow us to use the incompresible Stokes
equations to describe the newtonian fluid flow. The Oldroyd-B rheological model is used to capture
the viscoelastic behavior [2]. In order to perform numerical simulations in a complex geometry like a
microchannel network, we use a penalization method [1]. To follow the interface between the two fluids,
we use the Level-Set method. In the Level-Set method, a function φ is used to implicitly represent the
interface between the two fluids [4]. In our algorithm, the interface is the zero level of φ. The dynamic
contact angle model used in this work is based on the theoretical analysis of Cox [6].

2 Modeling two phase flow at pore scale

2.1 Domain description

In the Figure 1(a) we show a microchannel network which represents a porous medium. This micro-
channel network is formed by channels with diameter dc, separated by a distance d. We are going to
focus our attention to a little part of this microchannel network, for example the zone in the dotted
lines. A zoom of this zone is presented in the Figure 1(b).
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Fig. 1 – Domaine description

Let Ω be the domain shown in the Figure 1(b), we denote by Ωf the fluid zone and Ωs the reunion
of solid obstacles. The boundary of Ωf is ∂Ωf = ∂Ωs ∪ ΓD ∪ ΓP ∪ ΓN . Here, ΓD denotes the inlet
boundary where a constant velocity is imposed, ΓP is the part of the boundary where we specify
periodic boundary conditions and ΓN is the open boundary where we impose non reflecting boundary
conditions [3].

2.2 System description

Under the hypothesis presented in Sec. 1, the governing equations are :
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∇ ·U = 0

−∇p + ∇ · (2η(φ)D) −∇ · τp − γκnδΣ −
U

K
= 0

τp + λ(φ)

(

∂τp

∂t
+ U · ∇τp − (∇U)τp − τp(∇U)t

)

+
τp

K
= 2ηp(φ)D

∂φ

∂t
+ Ũ · ∇φ = 0

(1)

In the system above, U is the velocity field, p is the pressure, τp is the polymeric stress tensor and

D is the rate of deformation tensor defined by D = ∇U+(∇U)T

2 . In the Stokes equation, γ is the

surface tension coefficient, κ = ∇ · n is the curvature of the interface, n = ∇φ
|∇φ| is the normal to the

interface and δΣ is the Dirac delta function which is zero everywhere except at the interface Σ. The
discontinuous fields η(φ), ηp(φ) and λ(φ) are defined by :

η(φ) =

{

η1 if φ < 0

η2 if φ > 0
ηp(φ) =

{

ηp1 if φ < 0

0 if φ > 0
λ(φ) =

{

λ1 if φ < 0

0 if φ > 0

where η1 is the solvent dynamic viscosity in the fluid 1, η2 is the dynamic viscosity of fluid 2, ηp is
the polymer contribution to the solution viscosity, λ1 is the characteristic relaxation time and φ is the
level set function, which is advected with the flow.

The terms U

K
and τp

K
added in Stokes and tensor equations, are the penalization terms. Here, K can

be considered as a non-dimensional permeability coefficient. It is set to a very large value in the fluid
zone (e.g. 1016) and to 10−8 in the solid zone. Consequently we recover the original Stokes and tensor
equations in the fluid, and we enforce U et τp to vanish in the solid zone [1].

The velocity Ũ used in the advection equation comes from the resolution of the Stokes equations.
At the wall, near the triple contact line, we modify the tangential component of Ũ according to the
contact angle.

2.3 Contact model

At the triple point, where Fluid 1 and Fluid 2 meet at the solid wall, we adopt a contact angle model
based on the work of Yu et al. [13] and the theoretical analysis of Cox [6]. First, we define θd, as the
angle made by the interface and the solid wall, θa the advancing contact angle, θr the receding contact
angle and vb is the tangential velocity of the interface at the triple point. If θd > θa and vb > 0, the
triple point is allowed to move towards the Fluid 2. If θd < θr and vb < 0, the triple point is allowed
to move towards the Fluid 1. Otherwise, the triple point is not allowed to move.

Cox provides a general hydrodynamic description of a moving contact line, that relates the triple point
velocity vd to the dynamic contact angle θd by :

vd = γ
g(θd) − g(θo)

η1 Ln
(

x
L

) (2)

where γ is the interfacial tension, θo can be θa or θr, η1 is the viscosity of Fluid 1, x
L

is the relation
between macroscopic and microscopic scales and

g(θ) =

∫ θ

0

dθ

f(θ, q)
(3)
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where q =
η1

η2
and

f(θ, q) =
2 sin θ

(

q2
(

θ2
− sin2 θ

)

+ 2q
(

θ (π − θ) + sin2 θ
)

+
(

(π − θ)2 − sin2 θ
))

q
(

θ2 − sin2 θ
)

((π − θ) + cos θ sin θ) +
(

(π − θ)2 − sin2 θ
)

(θ − cos θ sin θ)
(4)

When the triple point is allowed to move, the velocity is calculated from the Eq. (2). This velocity is
imposed on the edge of the wall in a close vicinity of the triple point .

3 Discretization

The Stokes equation is discretized in space on a rectangular cartesian staggered grid using a finite
volume method for a mesh of MAC (Mark And Cell) type. The incompressibility constraint is treated
with the Augmented Lagrangian method.

The level set equation is discretized in time by an explicit Euler method. The space discretization
is done through a WENO-5 scheme on a grid that is twice finer than those used for solving Stokes
equation. On this new grid, the velocity components are calculated by linear interpolation. Periodically,
the level set function is re-initialized as a signed distance function by a Fast-Marching method [8]. The
Oldroyd-B model is solved in two steps : the first consists in solving a local problem, then we solve a
convection equation.

The position of the contact line at time tn+1, Xcl(tn+1), is obtained from Xcl(tn+1) = Xcl(tn) + vd∆t

[10]. And the angle θd is obtained by using the following expression :

θd = π − arctan

(

dx

X∗ − Xcl

)

(5)

where X∗ is the position of the interface two cells next to the triple point in the fluid part. Once the
contact angle is known, we can calculate g(θ) with the Eq. (3).

4 Results

Here is given a numerical example of the two phase flow simulation when a newtonian fluid pushes
another one. The domain dimensions are 50µm × 50µm. The interfacial tension γ is such that the
capillary number Ca = 0.01. The capillary number Ca = η1V

σ
, where η1 is the viscosity of fluid 1, V

is the velocity at inlet and σ is the surface tension coefficient. The advancing angle θa = 130◦. The
dynamic viscositys are η1 = 1 × 10−3 Pa · s and η2 = 1.34 × 10−3 Pa ·s.

In Figure 2 we show the fluid velocity field and the evolution of the interface at different times. The
solid line in the fluid is the zero level set of φ, that is, the interface between the two fluids.

The time evolution of the contact angle from the moment that the interface touches the wall, is shown
in the Figure 3(a), and the contact line velocity, in the Figure 3(b). The triple point is steady until θd

reaches θa = 130◦, then it moves according to the increase of the angle θd that reaches an asymptotic
value.

The Figure 4 illustrates a plot of the dynamic contact angle θd versus log10 (Ca). The qualitative
behavior is expected, as we increase the capillary number Ca, the dynamic contact angle θd will also
increase.

The solid curve is drawn by using Equation (2) with x = 0.3 and L = 10−10 which are values presented
in [9]. The Figure 4 clearly shows that the numerical results verify the Cox’s law.
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Fig. 2 – Fluid velocity
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Fig. 3 – Time evolution of the contact angle and of the triple point velocity. We note in (b) that vd

is zero until θd reaches θa = 130◦
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Fig. 4 – Dynamic contact angle as a function of Ca. The solid line si calculated from Equation 2

5 Conclusions

A numerical technique for the simulation of two fluids in a microchannel network has been developed.
This technique involves a level set approach, a penalization method and a numerical contact angle
model based on the Cox’s relation. The 2D simulations are performed with realistic parameters. The
qualitative and quantitative behavior of contact angle θd are verified : θd increases as we increase the
Capillary number Ca and θd satisfies the Cox’s law.
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