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Identity 
Other names: BFGF, FGFB, HBGF-2 

HGNC (Hugo): FGF2 

Location: 4q27 

Local order: NA. 

Note: FGF2 is a heparin binding growth factor 
belonging to the fibroblast growth factor family. 

DNA/RNA 
Note 
Human FGF2 is located on chromosome 4 in the region 
of 4q25-4q27 on the forward DNA strand, opposite to 
the NUDT6 gene locus. FGF2 and NUDT6 overlap at 
their 3' ends. 

 
Figure A. The schematic representation of the human FGF2 and NUDT6 (FGF-AS) gene transcript overlap (colored boxes, coding 
region; connecting vertical lines, complementary regions between transcripts). Adapted from: MacFarlane LA, et al., 2010. Molecular 
Endocrinology 24. 
 



FGF2 (fibroblast growth factor 2 (basic)) MacFarlane LA, Murphy P 
 
 
 
 
 

Atlas Genet Cytogenet Oncol Haematol. 2011; 15(2)  170 

 
Figure B. The schematic representation of the human FGF2 gene and its RNA transcript (yellow rectangles, coding regions; UTR, 
untranslated region; ATG, translation start codon; TGA, translation stop codon; A1, polyadenylation site 1). 
 

Description 
Human FGF2 gene is 70990 bp in length, composed of 
a 5'UTR, 3 exons, 2 introns and an extremely long 
3'UTR. The 5' and 3'UTR contain a variety of 
regulatory elements that regulate FGF2 expression in 
response to growth factors, cell density, 
neurotransmitters, hormones and second messenger 
pathways. The FGF2 core promoter maps from -1800 
to +314 (relative to the transcription start site +1, up-
stream -), which is 44 kb upstream of the NUDT6 
promoter. 
The promoter lacks the typical consensus CATT and 
TATA box motifs. The distal -512/-854 region contains 
a single negative regulatory domain (-521/-854), a cell 
density dependent element (-512/-650) with STAT 
transcription factor binding sites, a growth factor 
responsive element (-512/-554) with STAT 
transcription factors binding sites, a protein kinase C 
(PKC)/cyclic adenosine monophosphate (cAMP) 
responsive element (-556/-624), and a dyad symmetry 
element (-597/-643). The proximal -511/+314 region 
maintains low promoter basal transcription activity and 
contains specific transcription factor binding sites 
which include AP-1 at the -243 position, p53 (wild type 
and mutant) between -20/+50, and Sp1 at positions -
166, -139, -83, and -65. 
The unusually long AU-rich 3'UTR of FGF2 contains 
multiple regulatory elements that regulate 
polyadenylation, translation initiation, and RNA 
stability. A unique translation enhancer located in the 
3'UTR just upstream of the most distal polyadenylation 

site (+5404/+6775) is involved in selecting the active 
polyadenylation site and modulating the use of 
alternative translation initiation sites. A destabilizing 
element (referred to as DEST) located between the first 
and second polyadenylation sites (+1019/+3326) alters 
mRNA stability. Additionally, two regions of the FGF2 
3'UTR (+1183/+1765 and +6160/+6215) are fully 
complementary to the 3'end of the NUDT6 transcript, 
which enables mRNAs to form a sense-antisense pair. 
The formation of a sense-antisense pair has been 
implicated in the regulation of FGF2 mRNA stability. 

Transcription 
The full length 6774 bp FGF2 transcript contains the 3 
exons and the 3'untranslated region, which contains at 
least 6 alternative polyadenylation sites. Alternative use 
of polyadenylation sites yields a variety of transcripts 
that have the same coding region but different length 
3'UTR and contained regulatory elements. 
Consequently, transcript stability varies with the length 
of the 3'UTR, the shortest transcript is the most stable 
and the longest is the least stable. 

Pseudogene 
NA. 

Protein 
Note 
Human FGF2 encodes 5 biologically active isoforms 
that differ in molecular weight, subcellular localization 
and function. 
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Schematic representing human FGF2 isoform expression by alternative translation initiation (CUG, alternative leucine translation initiation 
codon; AUG, classical methionine translation initiation codon; IRES, internal ribosome entry sire; kDa, kilo Dalton; LMW, low molecular 
weight; HMW, high molecular weight; NLS, nuclear localization sequence; GR, Glutamic acid - Arginine; HIV, human immunodeficiency 
virus). 
 
Description 
The 6774-nt human FGF2 mRNA can have translation 
initiated at one of five in-frame codons indicated to 
generate five different molecular weight isoforms by 
cap-dependent or IRES dependent translation. All 
isoforms contain a carboxyl-terminal bipartite NLS. 
The HMW isoforms (34, 24, 22.5 and 22 kDa), 
initiated from CUG codons (86, 319, 346, 361), also 
contain an amino-terminal Glutamic acid - Arginine 
repeat domain that acts as an NLS. The 34 kDa isoform 
contains an additional NLS similar in structure to that 
of the human immunodeficiency virus (HIV) Rev 
protein. 

Expression 
FGF2 is expressed in a developmental and tissue 
specific manner. Differentiating populations of cells 
also have shifting levels of FGF2 protein content. Cell 
phenotype and environment can affect the length of the 
FGF2 mRNA and isoform expression by post-
transcriptional regulation of polyadenylation. Primary 
cell types almost exclusively use the distal 
polyadenylation site to generate the full length 6775-nt 

FGF2 mRNA encompassing the full 3'UTR and all 
regulatory elements, whereas transformed and stressed 
cells favor the use of the most proximal 
polyadenylation site to generate transcripts with a much 
shorter 3'UTR lacking critical regulatory elements. In 
contrast to primary cells that predominantly express the 
LMW FGF2, the shorter FGF2 mRNA transcripts in 
stressed and transformed cells translate from the 
upstream CUG initiation codons to generate HMW 
FGF2 isoforms. 
FGF2 protein expression has been classified into two 
distinct patterns. The first, characterized by high levels 
of the AUG-initiated LMW isoform accompanied by 
low/undetectable levels of CUG-initiated HMW 
isoforms, is observed in normal cells such as skin 
fibroblasts, retinal pigment epithelial cells and aortic 
endothelial cells. In contrast, the second pattern, 
defined by high levels of HMW isoforms and 
low/undetectable levels of LMW, is seen in 
transformed cells including uterus carcinoma (HeLa 
cells), liver adenocarcinoma (SK-Hep-1 cells), 
pancreatic carcinoma (MIA PaCa-2 cells), epidermoid 
carcinoma (A-431 cells), breast adenocarcinoma 
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(MCF-7 cells) and colon adenocarcinoma (HT-29). 
Fluctuations in FGF2 protein expression and 
localization occur in response to cell density, cell cycle 
and differentiation. 
Low density cell cultures have significantly higher 
LMW FGF2 expression which is predominantly 
nuclear, compared to high density cultures that express 
low levels of cytosolic FGF2. This variation can be 
attributed to differences in proliferation among the 
populations, as FGF2 is expressed in a cell cycle 
dependent manner. Increased proliferation in low 
density populations correlates with elevated FGF2 
levels during the G0-G1 transition of the cell cycle and 
nuclear accumulation of FGF2. 

Localisation 
Subcellular localization and expression of FGF2 
isoforms is determined by cell types, environment, 
level of differentiation, cell cycle phase and cell 
density. FGF2 isoform subcellular localization is 
essential for specific biological functions. Although all 
FGF2 isoforms can be found in the nucleus, cytoplasm 
and extracellular space at one time or another, they 
exhibit preferential localization. 
The LMW18 kDa FGF2 is primarily found in the 
cytoplasm. However, LMW FGF2 can be secreted and 
subsequently internalized to the cytoplasm and 
translocated to the nucleus. FGF2 lacks a conventional 
amino terminal signal sequence and therefore is 
secreted via a non-classical secretory pathway. The 
HMW FGF2 isoforms are predominantly located in the 
nucleus but are able to shuttle back to the cytoplasm. 
HMW FGF2 isoforms can be released from cells 
through vesicle shedding at the plasma membrane and 
as a result of cell injury or death that compromises cell 
membrane integrity. However, it is unclear to what 
extent HMW FGF2 isoforms exist extracellularly in 
vivo. 
Changes in isoform distribution can occur in response 
to cAMP and PKC signaling, cell density, cellular 
stress and post-translational modification. 

Function 
FGF2 is a pleiotropic signaling molecule involved in 
many biological processes including angiogenesis, 
embryonic development (brain, limb, lung, heart, 
muscle, bone, blood, eye and skin) and wound healing. 
Despite complex involvement in any aspects of 
embryogenesis FGF2 knockout mice are viable, 
functioning and do not display any apparent 
neurological deficit. FGF2 deficient mice have 
impaired brain development, blood pressure regulation, 
wound repair and bone formation. 
LMW FGF2 stimulates cell growth, proliferation, 
migration and differentiation via FGFR signaling and 
ligand receptor complex internalization. The FGF2 
mitogenic response is controlled by direct and indirect 
regulation of nuclear kinase and transcription factor 
activity essential for ribosome biogenesis during cell 

proliferation and growth. Translokin, a cytoplasmic 
protein of relative molecular mass 55 kDa, interacts 
specifically with the 18 kDa form of FGF-2 and 
mediates its translocation to the nucleus. Nuclear LMW 
FGF2 binds the transcription factor UBF to directly 
regulate ribosomal RNA (rRNA) transcription. Nuclear 
LMW FGF2 also binds and modulates the nuclear 
kinases CK2 and ribosomal S6 kinase 2 (RSK2) 
responsible for nucleolin and histone phosphorylation, 
respectively, which are essential for ribosome 
biogenesis and cell cycle progression. LMW FGF2 
indirectly influences rRNA transcription through 
receptor-mediated ERK dependent phosphorylation of 
the transcription initiation factor TIF-1A, which is 
essential for RNA polymerase 1 transcription. 
LMW FGF2 stimulates a mitogenic response in most 
cell types. However the particular signaling pathway 
activated appears to be dependent on cell type and the 
specific FGFR. Receptor-mediated ERK activation also 
stimulates cell migration and differentiation. However, 
other signaling pathways such as PI3K and MAPK 
have also been implicated in regulation of these 
processes. LMW FGF2 stimulated migration, growth 
and differentiation responses mediate angiogenesis, 
wound repair, embryonic development and 
maintenance of vascular tone. 
The affects of HMW are dependent on isoform, 
expression level and cell type. The majority of HMW 
FGF2 functions require nuclear localization. The HMW 
nuclear forms of FGF-2 have been reported to interact 
with a 55 kDa nuclear protein, FIF (FGF-2-interacting-
factor), which interacts specifically with FGF-2 but not 
with FGF-1, FGF-3, or FGF-6. Some of the biological 
effects of FGF-2 may be mediated by interaction with 
FIF, which has anti-apoptotic activity. 
Nuclear 34 kDa HMW FGF2 acts as a survival factor, 
sustaining cell growth in low-serum conditions. 
However, in normal conditions the effects of HMW 
FGF2 on proliferation vary with cell type and 
expression level. High levels of HMW FGF2 induce 
proliferation in a variety of cells including aortic 
endothelial, fibroblasts, glioma, pancreatic tumor and 
liver adenocarcinoma cells. Low levels of HMW FGF2 
inhibit cell proliferation in glioma and fibroblast cells. 
These effects have been attributed in part to the ability 
of HMW FGF2 to control mitosis by inhibiting 
phosphorylation of the translation initiation factor 4E-
BP1, which is critical for translation associated with 
cell cycle progression. In contrast, low levels of HMW 
FGF2 favor proliferation in cardiomyocytes and 
embryonic kidney cells while high levels inhibit 
proliferation and promote cell death by inducing 
chromatin compaction and cytosolic release of 
cytochrome C. Furthermore, HMW FGF2 up-regulates 
the growth inhibiting nuclear protein 1 (Nupr1) which 
is related to the High Mobility Group (HMG) of 
proteins that function in chromatin remodeling and 
transcription factor recruitment. 
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HMW FGF2 has also been implicated in apoptosis, cell 
adhesion, migration and differentiation. HMW FGF2 
can suppress apoptosis, which could be in part 
attributable to its ability to bind to the prosurvival 
factor API5. However, FGF2 has also been shown to 
induce apoptosis. This effect has been associated with 
the observation that FGF2 overexpression reduces the 
antiapoptotic protein BCL-2 to promote apoptosis. 
HMW FGF2 up-regulates cell adhesion molecules and 
stabilizes focal adhesion complexes in a variety of 
tissue, which may explain the ability of HMW FGF2 to 
suppress migration. Additionally, migration 
suppression could be associated with the level of 
cellular differentiation. HMW FGF2 has been shown to 
induce high level differentiation. 

Homology 
FGF2 is a member of a large family of structurally 
related heparin-binding proteins (the FGFs) involved in 
the regulation of cell proliferation, growth and 
differentiation. 

Implicated in 
Glioma 
Prognosis 
Accumulation of FGF-2 in the nucleus is a negative 
prognostic indicator for survival of patients with 
astrocytic tumors (Fukui et al., 2003). 

Oncogenesis 
FGF-2 plays a critical role in nervous system 
development and dysregulated expression has been 
implicated in the pathogenesis of CNS tumors of glial 
origin. FGF-2 is upregulated during reactive gliosis 
(Frautschy et al., 1991), and in transformed cells of 
glial origin (Murphy et al., 1989), and is overexpressed 
in >90% of malignant gliomas. The level of expression 
of FGF-2 correlates with tumor grade and extent of 
anaplasia in gliomas (Zagzag et al., 1990), and with 
clinical outcome (Takahashi et al., 1992). Transfection 
of fetal astrocytes with a vector expressing FGF-2 
modified to include a secretory signal peptide sequence 
results in anchorage-independent growth, loss of 
contact inhibition, and decreased glial fibrillary acidic 
protein immunoreactivity consistent with cellular 
transformation (Gately et al., 1995). Furthermore, 
glioma cell proliferation and colony formation in soft 
agar can be inhibited by FGF-2 specific antisense 
oligonucleotides, demonstrating a direct role of this 
factor in the transformed phenotype (Murphy et al., 
1992). These data support the concept that FGF-2 
expression could be a key event in glial tumorigenesis 
and may be necessary for the sustained growth of 
human gliomas. 

Esophageal carcinoma 
Prognosis 
Overexpression of FGF-2 was associated with 

significantly increased risk for tumor recurrence and 
reduced overall survival. 

Oncogenesis 
FGF-2 has been shown to be expressed in all of 13 
esophageal squamous cell carcinoma cell lines tested, 
but in only one of seven gastric carcinoma cell lines 
(Iida et al., 1994). FGF-2 is also elevated in esophageal 
adenocarcinoma and in pre-malignant and dysplastic 
Barrett esophagus tissues (Lord et al., 2003; Barclay et 
al., 2005) suggesting an autocrine or paracrine role in 
the development of esophageal tumorigenesis. In a 
study of esophageal tumor samples and corresponding 
normal tissue from 41 males and 7 females, FGF-2 
protein was not detected in any normal esophageal 
squamous epithelia but was found to be overexpressed 
in 83% (40 of 48) of tumors, where immunoreactivity 
was localized exclusively to the cytoplasm (Barclay et 
al., 2005). Remarkably, co-expression of the FGF 
antisense gene (NUDT6) ameliorated the effects of 
FGF-2 expression, suggesting that FGF-2 expression 
may be regulated by an endogenous antisense RNA. 

Familial multiple endocrine neoplasia 
(MEN) Type 1 
Oncogenesis 
MEN-1 is an autosomal dominant syndrome 
characterized by hyperplasia and tumors of parathyroid, 
pancreatic islet, and anterior pituitary glands. 
Mitogenic activity in the serum of MEN-1 patients 
stimulates in vitro growth of mixed cultures of 
epithelial and mesenchymal cells of parathyroid origin 
(Brandi et al., 1986), and this activity is inhibited by 
neutralizing anti-FGF-2 antibodies (Zimering et al., 
1990). Patients with MEN-1 and pituitary tumors have 
significantly elevated levels of immunoreactive FGF-2 
in their circulation which is decreased following 
pituitary surgery or after initiation of bromocryptine 
therapy, suggesting that pituitary tumors are a possible 
source of high circulating bFGF immunoreactivity in 
MEN-1 plasma (Zimering et al., 1993). 

Lymphoproliferative diseases 
Oncogenesis 
Intracellular FGF-2 has been detected in several 
lymphoproliferative diseases and is associated with 
more advanced disease. 

Chronic lymphocytic leukemia 
Oncogenesis 
Chronic lymphocytic leukemia is associated with 
elevated intracellular levels of FGF-2, which correlated 
with disease stage and associated with resistance to 
chemotherapy (Menzel et al., 1996). 

Hairy cell leukemia 
Oncogenesis 
Hairy cell leukemia tumor cells express FGF-2, which 
has been suggested to mediate the resistance to 
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chemotherapy and survival of the malignant cells 
(Gruber et al., 1999). 

Multiple myeloma 
Oncogenesis 
FGF-2 levels are significantly higher in plasma cell 
lysates from patients with active multiple myeloma, 
compared to patients with inactive disease, and this 
correlates with increased bone marrow angiogenesis 
(Vacca et al., 1999). Furthermore, multiple myeloma 
patients who respond to chemotherapy show a 
significant decrease in serum FGF-2 levels, whereas 
nonresponders do not (Sezer et al., 2001). 

Non-Hodgkins lymphoma 
Oncogenesis 
FGF-2 and its receptor are thought to be involved in the 
survival of the lymphoma cells and their resistance to 
therapy. The expression of FGF-2 and its receptor in 
lymphoma cells has a prognostic  
significance: patients who express FGF-2 have a 
significantly worse survival than those who do not, 
while patients expressing fibroblast growth factor 
receptor-1 were less likely to achieve complete 
remission than those lacking the receptor (Pazgal et al., 
2002). 

Renal cell carcinoma 
Oncogenesis 
Renal cell carcinoma is associated with elevated serum 
levels of FGF-2 (Fujimoto et al., 1991). Horstmann et 
al. (2005) reported that circulating FGF-2 levels are 
significantly higher in patients with renal cell 
carcinoma compared to healthy volunteers or patients 
with benign urologic diseases. Although overall there 
was no significant correlation between serum FGF-2 
levels and tumor stage, patients with T3 tumors had 
higher levels of FGF-2 compared to patients with 
tumors classified as T2 disease. Significantly higher 
serum FGF-2 levels were detected in patients with 
metastatic disease compared to patients with non-
metastatic tumors. 

Pancreatic carcinoma 
Oncogenesis 
In pancreatic carcinomas, there was a significant 
correlation between the presence of either FGF-1 or 
FGF-2 in pancreatic cancer cells and advanced tumor 
stage, and between the presence of FGF-2 and reduced 
patient survival (Yamanaka et al., 1993). Yamazaki et 
al. (1997) reported that FGF-2-positive tumors 
exhibited the highest proliferative indices for both 
tumor and endothelial cells, and suggested that FGF-2 
overexpression may give pancreatic carcinoma cells a 
growth advantage through autocrine/paracrine 
mechanisms, and by stimulation of angiogenesis. 

Lung carcinomas: non-small cell lung 
carcinoma and small cell lung 
carcinoma 
Oncogenesis 
Non-small cell lung carcinoma (NSCLC): Volm et al. 
(1997) reported that all tumor specimens examined 
expressed some level of FGF-2 and its receptor FGFR-
1. Patients with high FGFR-1 expression had 
significantly shorter survival than patients with weak or 
moderate expression, but no correlation was found 
between FGF-2 expression and patient survival. 
Small cell lung carcinoma (SCLC): FGF-2 has been 
implicated in promoting the development of 
chemoresistance, which is the hallmark of these 
tumors. This occurs in part by FGF-2 regulated up-
regulation of Bcl-XLand Bcl-2 and inhibition of 
apoptosis via a MEK-2 mediated pathway (Pardo et al., 
2002). 

Breast carcinomas 
Oncogenesis 
The evidence in the literature is somewhat 
contradictory regarding the expression and role of 
FGF-2 in breast carcinoma. Luqmani et al. reported 
that, in cultured cells FGF-2 expression was found only 
in normal cells while it is largely undetectable in most 
malignant cell lines, including MCF-7, T-47D, ZR-75-
1, and MDA-MB-231 (Luqmani et al., 1992). In 
contrast, FGF-2 has been reported to be elevated in the 
urine (Nguyen et al., 1994) and in nipple fluid 
(Sartippour et al., 2005) of patients with breast 
carcinoma. Smith et al. (1999) reported that FGF-2 
levels were more than 10-fold higher in tumor cytosols 
compared to reduction mammoplasty tissue and 3-fold 
compared to non-neoplastic cytosols from the same 
breast as the tumor. However, high FGF-2 levels were 
significantly related to tumors of low grade and of 
small size. They reported no significant relationship 
between FGF-2 and angiogenesis or relapse free 
survival. Others have similarly reported that higher 
levels of FGF-2 are associated with improved overall 
and disease-free survival (Yiangou et al., 1997). In 
vitro, forced expression of FGF-2 promotes 
differentiation of T47D breast cancer cells (Korah et 
al., 2000). Similarly, in MDA-MB-134 breast 
carcinoma cells, which overexpress FGF receptors, 
FGF ligands are growth inhibitory (McLeskey et al., 
1994). Taken together, these data suggest that, contrary 
to its role in promoting transformation in cells of 
mesodermal and neuroectodermal origin, in breast 
epithelial cells FGF-2 appears to promote a more 
differentiated phenotype. 

Prostate cancer 
Oncogenesis 
Giri et al. (1999) found that FGF-2 is significantly  
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increased in prostate cancer relative to the normal 
prostate tissue. Using the transgenic adenocarcinoma of 
the mouse prostate (TRAMP) model system Polnaszek 
et al. (2003) demonstrated that hemi- or homozygous 
inactivation of the FGF-2 allele was associated with 
increased survival, decreased metastasis, and inhibition 
of progression to the poorly differentiated phenotype in 
primary prostatic tumors. These findings suggest that 
prostatic FGF2 activity may promote tumor progression 
and support the hypothesis that FGF2 plays a 
significant role in prostate cancer progression in vivo. 

Colorectal cancer 
Prognosis 
Elevated FGF-2 expression is associated with poor 
prognosis. 

Oncogenesis 
The evidence in the literature is somewhat 
contradictory regarding the expression of FGF-2 in 
colorectal cancers. However, the consensus is that 
FGF-2 expression is associated with poor prognosis. 
Tabara et al. (2001) reported that elevated FGF-2 
expression in colorectal tumors correlates to tumor 
microvessel density and tumor size. In contrast, 
Landriscina et al. (1998) and Mathonnet et al. (2006) 
reported that FGF-2 levels are significantly reduced in 
colorectal tumors compared to adjacent non-tumor 
tissue. However, they speculated that this may be due 
to increased FGF-2 secretion leading to reduced tumor 
levels compared to normal tissues. Consistent with this 
model, George et al. (2002) reported that patients with 
colorectal cancer had elevated FGF-2 levels in their 
serum and plasma compared to cancer-free controls. 
The highest levels of serum FGF-2 were detected in 
patients with tumor metastasis and this was associated 
with reduced patient survival whereas patients with the 
lowest levels of serum FGF-2 had the greatest disease 
free survival 1-year post-treatment. These findings 
demonstrate that FGF-2 expression levels in colorectal 
cancer are correlated with cancer progression, 
metastasis, prognosis and patient survival. 

Ewing sarcoma family of tumors 
Oncogenesis 
Ewing tumors are related by their neural crest origin 
and primitive neural characteristics. The group includes 
Ewing tumor of bone (ETB or Ewing sarcoma of bone), 
extraosseous Ewing (EOE) tumors, primitive 
neuroectodermal tumors (PNET or peripheral 
neuroepithelioma), and Askin tumors (PNET of the 
chest wall). FGF-2 is a critical signaling molecule in 
primitive neural crest cells and its expression has been 
implicated in the pathogenesis of Ewing Tumors. Kim 
et al. (2004) reported that JK-GMS and SK-N-MC 
Ewing tumor cells lines underwent neuronal 
differentiation when treated with FGF-2, which was 
associated with inhibition of growth and induction of 
apoptosis. The effects on growth and differentiation are 
mediated via ERK1/ERK2 pathways while activation 

of JNK pathways and down-regulation of Blc-2 
promote apoptosis. Evidence from other neuronal 
tumors indicates growth factor induces differentiation 
and apoptosis increases the efficacy of chemotherapy 
and radiation therapy. 

Hepatocellular carcinoma 
Prognosis 
Elevated FGF-2 serum levels is associated with poor 
prognosis. 

Oncogenesis 
Hsu et al. (1997), Poon et al. (2001) and more recently 
Uematsu et al. (2005) reported that FGF-2 serum levels 
are significantly elevated in patients with hepatocellular 
carcinoma (HCC) compared to cancer-free individuals. 
Elevated FGF-2 serum in these patients was associated 
with increased tumor size, vascularization, 
aggressiveness, progression and metastasis, which 
correlated with poor prognosis. These findings can in 
part be explained by the observed effects of FGF-2 on 
HCC cell lines. Ogasawara et al. (1996) reported that 
exogenous FGF-2 treatment stimulated HCC 
proliferation and treatment with an FGF-2 neutralizing 
antibody inhibited HCC proliferation. Furthermore, 
Maret et al. (1995) reported that decreased FGF-2 
expression following transfection with an FGF-2 
antisense molecule was associated with loss of 
anchorage independent growth and tumorigenicity. 
Collectively, these findings suggest a role for FGF-2 
signaling in HCC growth and invasion. 

Ovarian cancer 
Prognosis 
Elevated cytoplasmic FGF-2 within ovarian tumors is 
associated with increased survival rates compared to 
patients with low levels of FGF-2. 

Oncogenesis 
Le Page et al. (2006) reported that FGF-2 levels are 
elevated in the serum of patients with ovarian cancer 
compared to cancer-free individuals and in tumor tissue 
compared to non-tumorous tissue. Secord et al. (2007) 
reported that high levels of cytoplasmic FGF-2 within 
ovarian tumors are associated with reduced tumor 
aggressiveness and increased survival rates compared 
to patients with low levels of FGF-2. However, Lin et 
al. (2003a; 2003b) and Zhang et al. (2003) reported that 
FGF-2 stimulates proliferation, migration, angiogenesis 
and invasion in ovarian cancer cell lines OVCA3 and 
SKOV3. They also report that treatment with an FGF-2 
antibody can inhibit FGF-2 dependent proliferation and 
angiogenesis. Furthermore, Gan et al. (2006) reported 
that high FGF-2 tumor levels reduced drug sensitivity, 
in part due to the direct effects of FGF-2 on 
proliferation and apoptosis. 

Bladder carcinoma 
Oncogenesis 
Nguyen et al. (1994) and others have reported that 
FGF-2 levels are elevated in the urine of patient with 
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bladder carcinoma compared to cancer-free individuals. 
The level of FGF-2 in the urine corresponds to disease 
stage; metastatic cancers have the highest levels 
followed by localized bladder carcinoma and patient 
with no evidence of disease following surgical 
resection have the lowest levels. Gazzaniga et al. 
(1999) reported that FGF-2 levels were also elevated in 
serum of patients with bladder carcinoma. Furthermore, 
high levels of FGF-2 in urine and serum were 
associated with early disease recurrence, which was 
suggested to be in part due to increases in Bcl-2 
expression associated with elevated FGF-2 levels. 
Miyake et al. (1997, 1998) reported that transfection of 
the human FGF-2 gene into the bladder cancer cell 
lines HT1376 and KoTCC-1 resulted in increased 
expression of the matrix metalloproteinases MMP-2 
and MMP-9, and this was associated with an increase 
in the in vitro invasiveness of the cells. Additionally, 
transfected cells exhibited increased resistance to the 
chemotheraphy drug cisplatin. Chikazawa et al. (2008) 
implanted clones of the human bladder cancer cell line 
253JB-V that expressed either high or low levels of 
FGF-2 in athymic nude mice and reported that clones 
with high FGF-2 expression demonstrated increased 
tumorigenicity and metastasis compared to clones 
expressing low levels of FGF-2. Collectively, these 
findings indicate that FGF-2 levels in tumors, urine and 
serum provide useful information pertaining to disease 
progression, invasiveness, metastasis, recurrence and 
prognosis. 

Gastric carcinoma 
Prognosis 
High FGF-2 tumor expression is associated with poor 
prognosis. 

Oncogenesis 
Bilgic et al. (2009) reported that patients with gastric 
carcinoma have significantly higher levels of FGF-2 in 
their serum compared to cancer-free patients. Ueki et 
al. (1995) and Zhao et al. (2005) reported that gastric 
carcinomas expressing high levels of FGF-2 were 
larger in size, more invasive and had a higher rate of 
metastasis than carcinomas with low FGF-2 expression. 
Elevated FGF-2 in combination with MMP-9 
expression was correlated with increased invasiveness, 
growth, tumor angiogenesis, metastasis and poor 
prognosis. 

Kaposi's sarcoma 
Oncogenesis 
Kaposi's sarcoma is a classification of tumors most 
commonly found in skin caused by the Human 
Herpesvirus 8 (HHV8). Ascherl et al. (2001) reported 
that patients with Kaposi's sarcoma have elevated 
serum levels of FGF-2 compared to disease-free 
patients and higher serum FGF-2 levels were associated 
with reduced survival rates. Studies with Kaposi's 
sarcoma model cell lines reported that FGF-2 promoted 
growth, angiogenesis and cell transformation, 

suggesting contribution to tumor growth, progression, 
invasion and metastasis. 

Mental disorders: depression, bipolar 
disorder and schizophrenia 
Disease 
Depression describes extreme feelings of sadness, 
worthlessness, hopelessness that last for an extended 
period of time. Bipolar disorder refers to the medical 
condition that consists of cycling between extreme 
moods of depression and mania (elevated, happy). 
Schizophrenia is a mental disorder characterized by 
altered perception of reality. Those inflicted by the 
disorder suffer from sever delusions, hallucinations, 
paranoia and disorganized speech and thinking. 
Deficiencies in FGF2 expression within the frontal 
cortex and hippocampus have been associated with 
depression, bipolar disorder and schizophrenia. These 
disorders are commonly treated with selective serotonin 
reuptake inhibitors that increase FGF2 expression 
independent of increases in extracellular serotonin 
levels. 
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