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Résumé :

Certaines limitations apparentées au verrouillage numérique de la discrétisation en éléments finis des

milieux continus micropolaires (de Cosserat) linéairement élastiques ou, inversement, à la continuali-

sation des milieux granulaires analogues, sont illustrées via l’analyse du comportement statique d’une

simple châıne monoatomique et la dérivation de ses modèles de poutres équivalentes qui peuvent être

soit locaux (Timoshenko,Euler-Bernoulli) ou non-locaux (Eringen,Kunin), en tenant compte de ses

propriétés spectrales et analytiques ambigües.

Abstract :

Some locking problems related to the discretization into finite elements of linearly elastic continuous

micropolar (or Cosserat’s) media or, conversely, to the “continualization” of analogous granular me-

dia are illustrated through the analysis of the static behavior of a simple monoatomic chain and the

derivation of its equivalent beam models which can be either local (Timoshenko, Euler-Bernoulli) or

non-local (Eringen, Kunin), while taking into account its analytically ambiguous spectral properties.

Mots clefs : milieux de Cosserat ; granularités ; élasticités locale et non-locale.

1 Introduction

Granular and cellular media that can locally undergo micro-displacements of translation as well as

rotations are commonly thought to be more suitably modeled by the standard Cosserat micropolar

continuum theory [3] for many mathematical and numerical reasons. There exists however a need

for material constant inputs to establish the bridge between the two modelings. The experimental

identification of the parameters required for the Cosserat material constitutive law still remains a

tough challenging task [10]. That fact is due to our lack of analytical understanding of the nontrivial

behaviour of those discrete materials as much in statics as in dynamics. Usually the static equilibrium

behaviour is merely considered in order to determine those material parameters which are then re-used

for the stationary dynamic analysis of the structures. However, as it is well known, Cosserat micropolar

continuum models may degenerate into strain-gradient (also named indeterminate couple-stress [4] or

constrained-Cosserat [5]) ones in the same manner as the Timoshenko’s beam model may degenerate

into Euler-Bernoulli’s beam one [14]. When the elastic interaction constants of the discrete materials

and/or its microstructure size dimensions vary and reach specific values, while still remaining in the

allowed static stability domain of the generic discrete model, the recourse to the gradient model can be
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Figure 1 – The granular model and its loading with respect to the direct orthonormal basis (~x, ~y, ~z).

viewed as an incipient of instability (through the apparent shear modulus of the coarse, local, Cosserat

description, that becomes negative) in the constitutive description of the elastic material.

2 The granular model

In order to illustrate the foregoing statement, the quasi-continuum modeling of the statics of a simple

one-dimensional modeling of granular materials proposed by Pasternak and Mühlhaus [12, 13] has

been revisited. The goal is to clarify certain aspects of the continuum properties and to exhibit bar-

riers to overcome in order to bridge the gap between standard continuum model and granular (or

atomic) physics. The current analysis aims at presenting different alternatives to Eringen/Kunin’s

“continualization” methodologies that are possible (and phenomenologically used) while following the

analytic methodology used by Charlotte and Truskinovsky [1, 2] for one-dimensional homogeneous

lattices with simple microstructures (as defined by Kunin [9]).

The analyzed material is illustrated in Fig. 1 and represents a homogeneous, linearly elastic, chain

model of spherical rigid grains with indexes k ∈ I ⊆ Z, radius r and the respective mass/geometric

center of which are separated by an inter-granular distance a ≥ 2r. Each grain is kinematically limited

to the transverse translation displacement uk~y and the in plane rotation angle θk~z. The correspon-

ding loading variables are the transverse forces afk~y and moments aµk~z ; for simplicity each sequence

{afk}k∈I and {aµk}k∈I is assumed globally self-balanced and has a sufficiently decreasing rate for

large |k| if I is infinite. Moreover, the total elastic potential energy of the chain is postulated like

Wd({uk}k∈I)
def
=

a

2

∑

k∈I

{
α

[
uk+1 − uk

a
−

θk+1 + θk
ξ

]2
+ βr2

[
θk+1 − θk

ξa

]2}
, with uk

def
=

[
uk

θk

]
. (1)

Here α > 0 and β > 0 are, respectively, shear-spring and bending-spring constant parameters and

ξ = 2. The elastic energy in (1) is assumed to converge, what requires that both
∣∣∣uk+1−uk

a − θk+1+θk
ξ

∣∣∣
and

∣∣θk+1 − θk
∣∣ tend sufficiently fast to zero at large |k| (but without uk necessarily tends to zero) if

the chain (and so I) is infinite. The total work of the external loadings reads like

Pd({fk}k∈I , {uk}k∈I)
def
= a

∑

k∈I

f tk uk ≡ a
∑

k∈I

fk uk + a
∑

k∈I

µk θk , with fk
def
=

[
fk

µk

]
,
∑

k∈I

fk
hyp
= 0 (2)

the superscript symbol ( t ) denoting the matrix transposition operator.

In order to statically identify the continuum parameters of the considered mechanical systems, it is

necessary to obtain the natural static equilibrium configurations that locally minimizes the lagrangian

Wd − Pd with respect to {uk}k∈I at {fk}k∈I given. If any exists, such a configuration satisfies then

the following system of “bulk” equations of balance between the external and internal loadings

fk = −
α

a2
[
uk+1 + uk−1 − 2uk

]
+

α

aξ

[
θk+1 − θk−1

]
(3a)
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µk = −
α

aξ

[
uk+1 − uk−1

]
+

α

ξ2
[
θk+1 + θk−1 + 2θk

]
−

βr2

ξ2a2
[
θk+1 + θk−1 − 2θk

]
, (3b)

with additionally the suitable natural boundary equations if the chain (and so I) is bounded.

The material bulk properties of the granular model and its static configuration can be spectrally

characterized in the sense of the tempered generalized functions with, on one hand, the Discrete Fou-

rier’s transform (DFT) [9] {wk}k∈Z → w(λ) = a
∑
k∈Zwk e

−kiλa
(∀λ ∈ a−1R) while the arbitrary

sequence
{
wk

}
k∈Z may eventually grow polynomially with |k|, and, on the other hand, the corres-

ponding inverse transformation with the integral taken in the sense of Cauchy’s principal values

w(λ) → wk = 1
2π

∫ π/a
−π/a w(λ) e

kiλa
dλ. The DFT provides from Eq.(3) then the spectral equation

4α

a2
Φ(λ) u(λ) = f(λ) , with Φ(λ)

def
=




sin2(λa/2) i a
2ξ sin(λa)

−i a
2ξ sin(λa)

a2

ξ2

{
cos2(λa/2) + βr2

αa2 sin
2(λa/2)

}


 (4)

and exhibits a 2π
a -periodic spectral matrix 4α

a2 Φ(λ) that contains all the structural information about

the elastic interactions in the system. In particular, besides the fact that the system is stable as both

α > 0 and β > 0 (Φ(λ) being both hermitian and positive definite for λ ∈ a−1(R \ Z)), it allows to

state when the strength-deformation constitutive relation resumed by Eq.(4) is algebraically invertible

in the Fourier complex space a−1C, which is not pointwisely possible at the λ-roots of the system cha-

racteristic equation det(Φ(λ)) = βr2

αξ2 sin
4(λa/2) = 0. This determinant can also be expressed according

to the Weierstrass’s decomposition det(Φ(λ)) ≡ βr2

16αξ2λ
4a4

∞∏
q=1

(
1− λ2

λ2
q

)4
, for λq

def
= 2qπa−1 ∈ 2πa−1N

and λ ∈ a−1C. By resolving the spectral algebraic equation (4), one infers that one can formally write

down then the general solution of the discrete static mechanical problem in Eq.(3) like

uk ≡
∑

p∈I

G̃(ζ, ka− pa)fp + ũh(ζ, ka) , for k ∈ I with ζ = 1 . (5a)

The first term of this possible form of interpolating functions for the discrete solution {uk}k∈I repre-

sents the particular solution response to the prescribed loadings. It involves the fundamental solution

matrix G̃(ζ, s) whose the values for s ∈ aR are

G̃(ζ, s) ≡
1

2π

∫
∞

−∞

a2e
isλ

4α
Φ̃−1(ζ, λ) dλ

def
=

3|s|

αℓ2




s2

3 + ζ2a2−ℓ2

6 − ξs
2

ξs
2 − ξ2

2


 , with ℓ

def
= r

√
3β/α . (5b)

Regarding the spectral matrix integrand Φ̃−1(ζ, λ) in (5b), the case ζ = 1 provides the first rank

term (involving the fundamental root λ0 = 0) into the Mittag Leffler’s meromorphic expansion of the

components of Φ−1(λ) according the roots {±λq}q∈N, while the case ζ = 0 corresponds to the first

approximation order term of the Taylor’s polynomial expansion for |λ|a ≪ 1. Besides, one distinguishes

in (5a) the following field vector that solves the homogeneous equilibrium problem related to Eq.(3)

ũh(ζ, s)
def
=

[
ũh(ζ, s)

θ̃h(ζ, s)

]
=

[
A+

{
2B + D

6 (ζ2a2 − ℓ2)
}
s+ Cs2 + D

3 s
3

ξB + ξCs+ ξDs2

]
; (5c)

here (A,B,C,D) are arbitrary real constants, the terms proportional to (A,B) in (5c) corresponding

to a work-less rigid motion. The four constants are determined by considering the boundary conditions

(if the chain is bounded) or the “tempered” growth conditions at the infinity to keep the elastic energy

and the work finite. Lately, in addition to a and r, the previous expressions in (5b) also exhibit an

intrinsic length ℓ that is related to the material constants (α, β) and the representative grain size r.
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3 Analogous quasi-continuum models

The discrete solution field {uk}k∈I given in (5a) possesses the same (static) kinematic features as

those attributed to the motion of beam sections of the Euler-Bernoulli’s (EB) and Timoshenko’s (T)

theories when described with both the following continuous interpolating field vector

ũ(ζ, s)
def
=

[
u(ζ, s)

θ(ζ, s)

]
=

∫

S

G̃(ζ, s− ŝ) f̃(ŝ) dŝ + ũh(ζ, s) , for s ∈ S ⊆ aR with I ≡ Z ∩ a−1S, (6a)

and the singular loading field vector that involves the Dirac’s generalized function δ

f(s) ≡

[
f(s)

µ(s)

]
def
=

∑

p∈I

fp δ(s/a − p) , with δ(s/a)
def
= a2D2

s

|s|

2a
. (6b)

For ζ = 1, those fields (ũ, f) exactly interpolate (but in the tempered distribution sense for f) their

discrete counterpart of equilibrium. Moreover, they provide the generic expression of the equilibrium

configurations associated to the following local continuum models of total external work and elastic

energy

P̃ (f , ũ)
def
=

∫

S

f t(s) ũ(ζ, s) ds ≡

∫

S

[
f(s)u(ζ, s) + µ(s) θ(ζ, s)

]
ds , (7a)

W̃ (ũ)
def
=





α̃
2

∫
S
γ2(ζ, s) ds+ βr2

8

∫
S
κ2(ζ, s) ds , if ℓ 6= ζa (T)

βr2

8

∫
S
κ2(ζ, s) ds with γ(ζ, s) ≡ 0 , if ℓ = ζa > 0 (EB)

. (7b)

That latter is expressed with the following apparent shear modulus α̃(ζa/ℓ)
def
= αℓ2

ℓ2−ζ2a2 and apparent

bending modulus βr2/4, as well as the standard Cosserat continuum measures of deformation

γ(ζ, s)
def
= Dsu(ζ, s)−

2

ξ
θ(ζ, s) and κ(ζ, s)

def
=

2

ξ
Dsθ(ζ, s)

(
while Ds

def
=

d

ds

)
. (7c)

If we consider the T beam modeling case, the bulk equations of balance for (7) read like

f(s) = −α̃

[
D2

s ũ(ζ, s)−
2

ξ
Dsθ̃(ζ, s)

]
, µ(s) = −α̃

[
2

ξ
Dsũ(ζ, s)−

4

ξ2
θ̃(ζ, s)

]
−

βr2

ξ2
D2

s θ̃(ζ, s) . (8)

In agreement with [12, 13], the case ζ = 0 corresponds to the long-wave approximating quasi-continuum

model. That case can straightforwardly be derived from Taylor’s expanding Eq.(3) up to the first order

in a while assuming a couple of sufficiently smooth and slow-varying continuous fields (ũ(ζ=0, s), f(s))

for s ∈ S ⊆ aR that are approximatively capable of interpolating their discrete counterparts (uk, fk)

at s = ka ∈ aI. From a numerical viewpoint, the energy model (1) with ζ = 0 can also be interpreted

as a Finite Element Approximation of (7b) while using a piecewise affine polynomial approximation

of the displacement field ũ(ζ=0, s) and an one-point Gauss under-integration for the shear strain γ.

One easily infers that ũ(ζ=0, ka) is a “good” approximation of ũ(ζ=1, ka) ≡ uk at the granular sites

only if ℓ = r
√

3β/α ≫ a, if one “tolerates” (as customarily done in the literature) that the derived

model can still be used with the singular loading (6b) beyond of the required smooth hypotheses of

Taylor’s expansion derivation. However, in general a discrepancy can be observed between the fields

derived by Taylor’s expansions and by spectral-root expansions [1], mainly for the related shear strain

measure in (7c) that notably reads then γ(ζ, s) ≡
(
ζ2a2

ℓ2 − 1
) [

ℓ2

12ξ D2
s θ̃

h(0) +
∫
S
sgn(s− ŝ) f̃(ŝ)

2α dŝ
]
.

Now, the micro-rotation sequence {θk}k∈I and the translation one {uk}k∈I of the generic discrete

model were assumed to be independent, as in the couple-stress theory or again unconstrained Cos-

serat’s pseudo-continuum (of asymmetric elasticity). However, the independence of these kinematic
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variables would fail when ℓ = r
√

3β/α ≡ a because the macro-rotation field Dsu becomes equal to the

micro-rotation angle field 2 θ/ξ, yielding so γ(ζ=1, s) ≡ 0. That singular case corresponds to the Euler-

Bernoulli’s hypotheses for thin beam modeling and also to the so-called indeterminate couple-stress

theory [5] or again constrained Cosserat’s theory [11] corresponding to the strain-gradient theory.

It is obvious the previous T beam modeling violates the requirement of positive definiteness of the

strain energy density as ℓ < a and so it is somewhat unsatisfactory. That suggests that such a phe-

nomenological modeling is still far from giving a comprehensive treatment for the one-dimensional

elastic Cosserat chain model and therefore a different modeling is necessary. Such a model can be de-

rived by adopting a different spectral decomposition for the elastic kernel and analysis of the spectral

equation in (4), without adopting Eringen/Kunin’s “continualization” approaches [12, 13, 2]. Instead

of Mittag-Leffler’s expanding each component of the matrix Φ−1(λ), one can also merely bound this

to the determinant det(Φ−1(λ)) and, accordingly with [1, 2], retain then the first rank term of the

new expansion for Φ−1(λ) as a weak approximation while keeping the ensuing matrix identity for k ∈ Z
∫

∞

−∞

e
ikaλ [

Φ̂(λ)
]−1

dλ ≡

∫ π/a

−π/a
e
ikaλ

Φ−1(λ) dλ with Φ̂(λ)
def
=

3βr2λ4a4

8αξ2
(
6 + λ2a2

)
det

(
Φ(λ)

) Φ(λ) . (9)

It results then a strongly non-local quasicontinnum model that, if I ≡ Z (and so S ≡ aR) or else Di-

richlet’s kinematic boundary conditions are imposed at the chain end(s), corresponds to a lagrangian

Ŵ (û)− P̃ (f , û) involving the external load work P̃ (f , û) in (7a) and the ensuing elastic energy

Ŵ (û)
def
= 2α

∫

S

∫

S

[
Dšû(š)

]
t
K(s− š)Dsû(s) dš ds , with K(s)

def
=

1

2π

∫
∞

−∞

Φ̂(λ)
e
iλs

a2λ2
dλ (10)

(that elastic stiffness matrix K will be explicitly presented elsewhere). Subsequently, the related bulk

equilibrium equations read so vectorially like

−4α

∫

S

K(s− š)D2
š û(š) dš = f(s) , for s ∈ S . (11)

The equilibrium configuration minimizing the foregoing nonlocal lagrangian model satisfies uk = û(ka)

(for k ∈ Z) and reads formally like

û(s) ≡

∫

S

Ĝ(s− ŝ) f(ŝ) dŝ + ũh(ζ=1, s) , with Ĝ(s)
def
=

1

2π

∫
∞

−∞

a2e
isλ

4α
Φ̂−1(λ) dλ for s ∈ aR (12a)

while knowing that det
(
Φ̂(λ)

)
=

(
ℓ2λ4a4

8ξ2
(
6+λ2a2

)
)2

1

det
(
Φ(λ)

) has only λ = 0 as a fourth-order root.

As a result, the fundamental solution matrix Ĝ given hereabove reads more explicitly like

Ĝ(s) =
1

αℓ2




|s|3 + ℓ2−3a2

12a2 {2|s|3 − |s+ a|3 − |s− a|3} − ξ
4a{|s+ a|3 − |s− a|3}

ξ
4a{|s+ a|3 − |s− a|3} ξ2

4a2 {2|s|3 − |s+ a|3 − |s− a|3}




−
a2

αℓ2




|s|+ ℓ2−3a2

12a2 {2|s| − |s+ a| − |s− a|} − ξ
4a{|s+ a| − |s− a|}

ξ
4a{|s+ a| − |s− a|} ξ2

4a2 {2|s| − |s+ a| − |s− a|}


 (12b)

(while reminding that ℓ
def
= r

√
3β/α) and is different from G̃(ζ=1, s) in (5b) only as s ∈ a(R \ Z).

4 Concluding remarks

As predicted for the continuum models [10], size effects also occur for the discrete Cosserat’s mo-

del through the exact value of the apparent shear modulus α̃(a/ℓ), which notably tends to infinity
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as the spheric grain radius r ≡ ℓ
√

α/3β tends to a
√

α/3β. However, when ℓ < a, the observed

micro-displacements of the grains can no longer be accurately modeled with a mathematically sound,

standard (i.e. local) Cosserat/Timoshenko’s beam model. It is likely that a more refined continuum

theory model than the standard Cosserat’s elasticity would be required to deal with the relevant

micro-phenomena that can be observed at the lengthscale a, but also in dynamics. For an accurate

and mathematically consistent description of the discrete equilibrium configuration, a de-localization

of the balance and constitutive continuum laws of the material becomes necessary. Already in statics,

the delocalization corresponding to a nonlocal model [7, 8] obviously constitutes the last recourse only

when the apparent shear modulus of the unconstrained-Cosserat model becomes negative, or high-

frequency dynamical effects are to be taken into account. In their former attempt, [12, 13] proposed a

nonlocal quasi-continuum model based on Kunin’s viewpoint [9]. That one assumes that {fk}k∈I and

{uk}k∈I can be interpolated by sinus cardinal series and is in principle valid for unbounded domains

(i.e. I ≡ Z). However, as the series coefficients {uk}k∈I do not necessary tend to zero for large |k| ∈ N,

such a constraining hypothesis must be weakened for the continuous interpolating displacement field

by imposing to its Fourier image to be only band-limited to the first Brillouin’s zone [−π/a, π/a] as

λ ∈ a−1R. This statement is presented elsewhere with a new analysis of the granular chain dynamics.
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