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The effect of the wall slip on the stability of the

Rayleigh-Bénard Poiseuille flow for viscoplastic fluids

Christel METIVIERa, Albert MAGNINa
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Résumé :

Une analyse linéaire de stabilité de l’écoulement de Rayleigh-Bénard Poiseuille est réalisée pour un
fluide de Bingham en considérant des conditions de glissement aux parois. L’effet du coefficient de
frottement sans dimension Cf est mis en évidence. Lorsque Cf < O(1), le nombre de Rayleigh critique
Rac tend vers le cas libre-libre ; pour 10 < Cf < 30, les valeurs de Rac atteignent un minimum ; pour
Cf > 30 l’écoulement est stabilisé ; finalement le cas rigide-rigide est retrouvé pour Cf > 1000 en
terme de valeurs de Rac. Par ailleurs, des modes dissymétriques sont observés lorsque 1 < Cf < 104.

Abstract :

A linear stability analysis is performed for the Rayleigh-Bénard Poiseuille flow for a Bingham fluid and
considering slip boundary conditions at walls. The influence of the friction number Cf is investigated.
When Cf < O(1), the critical Rayleigh number Rac tends to that of the free-free case (Cf → 0; for
10 < Cf < 30, the Rac values reach a minimum ; for Cf > 30 the flow is stabilized ; finally the
rigid-rigid case is recovered for Cf > 1000, in terms of Rac. Furthermore, asymmetric modes are
observed for 1 < Cf < 104.

Mots clefs : Yield stress fluids ; slip at walls ; thermoconvective instabilities

1 Introduction

Slip occurs in flows of concentrated dispersions due to the displacement of the disperse phase away
from solid walls. Slip effects are usually observed when the disperse phase presents a multi-micron size
of particles or of droplet (emulsion). When sheared with smooth surfaces, the concentrated dispersions
exhibit apparent motion. Reviews on this topic have been proposed by Oldroyd (1) and Barnes (2).
Due to its practical interest, the slip of non-Newtonian fluids is widely studied. In particular, the slip
of polymer microgels in rheometers is studied for a long time (e.g. (3)-(5)).

The aim of this paper is to study the effect of slip near solid surfaces on the instability conditions
when a viscoplastic fluid is involved. In particular, we propose to study the Rayleigh-Bénard Poiseuille
(RBP) flow of a Bingham fluid. In the present paper, we propose to extend the study of (6) considering
slip conditions at walls.

2 Governing equations

We consider the plane Poiseuille flow under an imposed axial pressure gradient of a yield stress fluid
in a horizontal plane channel. The upper and lower walls are at constant temperatures, T̂0 − δT̂ /2

and T̂0 + δT̂ /2, respectively. The hat notation is used for all dimensional variables. The dimensionless

problem is obtained using the width L̂ of the plane channel as length-scale, and the thermal diffusion
time L̂2/â between the two walls as the timescale; here â is the thermal diffusivity of the fluid. The

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by I-Revues

https://core.ac.uk/display/15523216?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
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velocity scale is the maximum velocity Û0 of the no-slip boundary conditions. With the Boussinesq
approximation, the governing equations read:

∇ · U = 0, (1a)

ReU t +Re2 Pr (U · ∇) U = RePr (−∇P + ∇ · τ ) +RaT ey , (1b)

Tt +RePr (U · ∇)T = ∇2T, (1c)

The velocity vector U is of the form U = U ex + V ey, where U and V are the velocity components
and ex, ey are unit vectors in the streamwise and transverse directions, respectively.

The dimensionless numbers are the Reynolds, Re =
ρ̂Û0L̂

µ̂0
, Prandtl, Pr =

µ̂0â

ρ̂
and Rayleigh,

Ra =
ρ̂α̂0ĝδT̂ L̂

3

µ̂0â
numbers, ρ̂ is the fluid density, α̂0 is the thermal expansion coefficient and ĝ the

gravitational acceleration.

The constitutive law for a Bingham fluid is given by:

τ = µγ̇ iff τ > B, (2)

γ̇ = 0 iff τ ≤ B, (3)

with µ = µ0 +
B

γ̇
the effective viscosity and B = τ̂0 L̂/

(
µ̂0 Û0

)
the Bingham number. The rate of

strain tensor is denoted by γ̇; γ̇ and τ are the second invariants of the rate of strain and deviatoric
stress tensors, respectively.

The set (1) is completed by the boundary conditions at walls:

T (−1/2) = T1 = 1/2 and T (1/2) = T2 = −1/2, (4)

V (±1/2) = 0, (5)

U(±1/2) = −
τxy(±1/2)

Cf

[
1 −

S

τxy(±1/2)

]
if |τxy(±1/2)| > S, (6)

U(±1/2) = 0 if |τxy(±1/2)| ≤ S, (7)

with S =
ŝ0L̂

µ̂0Û0

the slip yield number and Cf =
ĉf L̂

µ̂0
the friction number, ŝ0 the yield stress when slip

occurs at walls and ĉf the friction dissipation coefficient.

The steady state flow leads to a basic conductive state and the velocity U b = (Ub(y), 0, 0) reads:

Ub(y) =






1 +
1

Cf

(
B

2yb
+ S

)
for |y| ≤ yb

1 −

(
|y| − yb

1/2 − yb

)2

+
1

Cf

(
B

2yb
+ S

)
for yb < |y| < 1/2,

(8)

where 2yb is the width of the central unyielded region as shown in Fig. 1 (gray region) and given by
the relation B = (2yb)/(yb − 1/2)2. Velocity profiles are displayed in Fig. 1 by varying S and Cf

values.

The limit case Cf → 0 is denoted as the free-free case in the following. The distinction is made with
the perfect slip case. Indeed, the perfect slip case leads to an entire unyielded flow which is linearly
stable.
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Figure 1: Velocity profiles for yb = 0.1 (B = 1.25) and different values of Cf and S. The gray
zone represents the unyielded region. Dotted lines: S = 5, Cf = 50, dashed lines: S = 5, Cf = 2,
dash-dotted lines: S = 0.5, Cf = 50, solid lines: S = 0.5, Cf = 2.

3 Linear stability analysis

One introduces a small perturbation A(ψ,Θ, p,±y±i ) to the fully developed flow. Here, A corresponds
to the amplitude of the perturbation and ψ is the stream function, defined by u = ∂yψ and v = −∂xψ.
The perturbations field is sought in the following form:

(
ψ, ±y±i , p, Θ

)
=

(
f(y), ±y±1 , p(y), θ(y)

)
ei α (x−ct), (9)

where α denotes the streamwise wave number and αci = Im(ω) denotes the growth rate, with ω = α c.

Considering Eq. (9), the linearized equations of perturbations read in the yielded regions as follows:

L1f + L2θ = cL3f, (10a)

L4 θ + f = c θ, (10b)

with L1,L2, L3 andL4, the following operators:

L1 ≡PrRe
[
Ub(D

2 − α2) −D2Ub

]
+
Pri

α
(D2 − α2)2 − 4 iαPrBD

[
D

|DUb|

]
,

L2 ≡ PrRa,
L3 ≡ D2 − α2,

L4 ≡ PrReUb − iα+
i

α
D2,

(11)

where D ≡ ∂y. In the unyielded region, the eigenvalue problem is reduced to:

f = 0, (12a)

L4 θ = c θ. (12b)

At the yield surfaces (y = y±i ), the yield conditions lead to:

f(±yb) = ∂yf(±yb) = 0 (13)

At the walls (y = ±1/2), the boundary conditions read:

θ(±1/2) = 0, (14)
[
∂yyf + Cf ∂yf − α2f

]
±1/2

= 0, (15)

v(±1/2) = −f(±1/2) = 0. (16)

As a remark, one can notice that S does not have any influence on the stability analysis (Eqs (10)-(16)).
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4 Results and discussion

The set of equations (10)-(16) is solved numerically by means of a finite differences method. A
second-order centered finite scheme is used in order to discretize the equations. The resulting problem
represents an eigenvalue problem which is solved using the QZ algorithm implemented in Matlab 7.1.
In this work, the convergence of the results is obtained for N = 301.
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Figure 2: Evolution of the critical Rayleigh number as function of the Bingham number for different
values of the friction number Cf and S = 2, Re = 0.01 (Black squares: No-slip case, Squares:
Cf = 0.001, Deltas: Cf = 0.01, Black circles: Cf = 5, Diamonds: Cf = 15, Circles: Cf = 20,
Gradients: Cf = 50, Crosses: Cf = 100).

The Figure 2 represents critical conditions for different values of the friction number Cf with S = 2.
This value of S involves cases for which the fluid slips at walls, for all B. Slip conditions at walls
destabilize the flow since the Rac values are smaller than that of the no-slip case (black squares).
When Cf > 30, critical conditions tend to that obtained in the no-slip case while for Cf < 10, Rac

values tend to the free-free case. A transition region is observed for 10 < Cf < 30. Actually, in this
range of values, one observes that (i) if B < Bc, Bc a critical value, then Rac values tend to the no-slip
conditions, (ii) if B > Bc, a large variation is observed in Rac and the flow is destabilized as given
in Fig. 2 (see circles and diamonds symbols with dashed lines). Furthermore, one observes that Bc

varies slightly with Cf as it is also underlined in Fig. 3 (dashed lines). In Fig. 3, one notices that,
for fixed values of B, Rac is constant when Cf < O(1) and is equal to the value obtained for the
limit case Cf → 0. For 10 < Cf < 30, values of Rac decrease, reach a minimum at Cfm = 0(10) and
then increase significantly. Finally, Rac values tend to that of the no-slip case for large values of Cf

(Cf > 50). Figures 2 and 3 show clearly that the transition between the free-free and the no-slip cases
is abrupt and depends on Cf values. In order to underline this dependency, calculations have been
performed setting artificially Cf = 0 only in the boundary conditions (15), i.e. for each value of Cf the
basic flow is retained but perturbation boundary conditions at walls are modified. We have observed
that for all tested values of Cf , critical conditions obtained are similar to that of the case Cf = 0.001.
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It means that any variation with Cf in criticality (spectra, eigenmodes, critical conditions) is only due
to the competition between the free-free case and the no-slip case via the value of Cf in Eq. (15).
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Figure 3: Evolution of the critical Rayleigh number as function of the friction number Cf and S = 2,
Re = 0.01 (Squares: yb = 0.001 (B = 0.008), Circles: yb = 0.1 (B = 1.25), Black Circles: yb = 0.1 and
Cf = 0 in Eq. (15), Crosses: yb = 0.16 (B = 2.77), Deltas: yb = 0.2 (B = 4.44), Diamonds: yb = 0.22
(B = 5.61). The dashed line indicates the minimal values of Rac.

The structure of the perturbed flow can be represented by the least stable mode in terms of temperature
and stream function as given by Figs. 4-5.

The asymptotic cases are compared in Fig. 4 since critical modes are displayed for the no-slip case
(solid line) and the free-free case (dashed line). One can observe the main difference between these
two cases via the derivative of f at walls according to different boundary conditions.

For 1 < Cf < 104, one can notice asymmetric modes as represented in Fig. 5. The increase in Cf

values increases the differences between the extrema of the modes in the two yielded regions. The
symmetry of the critical modes are finally found for large values of Cf , i.e. Cf = 10000. For this value
of Cf , critical modes tend to the no-slip case ones.
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Figure 4: Critical modes for the no-slip case, yb = 0.1 (B = 1.25), Re = 0.01 (solid line: no-slip case,
dashed line: Cf = 0.001 (free-free case)).
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Figure 5: Critical modes for different values of Cf , S = 2, yb = 0.1 (B = 1.25), Re = 0.01 (Long
dashed line: Cf = 10000, solid line: Cf = 200, dashed line: Cf = 50, dash-dotted line: Cf = 1).
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