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Identity 
Other names: DFNB39; F-TCF; HGFB; HPTA; SF 

HGNC (Hugo): HGF 

Location: 7q21.11 

Local order: 5'- 81237388 - 81169380 -3'; strand: (-). 
The human HGF gene is centromeric to CACNA2D1 
(calcium channel, voltage-dependent, alpha 2/delta 
subunit 1) and telomeric to LOC100128317 (similar to 
hCG2036731) and SEMA3C (sema domain, 
immunoglobulin domain (Ig), short basic domain, 
secreted, (semaphorin) 3C). 

DNA/RNA 
Description 
Total length: 68009 bases; mRNA product length: 
2820, processed length: 2805. 

Transcription 
The HGF gene structure consists of 18 exons and 16 
introns spanning 68 Mb. Five human mRNA transcript 
variants arise from alternative splicing. Transcript 
variant 1 (NCBI Accession NM_000601) encodes the 
longest isoform (isoform 1; NP_000592) comprised of 
728 amino acids. Transcript variant 2 
(NM_001010931) lacks multiple 3' exons but includes 
an alternate 3' exon relative to variant 1. The encoded 
protein (isoform  

2; NP_001010931) is truncated after the second kringle 
domain, contains 290 amino acids and has a distinct 
carboxyl-terminus relative to isoform 1. Transcript 
variant 3 (NM_001010932) lacks an in-frame coding 
segment present in isoform 1. The encoded protein 
isoform 3 contains 723 amino acids but lacks the 
sequence "FLPSS" at positions 162-166 within the first 
kringle domain of isoform 1. Transcript variant 4 
(NM_001010933) combines the 3' truncation of variant 
2 and internal deletion of isoform 3. The encoded 
protein (isoform 4; NP_001010933) contains 285 
amino acids and is identical to isoform 2 except it lacks 
the sequence "FLPSS" present at positions 162-166 in 
isoforms 1 and 2. Transcript variant 5 
(NM_001010934) lacks multiple 3' exons and has an 
alternate 3' segment that is distinct from either isoform 
1 or 2. The encoded protein isoform 5 (NP_001010934) 
contains 210 amino acids with a unique carboxyl 
terminal sequence immediately following kringle 1. 

Pseudogene 
There are no known pseudogenes. 

Protein 
Description 
The human HGF gene encodes full-length HGF and 
two truncated isoforms (NK1 and NK2) which consist 
of the amino-terminal domain (N) linked in tandem 
with the first one (K1) or two (K1+K2) kringle 
domains, respectively. 
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A schematic representation of the domain structure of pre-pro-HGF protein isoform 1 (728 amino acids total), which consists of a signal 
peptide for secretion (residues 1-31), an amino-terminal heparin binding domain (N), 4 kringle domains, and a serine protease-like 
domain. Gray areas between named domains represent structurally undefined regions. The lengths of all regions are directly proportional 
to their sequence length. 
 
All three isoforms bind to the receptor tyrosine kinase 
Met (Bottaro et al., 1991; Chan et al., 1991; Lokker et 
al., 1992; Cioce et al., 1996); like full-length HGF, 
NK1 stimulates mitogenesis, motogenesis and 
morphogenesis, though at reduced potency and with 
greater HS dependence, suggesting that the primary 
Met binding site is contained within this fragment 
(Montesano et al., 1998; Stahl et al., 1997). NK2 can 
competitively antagonize mitogenicity stimulated by 
HGF or NK1, but retains motogenic activity, activating 
the Met kinase and a subset of those intracellular 
signaling pathways activated by either HGF or NK1 
(Day et al., 1999). Within NK1, the N domain contains 
the HS binding site (as described in detail below) and 
K1 contains the primary site of Met interaction (Lokker 
et al., 1993; Rubin et al., 2001). 
All HGF isoforms are synthesized as pre-pro-peptides 
that undergo proteolytic cleavage at or near residue 31 
prior to secretion as pro-HGF. Full-length single chain 
pro-HGF (isoforms 1 and 3) undergo proteolytic 
cleavage at R494-V495 to become biologically active 
heterodimers consisting of a ~69 kDa alpha (or heavy) 
chain disulfide-linked to a ~34 kDa beta (or light) 
chain; this conversion is essential for biological activity 
(Miyazawa et al., 1989; Nakamura et al., 1989; Gak et 
al., 1992; Hartmann et al., 1992; Lokker et al., 1992; 
Naka et al., 1992; Naldini et al., 1992). Several serine 
proteases are capable of HGF activation in vitro, 
including HGF activator (HGFA) (Shimomura et al., 
1992; Miyazawa et al., 1993; Shimomura et al., 1995; 
Shimomura et al., 1997), matriptase (Lee et al., 2000), 
hepsin (Herter et al., 2005; Kirchhofer et al., 2005), 
certain plasminogen activator family members (Mars et 
al., 1993; Mars et al., 1995; Mars et al., 1996), and 
blood factors XIa and XIIa (Miyazawa et al., 1993; 
Shimomura et al., 1995; Peek et al., 2002). Conversion 
from single chain to 2-chain HGF is further regulated 
by the Kunitz-type inhibitors HGF activator inhibitor-1 
(HAI-1), HAI-1B (a splice variant of HAI-1) and HAI-
2 (Kawaguchi et al., 1997; Kataoka et al., 2000b; 
Delaria et al., 1997; Denda et al., 2002; Kirchhofer et 
al., 2003; Shia et al., 2005; Eigenbrot et al., 2010). The 
truncated HGF isoforms (2, 4 and 5) do not contain 
R494 and do not require this processing step for 
biological activity, which are generally less potent 
and/or less pleiotropic than that of the full-length HGF 
isoforms (Stahl et al., 1997; Montesano et al., 1998). 
The interaction between HGF and heparan sulfate (HS) 
proteoglycans is also profoundly relevant to HGF 
biology. HGF was shown to be bound to the 

extracellular matrix of normal adult rat liver isolates 
(Masumoto and Yamamoto, 1991) and HGF binding 
sites with Kd in the range of 250-400 pM observed on a 
variety of cultured target cell types were sensitive to 
displacement by soluble heparin (Naldini et al., 1991). 
Affinity chromatography purification schemes 
exploited this strong heparin binding to efficiently 
isolate HGF from low-abundance sources (Nakamura et 
al., 1987; Gohda et al., 1988; Zarnegar and 
Michalopoulos, 1989; Rosen et al., 1989; Gherardi et 
al., 1989; Selden and Hodgson, 1989; Weidner et al., 
1990; Rubin et al., 1991). Later studies demonstrated 
the biological relevance of HS in HGF binding, Met 
activation and cellular responses (Weidner et al., 1993; 
Kato et al., 1994; Strain et al., 1994; Zioncheck et al., 
1995; Schwall et al., 1996; Hartmann et al., 1998; 
Sakakura et al., 1999; Day et al., 1999; Sergeant et al., 
2000; Seidel et al., 2000; Rubin et al., 2001; Williams 
and Clark, 2003; Karihaloo et al., 2004). When injected 
intravenously, HGF has a relatively short half-life (Liu 
et al., 1997); however, when administered as a complex 
with heparin, plasma disappearance is much slower, 
consistent with clearance by hepatic uptake (Kato et al., 
1994). Moreover, intravenous injection of soluble 
heparin into normal humans results in a significant and 
immediate increase in serum HGF concentration 
(Seidel et al., 1999). These observations suggest that 
circulating HGF is rapidly sequestered by HS present 
on luminal vascular surfaces, which may constitute a 
widely distributed reservoir of HGF. 
HS binding sites are contained primarily in the HGF 
amino terminal (N) domain (Matsumoto et al., 1991; 
Okigaki et al., 1992; Mizuno et al., 1994; Sakata et al., 
1997; Kinosaki et al., 1998; Hartmann et al., 1998; 
Zhou et al., 1998; Ultsch et al., 1998; Chirgadze et al., 
1999; Zhou et al., 1999; Lyon et al., 1994), but 
secondary sites are also in the first kringle domain 
(Lietha et al., 2001). HS and dermatan sulfate (DS) 
bind to the same sites on NK1, NK2 and full-length 
HGF, which have identical glycosaminoglycan (GAG) 
binding properties (Sakata et al., 1997; Lyon et al., 
1998; Deakin et al., 2009). HGF binds to syndecan-1, 
syndecan-2 and syndecan-4; high affinity binding sites 
are contained within the N-sulfated domains of HS, 
although the N-sulfates themselves contribute less to 
binding than nonsulfated alpha-L-iduronic acid 
residues (Lyon et al., 1994; Ashikari et al., 1995). 
Affinity is more closely associated with 6-0-sulfation 
of alpha-D-N-sulfoglucosamine residues than with 
sulfation at any other position, implying that the 
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structural specificity of HGF-HS interaction is 
significantly different from that of the fibroblast growth 
factor family (Lyon et al., 1994; Ashikari et al., 1995). 
Another feature that distinguishes HGF from other 
known HS-binding growth factors is the ability to bind 
DS, which is found on decorin and biglycan (Lyon et 
al., 1998). DS is an abundant matrix component of the 
stromal compartment of many organs, implying that 
retention there must be overcome for HGF delivery to 
target epithelial and endothelial cells, where HS 
predominates over DS in basement membranes. This 
compositional gradient of HGF-binding GAGs is 
thought to control HGF diffusion from source to target, 
and act as a reservoir from which relatively high HGF 
concentrations could be released in a spatially and 
temporally restricted manner through matrix turnover 
under various physiological and pathological 
conditions (Lyon et al., 1998). 
Together with GAG binding, HGF signaling is 
mediated by the cell surface receptor tyrosine kinase 
Met (Bottaro et al., 1991; Naldini et al., 1991). 
Although a high-resolution structure of an HGF-Met 
complex has not yet been obtained, several 
crystallographic studies of NK1 have refined the basic 
principles of HGF-Met interaction obtained from 
functional studies (Ultsch et al., 1998; Chirgadze et al., 
1999; Watanabe et al., 2002). In addition to the 
relatively high affinity Met binding site within NK1, 
full-length HGF has a lower affinity Met binding site in 
the light chain that binds to the Met Sema domain; 
high-resolution structures have been obtained for this 
interaction (Stamos et al., 2004; Kirchhofer et al., 2004; 
Kirchhofer et al., 2007; Gherardi et al., 2006). Upon 
proteolytic conversion of single chain pro-HGF to the 
mature two-chain heterodimeric form, it undergoes a 
structural change from a compact, closed conformation 
to an elongated, open conformation which, through 
interaction with the Met Sema domain, results in Met 
kinase activation (Stamos et al., 2004; Kirchhofer et al., 
2004; Kirchhofer et al., 2007; Gherardi et al., 2006). 
Conflicting reports localize the high affinity HGF 
binding site within the Met ectodomain to the Sema 
domain (Gherardi et al., 2006), or alternatively, to the 
more carboxyl terminal Met Ig-like loops 3 and 4 
(Basilico et al., 2008). Despite remaining uncertainties, 
strategies to artificially modulate HGF-driven Met 
kinase activation have been advanced. Potent 
competitive antagonists of Met activation have been 
engineered by altering a secondary HS binding site in 
K1 (Lietha et al., 2001) and by altering residues in the 
amino-terminus of the HGF light chain that impair the 
conformational change accompanying HGF activation 
(Kirchhofer et al., 2007). 
HS and DS interactions with HGF and Met may 
promote receptor activation and downstream signaling 
through several mechanisms. HGF binding to cell-
surface HS increase local HGF concentrations and 
promote an intrinsic tendency for HGF to self-
associate, which may in turn facilitate and stabilize 

receptor clustering, kinase activation and potentially 
the recruitment of intracellular effectors (Schwall et al., 
1996; Sakata et al., 1997; Hartmann et al., 1998; Lietha 
et al., 2001; Kemp et al., 2006; Tolbert et al., 2007). 
Yet, many details as to how these GAGs promote 
receptor activation and signaling remain unclear. HS-
Met interactions are substantially weaker than HS- or 
DS-HGF interactions, and their contribution to the 
stability a ternary HGF-HS-Met complex may not be 
critical for all HGF responses (Delehedde et al., 2002). 

Expression 
HGF expression has been reported in many tissues 
throughout the body, including skin, lungs, liver, 
muscle, pancreas, gastrointestinal tract, salivary glands, 
thyroid, brain, prostate and seminal vesicles, breast, 
uterus, placenta, kidney, as well as megakaryocytes and 
granulocytes (Kinoshita et al., 1989; Noji et al., 1990; 
Seki et al., 1990; Zarnegar et al., 1990; Nishino et al., 
1991; Rubin et al., 1991; Wolf et al., 1991; Defrances 
et al., 1992; Tsuda et al., 1992; Yanagita et al., 1992; 
Schirmacher et al., 1993). As a secreted, soluble growth 
factor that binds strongly to heparan sulfate 
proteoglycan present in most extracellular matrices and 
on target cell surfaces, protein staining patterns may 
indicate target tissue as well as sites of synthesis. This 
may account for observed immunostaining of epithelia, 
since there is little evidence of HGF expression by 
isolated normal epithelial cells. In contrast, normal 
fibroblasts from many tissues secrete HGF in culture. 

Localisation 
Full-length HGF isoforms are each synthesized as a 
single polypeptide chain, pre-pro-HGF, containing an 
amino-terminal signal peptide sequence for insertion 
into the rough endoplasmic reticulum (RER) and 
ultimately, secretion. Maturation of pre-pro-HGF is 
presumed to follow a conventional subcellular pathway 
for secreted proteins, i.e. from RER to the Golgi 
apparatus to secretory vesicles that ultimately fuse with 
the plasma membrane allowing protein release into the 
extracellular environment. There is evidence for both 
N-linked (Hara et al., 1993) and O-linked glycosylation 
(Shimizu et al., 1992) of HGF during maturation, and 
presumably removal amino-terminal 31 amino acid 
signal peptide occurs prior to secretion (Miyazawa et 
al., 1991). The secreted single chain HGF precursor 
(pro-HGF) is biologically inactive and later converted 
in the active two-chain disulfide-linked heterodimer by 
proteolytic cleavage (as described above) in the 
extracellular space, in plasma, or on target cell 
surfaces. 

Function 
In most developmental processes and throughout 
adulthood HGF stimulates cell proliferation, survival, 
motility, and morphogenesis. These activities were the 
basis for its discovery as a promoter of liver 
regeneration (Nakamura et al., 1984; Thaler and 
Michalopoulos, 1985; Gohda et al., 1986; Nakamura et 
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al., 1989; Miyazawa et al., 1989; Zarnegar and 
Michalopoulos, 1989) and independently, of cultured 
epithelial cell growth and motility (Stoker and 
Perryman, 1985; Stoker et al., 1987; Gherardi et al., 
1989; Gherardi and Stoker, 1990; Rubin et al., 1991; 
Montesano et al., 1991; Weidner et al., 1991; Chan et 
al., 1991). cDNA cloning of the HGF gene, first 
reported in 1989, ultimately clarified the identity of 
hepatocyte growth factor, scatter factor, and a lung 
fibroblast-derived epithelial cell mitogen concurrently 
under investigation by researchers around the world. 
Embryonic development. HGF and its receptor, Met, 
are expressed during gastrulation and throughout later 
phases of vertebrate embryogenesis (Stern et al., 1990; 
Sonnenberg et al., 1993; Andermarcher et al., 1996). 
Overlapping expression of both genes persists into the 
earliest phases of organogenesis in the heart, 
condensing somites and neural crest cells 
(Andermarcher et al., 1996), but thereafter HGF is 
expressed in mesenchymal tissues and Met in the 
surrounding ectoderm in differentiated somites as well 
as lungs, liver, placenta, muscle, gut, heart and nervous 
system (Sonnenberg et al., 1993; Woolf et al., 1995; 
Andermarcher et al., 1996; Thewke and Seeds, 1996; 
Birchmeier and Gherardi, 1998; Ishikawa et al., 2001). 
Studies using tissue explants and cultured cells confirm 
the suspected role of HGF in epithelial branching 
morphogenesis, e.g. in the developing lung (Santos et 
al., 1994; Woolf et al., 1995; Ohmichi et al., 1998). 
The expression of HGF and Met genes in ventral motor 
neurons of the embryonic spinal cord is also consistent 
with a role in tissue patterning through the regulation of 
migratory and morphogenic processes, such as axon 
guidance (Sonnenberg et al., 1993; Ebens et al., 1996; 
Wong et al., 1997). Functional studies indicate that 
HGF guides axons of spinal motor neurons to their 
distant muscle targets in the limbs (Ebens et al., 1996; 
Wong et al., 1997; Yamamoto et al., 1997) and acts as 
an essential survival factor for a subpopulation of limb-
innervating motoneurons (Wong et al., 1997; 
Yamamoto et al., 1997). Both HGF and Met are also 
expressed in the brain and retina during development 
(E12-13) and in the adult, where signaling supports 
neuron survival and maturation  
(Jung et al., 1994; Honda et al., 1995; Yamagata et al., 
1995; Hamanoue et al., 1996; Achim et al., 1997; Sun 
et al., 1999; Thewke and Seeds, 1999). 
Loss of HGF or Met function in mice with homozygous 
gene deletion is embryonic lethal between days E12.5 
and E15.5 (Schmidt et al., 1995; Uehara et al., 1995; 
Bladt et al., 1995). Defects in the proliferation and 
survival of cells in the liver and placenta result in 
arrested organogenesis of these and other tissues, 
underscoring the importance of HGF stimulated 
mitogenicity and survival in target cells. These models 
also highlight the importance of HGF as a potent and 
critical regulator of cell migration. Skeletal muscle 
progenitor cells that form limb, tongue, and diaphragm 
musculature normally delaminate from the epithelial 

dermomyotome of the somites by an epithelial-to-
mesenchymal transition and migrate to their final 
destination where they complete differentiation. 
Homozygous deletion of Met results in defective 
delamination and migration of muscle progenitors from 
the dermomyotome and failure to form the skeletal 
muscles of the limb and diaphragm (Bladt et al., 1995; 
Maina et al., 1996; Dietrich et al., 1999; Rosário and 
Birchmeier, 2003; Christ and Brand-Saberi, 2002). 
Conversely, HGF overexpression in transgenic mouse 
embryos induces the inappropriate formation of skeletal 
muscle in the central nervous system (CNS) through 
dysregulated migration of Met containing myogenic 
precursor cells to the neural tube (Takayama et al., 
1996). 
Mice bearing conditional deletions of HGF or Met also 
have been used to demonstrate relevance of pathway 
activation at later developmental stages and in 
adulthood. Met and epidermal growth factor receptor 
jointly regulate final nephron number and collecting 
duct morphology (Ishibe et al., 2009). Mice with a 
targeted mutation of the gene encoding urokinase 
plasminogen activator, considered an important HGF 
activator, have decreased HGF levels and a substantial 
reduction in neocortical GABAergic interneurons at 
embryonic and perinatal ages, leading to changes in 
circuit organization and behavior (Powell et al., 2001; 
Powell et al., 2003a). Mice with targeted mutation of 
two critical carboxyl terminal tyrosine residues in Met 
were found to be phenotypically similar to Met null 
animals. In contrast, targeting one of those sites and 
thereby disrupting the consensus for Grb2 binding 
allowed development to proceed to term, but caused a 
striking reduction in limb muscle mass and a 
generalized deficit of secondary fibers, indicating the 
importance of HGF signaling in late myogenesis 
(Maina et al., 1996). 
Maturity and adult homeostasis. In the developed 
brain, HGF is expressed in neurons, primarily in the 
hippocampus, cortex, and the granule cell layer of the 
cerebellum, as well as in ependymal cells, the chorioid 
plexus, and the pineal body (Streit et al., 1995). Met is 
expressed in neurons, preferentially in the CA-1 area of 
the hippocampus, the cortex, and the septum, as well as 
in the pons (Jung et al., 1994; Streit et al., 1995; Honda 
et al., 1995; Yamagata et al., 1995; Thewke and Seeds, 
1999). HGF is though to provide a neurotrophic 
function in the CNS, supporting the survival and 
reconstruction of specific neurons in response to 
cerebral injury (Honda et al., 1995). HGF attracts and 
promotes the growth of cranial motor axons (Caton et 
al., 2000), induces c-Fos expression and activates the 
Ras pathway in brain neurons (Streit et al., 1997), 
stimulates Schwann cell growth (Krasnoselsky et al., 
1994) and promotes axon outgrowth of embryonal 
carcinoma cells (Yang and Park, 1993). HGF 
stimulates neurite outgrowth in sensory and 
sympathogenic neurons, as well as enhanced survival 
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and differentiation from progenitors (Maina et al., 
1997; Maina et al., 1998). 
HGF and Met are expressed in the cerebellum, where 
development is primarily postnatal and requires 
extensive cell proliferation and migration. Met is 
localized in granule cell precursors and cultures of 
these cells proliferate in response to HGF (Ieraci et al., 
2002). HGF also promotes oligodendrocyte progenitor 
cell proliferation and delays their differentiation into 
myelinating oligodendrocytes during early postnatal 
development; subsequent down-regulation of HGF 
mRNA in the striatum observed between postnatal days 
7 to 14 presumably permits differentiation and 
myelination to proceed (Ohya et al., 2007). Schwann 
cells, responsible for nerve myelination in the 
peripheral nervous system, also express Met mRNA 
(Krasnoselsky et al., 1994). Although Schwann cells 
are normally quiescent in adulthood, nerve injury and 
certain diseases such as type 1 neurofibromatosis 
trigger proliferation through several mitogenic 
pathways, including that of HGF (Krasnoselsky et al., 
1994). 
The mammary gland undergoes cyclic morphogenic 
differentiation during the menstrual cycle, pregnancy 
and lactation. HGF and Met are expressed and HGF is 
regulated temporally during mouse mammary 
development and differentiation (Niranjan et al., 1995; 
Yang et al., 1995). HGF secreted by fibroblasts acts on 
mammary myoepithelial and luminal epithelial cells 
expressing Met, promoting tubulogenesis in underlying 
myoepithelial cells, branching of the epithelial ductal 
tree and motogenesis in both cell types (Niranjan et al., 
1995; Yang et al., 1995; Yant et al., 1998; Niemann et 
al., 1998). 
HGF production in the adult vascular system is 
positively regulated by prostaglandins and HGF itself, 
and negatively regulated by angiotensin II, TGF-beta, 
glucose and hypoxia (reviewed in Morishita et al., 
2002). HGF is induced in cardiac and skeletal muscle 
in animal models of ischemic injury (Aoki et al., 2000) 
and serum HGF levels are increased with hypertension, 
peripheral artery disease and myocardial infarction, 
consistent with homeostatic and repair functions 
(reviewed in Morishita et al., 2002). 
Wound repair and tissue regeneration. Exogenous 
administration of the HGF protein or gene promotes 
angiogenesis without the increased permeability often 
observed with vascular endothelial cell growth factor 
(VEGF) treatment (Aoki et al., 2000; Taniyama et al., 
2001; Morishita et al., 2004). HGF promotes 
angiogenesis directly (Sengupta et al., 2003) but also 
by inducing VEGF expression (Wojta et al., 1999; Gille 
et al., 1998), and the two factors appear to act 
synergistically on the vasculature (Van Belle et al., 
1998; Xin et al., 2001). These and other findings 
support the use of HGF for therapeutic angiogenesis to 
treat peripheral artery disease, myocardial infarction 
and restenosis after angioplasty. Recent clinical trials 
indicate that HGF gene therapy is safe and effective for 

the treatment of critical limb ischemia (Powell et al., 
2008; Shigematsu et al., 2010). 
HGF signaling supports the natural reconstruction of 
central and peripheral neuronal networks in response to 
injury, and/or as a potential therapeutic agent to 
facilitate wound repair. Both HGF and Met expression 
are increased in reactive astrocytes in the subacute to 
chronic stage of spinal cord injury in rats (Shimamura 
et al., 2007). HGF gene transfer attenuated brain 
ischemic injury in rats, without cerebral edema, 
through angiogenic, neuroprotective and neuriotogenic 
activities, as well as prevention of gliosis (Shimamura 
et al., 2004; Shimamura et al., 2006). Intrastriatal 
administration of HGF protein also potently protected 
hippocampal neurons against postischemic delayed 
neuronal death (Miyazawa et al., 1996). 
Tissue fibrosis is a common pathological consequence 
of chronic injury to kidneys and lungs. With chronic 
injury to these organs, the normal production and 
secretion of growth factors, including HGF, 
inflammatory cell recruitment, cell proliferation and 
differentiation, and matrix production and remodeling 
become increasingly aberrant, leading to matrix 
overproduction, abnormal organization, fibrotic lesions 
and scarring. Mice with conditional knockout of Met in 
the collecting duct of the kidney are more susceptible 
to interstitial fibrosis and tubular necrosis after 
unilateral ureteral obstruction, and show a diminished 
capacity for tubular cell regeneration after release of 
the obstruction (Ma et al., 2009). Conditional Met 
knockout targeted to renal podocytes was associated 
with more severe podocyte apoptosis and albuminurea 
than in control littermates subjected to nephrotoxic 
renal damage (Dai et al., 2010). HGF produced in 
response to injury antagonizes the actions of 
transforming growth factor-beta (TGF-beta), a critical 
profibrotic agent, thereby inhibiting fibrosis and 
preserving normal organ architecture and function 
(reviewed in Liu, 2004; Mizuno et al., 2008; Crosby 
and Waters, 2010; Panganiban and Day, 2011). The 
reciprocal effects of the HGF and TGF-beta signaling 
pathways occur via direct modulation of intracellular 
effectors downstream of TGF-beta and HGF receptors 
in common target cells, as well as by eliciting opposing 
activities in cells targeted independently (Yo et al., 
1998; Gao et al., 2002; Mizuno et al., 2005). TGF-beta 
induced apoptosis of podocyte, endothelial and tubular 
epithelial cells, epithelial-to-mesenchymal transition by 
tubular epithelial cells, and myofibroblastic activation, 
are critical pathogenic events that are opposed by HGF 
signaling (reviewed by Böttinger and Bitzer, 2002). An 
abundance of findings support the therapeutic use of 
exogenous HGF, the HGF gene, or the induction of 
endogenous HGF expression, for the treatment of a 
variety of chronic fibrotic disorders in kidney (Mizuno 
et al.,1998; Mizuno et al., 2001; Dworkin et al., 2004; 
Dai et al., 2004; Herrero-Fresneda et al., 2006; 
reviewed in Liu and Yang, 2006; Mizuno et al., 2008) 
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and lung (Yanagita et al., 1993; Dohi et al., 2000; 
Mizuno et al., 2005). 
HGF signaling is required for liver regeneration 
(Nakamura et al., 1984; Thaler and Michalopoulos, 
1985; Zarnegar and Michalopoulos, 1989; Nakamura et 
al., 1989; Miyazawa et al., 1989; Okajima et al., 1990). 
Studies of tissue selective HGF overexpression or Met 
suppression in genetically engineered animal models 
confirm and extend earlier studies (Shiota and 
Kawasaki, 1998; Borowiak et al., 2004; Huh et al., 
2004; Paranjpe et al., 2007; Factor et al., 2010). In 
addition to stimulating the proliferation of mature 
hepatocytes, HGF contributes to the differentiation and 
maturation of hepatic progenitor cells (Kamiya et al., 
2001). Treatment of animals with exogenous HGF 
protein or the HGF gene promotes survival in various 
experimental animal models of acute hepatic failure 
(Kosai et al., 1998; Nomi et al., 2000) and prevents 
fibrosis associated with liver cirrhosis (Kaibori et al., 
1997; Matsuda et al., 1997). Clinical trials of 
recombinant human HGF for treatment of patients with 
fulminant hepatic failure are in progress (Ido and 
Tsubouchi, 2009). 
HGF/Met signaling is required for full-thickness skin 
wound repair. Damage to the epidermis and dermis of 
the skin requires reepithelialization of the epidermis 
and the transient formation of dermal granulation 
tissue. During reepithelialization, keratinocytes from 
the wound edge form the hyperproliferative epithelium, 
which proliferates and migrates over the injured dermis 
and the granulation tissue. In addition to other 
important soluble regulators of skin repair such as 
epidermal and fibroblast growth factor family ligands 
and transforming growth factor-beta, locally secreted 
HGF promotes granulation tissue formation and 
reepithelialization (Yoshida et al., 2003; Chmielowiec 
et al., 2007). Engineered overexpression or exogenous 
application of HGF protein, or exogenous HGF gene 
transfer, to treat full-thickness skin wounds accelerates 
both processes, as well as vascularization, in rodent 
models (Toyoda et al., 2001; Yoshida et al., 2003; 
Bevan et al., 2004; Kunugiza et al., 2006). 

Homology 
Human HGF is highly conserved among mammals but 
(99.9% amino acid identity between human and chimp, 
to 91% between human and rat), however, homologs 
rapidly diverge in birds (75% between human and 
chicken) and bony fish (50% between human and zebra 
fish). Structural homology beyond teleosts is partial. 
More generally, HGF resembles members of the 
plasminogen family (~38% amino acid identity), in that 
the mature 2-chain protein contains multiple kringle 
domains in the amino terminal alpha (or heavy) chain 
and a serine protease like domain in the carboxyl 
terminal beta (or light) chain. Unlike the canonical 
plasminogen family members, HGF is devoid of 
proteolytic activity (reviewed in Matsumoto and 
Nakamura, 1996). Of plasminogen family members, 

HGF is most closely related to macrophage stimulating 
protein (MSP; 44% amino acid identity; also known as 
MST1 or HGF-like protein). 

Mutations 
Note 
Polymorphisms in the HGF promoter region affect 
HGF transcription levels and have been linked to breast 
cancer (Ma et al., 2009). Noncoding mutations of HGF 
are associated with nonsyndromic hearing loss, 
DFNB39 (Schultz et al., 2009). 

Implicated in 
Hepatocellular carcinoma (HCC) 
Note 
HGF signaling has been implicated in a broad spectrum 
of human cancers. Gains in human chromosome 7q, 
where both HGF and MET genes are located, occur in 
approximately 16% of hepatocellular carcinoma (HCC) 
cases (Breuhahn et al., 2006). HGF signaling drives the 
transcriptional activation of MET in HCC (Seol et al., 
2000), and HGF is overexpressed in the HCC 
microenvironment relative to normal adult liver levels 
(Selden et al., 1994; Noguchi et al., 1996). Secretion by 
stellate cells and myofibroblasts is apparently induced 
by tumor cell signals; HGF, in turn, stimulates tumor 
cell invasiveness (D'Errico et al., 1996; Neaud et al., 
1997; Guirouilh et al., 2000; Guirouilh et al., 2001). 
The criticality of HGF in human HCC oncogenesis 
remains unclear; HGF expression levels did not 
correlate with patient  
survival or clinicopathological parameters in at least 
one study (Ueki et al., 1997), whereas later reports 
show that higher HGF serum levels negatively correlate 
with patient survival time (Vejchapipat et al., 2004) and 
positively correlate with tumor size (Yamagamim et al., 
2002). Similarly, there are conflicting reports regarding 
the role of HGF in HCC animal models. Transgenic 
HGF expression in mice accelerated chemically 
induced hepatocarcinogenesis, suggesting an oncogenic 
effect (Bell et al., 1999; Horiguchi et al., 2002), yet 
conditional Met knockout also accelerated chemically 
induced hepatocarcinogenesis, suggesting a suppressor 
effect (Takami et al., 2007; Marx-Stoetling et al., 
2009). Consistent with the latter, HCC cell lines 
injected into the portal veins of HGF transgenic mice 
displayed significantly lower rates of experimental liver 
metastasis than control littermates (Shiota et al., 1996), 
and recombinant HGF treatment of rats on carcinogenic 
diets did not increase HCC incidence (Nakanishi et al., 
2006). 

Head and neck squamous cell 
carcinoma (HNSCC) 
Note 
Analysis of head and neck squamous cell carcinoma 
samples revealed significantly increased HGF levels 
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relative to normal mucosa, which correlated a poorly 
differentiated tumor type and decreased survival rates 
(Takada et al., 1995). Locally increased HGF 
production is likely to be due, at least in part, to SCC 
cell secretion of interleukin-1 (Hasina et al., 1999). 
Squamous cell carcinoma cells are responsive to 
esophageal submucosal fibroblast-derived HGF with 
increased invasiveness (Matsumoto et al., 1994; 
Iwazawa et al., 1996). The role of HGF in HNSCC was 
recently reviewed by De Herdt and Baatenburg de 
Jong, 2008). 

Papillary thyroid carcinomas (PTC) 
Note 
Overexpression of both human HGF and MET is found 
in most papillary thyroid carcinomas, but not other 
thyroid tumor types. At least one study reported that the 
majority of these cases appear to possess autocrine 
HGF/Met signaling (Trovato et al., 1998) although this 
is controversial (Oyama et al., 1998). Increased MET 
and HGF expression is associated with a high risk for 
metastasis and recurrence in children and young adults 
with PTC (Ramirez et al., 2000). Cell lines established 
from thyroid carcinomas respond to HGF with 
increased motility and invasiveness, increased 
chemokine and VEGF production, and the recruitment 
of dendritic cells and new blood vessels (de Luca et al., 
1999; Scarpino et al., 1999; Scarpino et al., 2000; 
Scarpino et al., 2003). 

Lung cancers 
Note 
HGF has been found in pleural effusion fluid obtained 
from patients with metastatic lung cancer (Kenworthy 
et al., 1992); serum HGF levels and tissue levels are 
also frequently elevated in lung cancer patients 
(Takigawa et al., 1997; Yamashita et al., 1998). HGF 
stimulates normal bronchial epithelial cells as well as 
lung carcinoma cells (Tsao et al., 1993; Olivero et al., 
1996; Eagles et al., 1996). Met is well expressed in 
normal bronchial epithelium and both small cell and 
non-small cell lung cancers. Somatic MET mutations in 
these tumor types are relatively frequent (5-13%), 
occurring primarily in the juxtamembrane and 
extracellular domains (reviewed in Ma et al., 2008). 
These do not appear to confer ligand independence, but 
rather defects in ligand-induced receptor degradation 
and/or other mechanisms that sustain signaling or 
increase ligand sensitivity (Ma et al., 2008; Kong-
Beltran et al., 2006; Peschard and Park, 2003). 
Evidence of autocrine HGF signaling in normal 
bronchiolar epithelium and in non-small cell lung 
cancer, also has been reported (Tsao et al., 2001). 
Cigarette smoking induced overexpression of HGF in 
type II pneumocytes and lung cancer cells (Chen et al., 
2006), and HGF inhibited cigarette smoke extract 
induced apoptosis in human bronchial epithelial cells 
(Togo et al., 2010). Consistent with these findings, a 
neutralizing monoclonal antibody directed against HGF 

significantly reduced tumor burden in mice treated with 
a tobacco carcinogen (Stabile et al., 2008). 

Breast cancer 
Note 
Analysis of breast tumor HGF levels in a large cohort 
revealed that patients with high values had a 
significantly shorter relapse-free survival and overall 
survival when compared to those with low values; in 
fact, HGF levels were a better independent predictor of 
relapse-free and overall survival than lymph node 
involvement (Yamashita et al., 1994; Nagy et al., 
1996). Serum HGF levels were also significantly higher 
than those of healthy controls in about one-third of 
breast cancer patients, a finding significantly associated 
with node status, tumor size and histological evidence 
of venous invasion (Taniguchi et al., 1995; Toi et al., 
1998; Sheen-Chen et al., 2005). Removal of the 
primary tumor decreased the serum HGF levels, 
suggesting that the elevation was tumor-related 
(Taniguchi et al., 1995). Almost all patients with 
recurrent breast cancer also had increased serum HGF 
level, and patients with liver metastases had higher 
levels compared to those with other sites of metastases 
(Taniguchi et al., 1995; Maemura et al., 1998; 
Eichbaum et al., 2007). Somatic mutations and 
functional polymorphisms in the HGF gene promoter 
cause increased HGF production in breast cancer; 51% 
of African Americans and 15% of individuals of mixed 
European descent with breast cancer harbor a promoter 
truncation variant in their breast tumors that which is 
associated with increased cancer incidence and a 
substantially younger age of disease onset than those 
with a wild-type genotype (Ma et al., 2009). 

Renal cell carcinoma 
Note 
Inherited missense mutations in the human HGF 
receptor gene were first found in individuals with 
hereditary papillary renal carcinoma (HPRC) type 1; 
similar somatic mutations were also found in a small 
subset of {CC:XT: sporadic papillary renal carcinoma 
ID: 5003} (PRC) tumor samples (reviewed in 
Dharmawardana et al., 2004). Trisomy of human 
chromosome 7, which contains both Met and HGF 
genes, occurs in 95% of sporadic papillary renal 
carcinoma and nearly all HPRC cases, where there is 
always non-random duplication of the mutant allele. 
Although the role of HGF in the oncogenicity of HPRC 
and PRC-associated Met mutations is not yet defined, 
ligand binding clearly promotes cell transformation 
(Michieli et al., 1999). 

Prostate cancer 
Note 
HGF signaling is implicated in prostate cancer 
(reviewed in Knudsen and Edlund, 2004; Hurle et al., 
2005). Met expression was frequently (~50%) found in 
localized prostate tumor samples and virtually all 
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prostate cancer metastases (Knudsen and Edlund, 
2004). The increased frequency of Met expression and 
loss of androgen responsiveness in advanced disease is 
consistent with the finding that androgen receptor 
negatively regulates Met expression (Verras et al., 
2007). Plasma HGF level was found to be an 
independent predictor of metastasis to lymph nodes and 
disease recurrence following surgery in patients treated 
for localized prostate cancer (Gupta et al., 2008), and 
higher plasma HGF levels in hormone refractory 
patients were associated with a decreased patient 
survival (Humphrey et al., 2006). Among 174 
cytokines analyzed in a collection of prostatic fluid 
samples, HGF was the most increased in patients with 
extensive disease compared to those with minimal 
disease (Fujita et al., 2008). 

Brain tumors 
Note 
HGF and Met are expressed in human glioma and 
medulloblastoma, where increased relative abundance 
frequently correlate with tumor grade, tumor blood 
vessel density, and poor prognosis. Overexpression of 
HGF and/or Met in brain tumor-derived cells enhances 
their tumorigenicity and growth, while inhibition of 
HGF or Met in experimental tumor xenografts 
suppresses tumor growth and angiogenesis (Li et al., 
2005; Kim et al.,  
 
2006; reviewed in Abounader and Laterra, 2005). A 
recent pilot study reported that elevated levels of HGF 
in human cerebrospinal fluid were associated with 
mortality and recurrence of glioblastoma, suggesting 
that cerebrospinal fluid HGF level could be of 
prognostic value for this disease (Garcia-Navarrete et 
al., 2010). Consistent with the suspected role of HGF in 
glioma progression, a potent, highly selective, orally 
bioavailable Met ATP binding antagonist significantly 
inhibited intracranial brain tumor malignancy and 
growth in mice (Guessous et al., 2010). Early results 
from human clinical trials are, unfortunately, not as 
promising. A recent phase II study of AMG 102 
(rilotumumab), a fully human monoclonal antibody 
against HGF, in patients with recurrent glioblastoma 
showed that treatment was not associated with 
significant antitumor activity (Wen et al., 2011). 

Digestive tract tumors 
Note 
Overexpression of Met protein and/or amplification of 
Met was found in 50% of primary human colorectal 
carcinomas and 70% of liver metastases, suggesting 
that Met abundance contributes to disease progression 
(Di Renzo et al., 1995). Met gene amplification also 
occurs with 10-13% frequency in human gastric cancer 
(Smolen et al., 2006). Studies of human cultured 
colorectal tumor cells and tumor tissue samples 
indicated increased activation of pro-HGF, coincident 
with increased HGF activator abundance and decreased 

levels of HGF activator inhibitor-1 (Kataoka et al., 
2000a). Several Met kinase inhibitors show potent anti-
tumor activity in gastric tumor-derived xenografts 
(Christensen et al., 2003; Smolen et al., 2006; Zou et 
al., 2007; Buchanan et al., 2009) and colon derived 
xenografts (Zhang et al., 2010). A genome-wide 
expression analysis of colon tumor specimens 
identified MACC1 as an independent prognostic 
indicator of metastasis; interestingly, Met is a 
transcriptional target downstream of MACC1, and 
expression of the latter promoted HGF-induced colon 
tumor cell proliferation, invasion as well as tumor 
growth and metastasis in xenograft models (Stein et al., 
2009). 

Melanoma 
Note 
Met is normally expressed in melanocytes and the 
acquisition of HGF expression has been reported in 
melanoma (Halaban et al., 1993; Natali et al., 1993; 
Saitoh et al., 1994). HGF transgenic mice display a 
high frequency of metastatic melanoma in increased 
sensitivity to UV radiation induced carcinogenesis; 
indeed, several mouse models of melanoma indicate the 
prevalence of HGF pathway involvement (reviewed in 
Walker and Hayward, 2002). 

Sarcomas 
Note 
In some sarcomas, Met is overexpressed in malignancy 
similar to many carcinomas, where HGF is delivered 
locally in a paracrine manner. However, many 
sarcomas naturally express HGF and acquire Met 
expression, resulting in autocrine pathway activation 
and enhanced oncogenesis, including 
rhabdomyosarcoma (Chen et al., 2007; Rees et al., 
2006; Taulli et al., 2006; Jankowski et al., 2003), 
leiomyosarcoma (Gao et al., 2009), clear cell sarcoma 
(Davis et al., 2010) and osteosarcoma (MacEwen et al., 
2003; Coltella et al., 2003). 

Other diseases 
Note 
Glial cells in the neuroretinas and epiretinal membranes 
of patients with proliferative vitreoretinopathy (PVR) 
and proliferative diabetic retinopathy, respectively, 
show increased HGF levels, and both glial and 
pigmented retinal epithelial cells express Met, 
suggestive of autocrine and/or paracrine roles for HGF 
in glial cell responses during proliferative vitreoretinal 
disorders as well as in retinal neovascularization, by 
stimulating of VEGF release (Hollborn et al., 2004; Cui 
et al., 2007). Both HGF and its receptor are required for 
malarial infection (Carrolo et al., 2003). 
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