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Résumé

Le cytosquelette des cellules vivantes est composé de polymères en constant réarrangement, par polymérisation et
dépolymérisation, réticulés de façon transitoire (environ 1 seconde). Avec une structure aussi dynamique, on peut
s’étonner de la capacité des cellules à conserver une forme stable sur des durées conséquentes. Nous proposons un
modèle rhéologique qui prend en compte cette dynamique du cytosquelette et les moteurs moléculaires ; et apporte
des réponses à ces questions.

Abstract

Living cells cytoskeleton is made of polymers which are constantly being re-modelled by polymerisation and de-
polymerisation, and which are bound to one another (crosslinked) through even more unstable molecules, lasting
for about one second. With such a dynamic structure, one may wonder how cells can maintain a given shape over
time ranges several orders of magnitude larger than the turn-over time of their constituents. We propose a rheo-
logical model which features crosslink turn-over, polymerisation and molecular motor-generated contractile forces,
and provides answers to these questions.

1 Introduction

Cells are known to be able to maintain their shape and exert stress on their environment over a time scale of hours,
a duration which seems to be limited only by their division cycle or their urge for finding other conditions by
migration. However, it is also known that the internal structure which allows them to resist and exert stress are
highly dynamic and non-permanent [1]: the lifetime of these elements, from cross-linkers to actin filaments and
microtubules, ranges from a fraction of a second up to a maximum of a dozen minutes.

This elicits a very natural question: how can possibly such a changeable material maintain a constant shape and
stress? If one was to unbolt and re-bolt a significant fraction of the Eiffel Tower’s girders at such a rate, chances
are that some of them would be disconnected altogether and fall down at some point. Even if they are stopped in
their fall by the framework entanglement, and get re-bolted with adjacent girders, one imagines that the Tower will
eventually collapse. So what does the cell do that prevents this collapse? Quite evidently, the cell is assisted with a
crowd of workers which re-tense its structure, namely molecular motors.

Let us imagine an experiment that will hurt (somewhat) less of physiology. Consider a sample of the acto-
myosin cortex of a cell, that would be fixed between two plates submitting it to an extensional constraint (figure 1).
For simplicity, let us consider that this sample is sufficiently large so that no single filament spans the distance
between the plates. This is actually the case in a whole cell sitting on a substrate, as no single filament spans the
distance accross the cell. Thus at least part of the crosslinkers bear some of the tension in the sample. Every time
one of these cross-linkers is disconnected, the actin meshwork will thus relax and extend somewhat. If there are no
molecular motors present, the actin meshwork will thus yield to the extensional force at a rate which, in the first
approximation, depends only on the crosslinker unbinding rate and on the force, and not on parameters such as the
current distance between the plates. An observer will thus deem that the sample is a fluid, albeit a very viscous one.

Now if there are motors present, we know that they can exert a contractile stress. Thus one can imagine that, as
crosslinkers unbind, the resulting local deformation will depend on the difference between the global extension and
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(a) (b) (c)

Figure 1: Modelling view of acto-myosin gel. (a) Crosslinked actin gel under extensional stress. As a crosslinker detaches,
the network relaxes to situation (b). The crosslinker then rebinds, but in a relaxed state, which does not change the
new equilibrium length. (c) Myosin and actin polymerisation at boundaries also affect the stress.

local motor-driven contraction this crosslinker used to resist. Thus, the acto-myosin cortex is expected to be able to
sustain some level of tension equal to the total stress generated by its molecular motors.

In this paper, we develop a rheological model based on these observations. This continuous model1 is in the
line of ideas developped by Dembo [3] and Kruse [4] but in a simplified framework and with a reduced number of
parameters. We test its predictions in several situations where we have performed rheometrical experiments on live
cells. It is found that our simple model captures faithfully the force–deformation relations observed in experiments.

2 A visco-elasto-active model of the cell cytoskeleton

2.1 Constitutive equations

Let us consider the thought experiment above. A cross-linked network is maintained under extensional stress, as in
figure 1. Cross-linkers unbind with a characteristic time τα, which causes the network to yield locally to the stress.
These unbound cross-linkers then re-bind elsewhere in the new configuration of the network, so that the elastic
modulus of the network is unchanged after this unbinding–re-binding sequence, but its configuration has changed.

We suppose that the network is very large in terms of number of crosslinks. The displacement δ` which results
from the unbinding of one tensed crosslink is of the order σ/E, where σ is the stress and E the Young’s modulus
characterizing the network. Such an event occurs at a rate 1/τα, where τα is the average lifetime of a crosslink. The
strain is thus composed of a plastic component εp such that ε̇p = σ/(ταE) in addition to the elastic strain εe = σ/E.
The Young’s modulus of the network does not change in time in this process, because unbound crosslinkers are
hypothesised to rebind somewhere else (in relaxed state), so that the structure of the network, which determines its
elasticity, is unchanged2. Thus, some simple algebra yields what turns out to be Maxwell constitutive equation:

τασ̇ + σ = ταE ε̇

If myosin is present, it will contribute to the strain rate with ε̇my = −cmy`my/τmy in proportion of its concen-
tration cmy and step length `my, at its rate of binding 1/τmy. This generates an additional stress, and the constitutive
equation becomes :

τασ̇ + σ = Σ + ταE ε̇ (1)

with Σ = τα
τmyo

cmyo`myoE. In the absence of crosslinkers and of any external force balancing the stress of the acto-
myosin network (thus τα = 0 and σ = 0), we find that the acto-myosin network will contract indefinitely with a
characteristic contraction time τc = ταE/Σ. This is what is observed experimentally in non-crosslinked purified
gels and is called superprecipitation [5, 6].

One may consider that there is more than one relaxation time in the actin plus crosslinkers network, possibly
due to different unbinding times and complex relaxation modes [e.g. 7], yielding a set of constitutive relations for
each of them.

Similarly to the tensorial extension of the Maxwell constitutive relations, the tensorial version of the visco-
elasto-active constitutive relation requires the use of an objective derivative to guarantee that the relation is frame-
invariant. Using the upper-convected derivative O

σ= ∂
∂tσ + u · ∇σ − (∇u)Tσ − σ(∇u), we obtain :

τα
O
σ + σ = Σ + τcΣD(u)

where u is the velocity of the actin network, and D(u) = 1
2(∇u+ ∇uT) the rate of strain tensor. Σ = ΣI if we

assume an isotropic force generation.
1See [2] for a review of modelling approaches for living cells
2The same argument holds for actin treadmilling provided that the average filament length is a constant in time
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2.2 Governing equations for an acto-myosin network

We consider that, in most conditions, the leading order force balance within the actomyosin cortex is between the
forces it actively generates and the boundary conditions. Thus there is no bulk force to balance the stress σ:{

τα
O
σ +σ = Σ + τcΣD(u) (2a)

divσ = 0 (2b)

What we obtain is a visco-elastic Maxwell-type constitutive equation (2a) with a term Σ that represents motor-
generated stress in the right-hand-side, and an equilibrium equation (2b) in which there is no bulk force to balance
the visco-elastic stress: thus it must be balanced by boundary conditions in our case. This model can be shown
to be a particular case of the models by Dembo [3] and Kruse [4]. Of course, in some cases this model must be
complemented by extra terms that we have neglected here. For instance, the round shape of cells in suspension
can be recovered by considering that the cytoplasm inside the cell is under pressure. Within the acto-myosin
cortex, the gradient of this pressure will balance the motor-generated stress σ = Σ in the static solution, and yield
Laplace law. It is known that myosin motor-generated strain stalls at a given value of stress, however this does not
have to be imposed here in the modelling: this stalling arises naturally from the constitutive equation we obtain.
Indeed, if one considers e.g. a characteristic time much shorter than τα, Eq. 1 can be integrated in time and yields
2E(−ε) = Σ − σ, which states that the contraction −ε (the opposite of the extension) decreases as the stress
developped σ increases up to a fixed stall value Σ.

2.3 Actin polymerisation

One can easily see from the sketch in figure 1 that actin treadmilling only matters at boundaries, provided that there
is no net extension of the filaments and thus that the Young’s modulus of the network will remain the same in time.
Actin polymerisation is thus incorporated in the model simply by postulating that it creates a velocity difference at
the boundary, between the velocity of the boundary itself and the velocity of the actomyosin network. This velocity
difference is equal to the speed of actin polymerisation vp.

2.4 Adhesion

Cells encountering a two-dimensional flat substrate generally adhere and spread on it. This spreading can be
enhanced by an adequate functionalisation of the substrate. A simple modeling approach consist of considering
that, in the plane tangential to the flat substrate, adhesion has the same properties as wall-friction in a Hele Shaw
cell, therefore the model writes:

λ
O
σ +σ = Σ + D(u) in Ω(t) (3a)

−cfu+ divσ = 0 in Ω(t) (3b)
∂γ

∂t
= u(γ) + upn for s ∈ [0, |Γ(t)|] (3c)

σn = F on Γ(t) = {γ(t, s), s ∈ [0, |Γ(t)|]} (3d)

with λ = τα
τc

, and up =
vpτc
L0

. cf is a friction coefficient nondimensionalised by τcΣ/L
2
0. γ tracks the position of the

contour of the domain Ω(t).

3 Numerical technique

For addressing more complex geometries and non-stationary behaviours of this active material, it is necessary
to resort to numerical simulations. Here we describe an original mixed formulation to solve this Maxwell-type
problem.

Using the characteristics method for the objective derivative [8] with the same approach as [9], we discretise
problem (3) in time and take its variational formulation. We now want to find (σn,un) in Sn × V n and γn such
that:
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(
De
∆t

+ 1

)∫
Ω
σn : τ dx−

∫
Ω

D(un) : τ dx

=

∫
Ω

(
Σ +

De
∆t
Rσn−1R

T
)

: τ dx ∀τ ∈ Sn (4a)

−
∫

Ω
un · v cf dx−

∫
Ω
σn : D(v) dx = −

∫
Γ
F · v ds ∀v ∈ V n (4b)

γn = γn−1 + ∆t
(
un−1(γn−1) + upn

)
for s ∈ [0, |Γn|] (4c)

where Γn = {γn(s), s ∈ [0, smax]}, and Ωn such that ∂Ωn = Γn, Sn =
{
τ ∈ L2(Ωn)d(d+1)/2

}
and V n ={

v ∈ H1(Ωn)d
}

. Let us introduce the following bilinear forms:

mt(σ, τ ) =

∫
Ω
σ : τ dx, ∀(σ, τ ) ∈ (Sn)2 b(τ ,v) = −

∫
Ω
τ : D(v) dx, ∀(τ ,v) ∈ Sn × V n

mf (u,v) =

∫
Ω
cfu · v dx, ∀(u,v) ∈ (V n)2 bb(F ,v) = −

∫
Γ
F · v ds, ∀(τ ,v) ∈ Sn × V n

The semi-discrete problem now writes:

Find (σn,un) ∈ Sn × V n such that:(
De
∆t

+ 1

)
mt(σ

n, τ ) + b(τ ,un) = mt(Σ, τ ) +
De
∆t

mt(Rσ
n−1RT, τ ) ∀τ ∈ Sn (5a)

b(σn,v)−mf (un,v) = bb(F ,v) ∀v ∈ V n (5b)

γn = γn−1 + ∆t
(
un−1(γn−1) + upn

)
for s ∈ [0, |Γn|] (5c)

Now let us introduce a triangulation T nh of Ωn, and the following finite element spaces:

Snh = Sn ∩
{
τ |K ∈ P1(K), ∀K ∈ T nh

}
V n
h = V n ∩

{
τ |K ∈ P2(K), ∀K ∈ T nh

}
∩ C0(Ωn)

The following Riesz representers are defined over the discrete spaces:

mt(σh, τ h) = 〈Mtσh, τ h〉 , ∀(σh, τ h) ∈ (Snh )2 b(τ h,v) = 〈Bτ h,v〉 , ∀(τ h,vh) ∈ Snh × V n
h

mf (uh,vh) = 〈Mfuh,vh〉 , ∀(uh,vh) ∈ (V n
h )2 −

∫
Γh

F · v ds = 〈Bbτ h,v〉 , ∀(τ h,vh) ∈ Snh × V n
h

Note that if cf vanishes on part of the domain, then Mf is singular. Because there is no continuity requirement for
Snh , the Riesz-representer matrix Mt of mt over Snh × Snh is block-diagonal and can be easily inverted. Thus, a
direct solution algorithm can be written for problem (5):

Find (σnh,u
n
h) ∈ Snh × V n

h such that:(
Mf +

(
1 +

De
∆t

)
BM−1

t BT

)
unh = BΣ−BbF h +

De
∆t

B(Rhσ
n−1
h RT

h ) (6a)

σnh = Σ−M−1
t BTunh (6b)

γnh = γn−1
h + ∆t

(
un−1
h (γn−1

h ) + upnh
)

(6c)
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Figure 2: Force exerted by a cell on its flat substrate (seen from below). (a) Phase contrast microsopy image of the cell shape
(b) Experimental results obtained by traction force microscopy [10]. (c) Numerical simulation of the present model
based on the cell shape in the experiment. The distribution of force is seen to be similar in the experiment and
simulation for a given shape.
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Figure 3: Comparison of model predictions for the setup in figure 1 with F = −k(L − L0) and experiments with a cell
placed in a device having the same spring-like behaviour [11, 12]. (a) Experimental setup : the cell placed between
the microplates deflects them, and an equilibrium length Lp is reached when the cell-generated force is balanced
by the spring-like force of the device Fp = −k(Lp − L0) (b) Equilibrium length (blue) and force (red) generated
experimentally by a cell (squares and circles) and in theory by the actomyosin model (curves) in a spring-like device
as a function of the stiffness k of this device.

4 Predictions of the model

4.1 Cell traction force

For a given cell shape, the model predicts that the cell exerts centripetal forces of increasing magnitude as a function
of the distance to the central region of the cell. The rate of increase depends on the ratio of the friction cf and
contractility Σ parameters. The predicted force field is similar to what is observed in experiments, see figure 2.

4.2 Equilibrium length in uniaxial sollicitation

We look here for solutions of the model where the unknowns are independent of time, and the shape of the cell is
steady. A steady shape of the cell corresponds to the fact that the polymerisation velocity vpn is exactly balanced
by the actin velocity at the boundary u|Γ .

In the one-dimensional setting of figure 1, a unique equilibrium length is determined by the force applied at the
plates. If the force is negligible, then the motor-generated contractile stress Σ in the cell can only be balanced by a
dissipative stress due to a permanent contraction of the actin network, and σ = 0. An equilibrium is reached when
the contraction velocity is balanced exactly by the polymerisation velocity. This happens for a length Le = 2τcvp.
When the force increases, some internal stress σ partly balances the motor-generated stress, the actin contraction
speed decreases and thus the equilibrium length increases in a hyperbolic manner, with a failure of the actomyosin
network as the force approaches the motor generated stress.
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Figure 4: Equilibrium shape in 2D spreading. The initially square domain occupied by a material governed by the visco-
elasto-active constitutive equation deforms until it reaches a circular shape, whose size is determined by a balance
between polymerisation and adhesion-limited contraction of the material. (a) overlay of the shapes of the domain at
t = 0, 1,... to 7, (b) velocity uh of the material (blue arrows) and polymerisation speed (red arrows) at time t = 0.
The shape resulting from material contraction is shown in blue (from the initial shape at t = 0, black dotted line)
and the shape resulting from the combination contraction plus polymerisation in red. When the equilibrium shape is
reached, these two phenomena still occur, and balance exactly.
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If the force is length-dependent, such as the spring-like device developped in [11, 12], then there is always
an equilibrium length. In figure 3 we compare experimental results of the force and length that a cell exerts in a
spring-like device and theoretical predictions for the conditions shown in figure 1. Although there are essential
differences in the conditions, the key fact is that both cell experiments and actomyosin model predictions exhibit
a stalling stiffness above which motors tetanise, and a horizontal asymptote for a finite equilibrium length at low
stiffness. Note that experimentally, the length L0 is both the equilibrium distance between the plates of the device
and the equilibrium size of the cell when in suspension.

4.3 Equilibrium shape in 2D spreading

In a polar symmetry setting, it can be shown that for some choices of the parameters, there exists an equilibrium
radius R such that a circular shape of that radius is a linearly stable, steady solution of this system. A numerical
example of convergence towards this solution is shown in figure 4.

This static shape is again the result of two persisting dynamic processes : although the shape Ω(t) reaches an
equilibrium, the actin network undergoes perpetual centripetal flow, driven by the myosin motors. At the same
time, outward-directed polymerisation at the edges exactly balances this centripetal flow. This is very reminiscent
of what is observed in adhering cells, even when they are immobile, see [13].

5 Conclusions

Unlike an elastic material, the cells cytoskeleton does not have a memory of its own shape. This shape must
then constantly be maintained through energy-consuming, dynamic processes that depend on external and internal
conditions. The advantage of this, as we will show in a forthcoming paper, is that adaptation to a new mechanical
environment begins instantaneously when external conditions are changed.
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