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I) Introduction 

The 90-kDa heat shock protein 90, Hsp90, belongs to 

the family of molecular chaperone responsible for the 

conformational maturation or reparation of other 

proteins, referred to as "clients", into biologically active 

structures (Pearl and Prodromou, 2006). Hsp90 exerts 

its essential ATP dependant chaperone function to 

more than three hundred client proteins involved in cell 

growth, differentiation and survival (Workman, 2004; 

Chiosis et al., 2004; Sreedhar et al., 2004b; Zhang and 

Burrows, 2004; Neckers, 2002). Many of them, more 

than forty, include overexpressed or mutant oncogenic 

proteins ErbB2/HER2 (Miller et al., 1994; An et al., 

1997), Braf (Grbovic et al., 2006), Akt/PKB (Sato et 

al., 2000), muted p53  

(Blagosklonny et al., 1996), transcription factors: 

hormone steroid receptors GR (Grad and Picard, 2007) 

ER and AR, angiogenic factors HIF-1α (Picard, 2006; 

Kuduk et al., 2000; Kuduk et al., 1999; Johnson and 

Toft, 1995), telomerase (Forsythe et al., 2001; Akalin et 

al., 2001) which are associated with the six hallmarks 

of cancer (Figure 1).  

Under non-stress conditions the quaternary structure of 

Hsp90 is now well established to be a dimeric complex, 

and its abundance is approximately 1% of the total 

protein contents. Each monomer consists in three 

domains: the N-terminal domain (NTD), a middle 

domain (MD) implicated in client protein binding, and 

a C-terminal dimerization domain (CTD) (Figure 2) 

(Harris et al., 2004; Shiau et al., 2006).  

 
Figure 1: Hsp90 protein partners and clients destabilized by Hsp90 inhibition (Jackson et al., 2004). 

 

http://atlasgeneticsoncology.org/Genes/ERBB2ID162ch17q11.html
http://atlasgeneticsoncology.org/Genes/BRAFID828.html
http://atlasgeneticsoncology.org/Genes/AKT1ID355ch14q32.html
http://atlasgeneticsoncology.org/Genes/P53ID88.html
http://atlasgeneticsoncology.org/Genes/ARID685chXq12.html
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Figure 2: Structure of the full length yeast Hsp90, in complex with non hydrolysable ATP analogue (Hsp90 ATP) and structure of the full 
length E. coli Hsp90 without nucleotide (Hsp90 apo) (Shiau et al., 2006).  

 

In the human proteome, several isoforms of Hsp90 

have been isolated, Hsp90α (inducible form) and 

Hsp90β (constitutive form) localized in cytoplasm 

(Sreedhar et al., 2004a), while Grp94 (glucose-

regulated protein) and TRAP-1 (HSP75/tumor necrosis 

factor receptor associated protein 1) are localized in the 

endoplasmic reticulum and in mitochondria 

respectively (Csermely et al., 1998; Maloney and 

Workman, 2002). To acquire its full active molecular 

chaperone activity, Hsp90 operates with molecular co-

chaperones and partner proteins to form a series of 

multimeric protein complexes (Figure 3) including 

Hsp70, peptidyl-prolyl isomerases, immunophilins 

(FKBP51 and FKBP52) and the cyclophilin CYP40. 

Others co-chaperones such as p23, recently identified 

as a prostaglandine E2-Syntase, plays an important role 

in the activity of a number of transcription factors of 

the steroid/thyroid receptor family (Chan et al., 2008; 

Grad et al., 2006). 

It is now well established, that Hsp90 needs to bind 

ATP in a pocket located in the N-terminal domain to 

exert its function. Thus, the Hsp90 protein function 

may be inhibited by molecules competing with ATP 

binding (such as geladanamycin: GA, Figure 3), 

thereby freezing the chaperone cycle, which in turn 

decreases the affinity of Hsp90 for client proteins and 

leads to 26S proteasome-mediated oncogenic client 

protein degradation (Sepp-Lorenzino et al., 1995). N-

terminal domain Hsp90 inhibitors block cancer cell 

proliferation in vitro and cancer growth in vivo (Sharp 

and Workman, 2006). 

To date, the full crystal structure of Hsp90 in complex 

with a non hydrolysable ATP analogue (Ali et al., 

2006), and of the full length E.Coli Hsp90 without 

nucleotide (apo-Hsp90) (Shiau et al., 2006), have yet 

been reported (Figure 2). Furthermore, an interesting 

recent study investigated Hsp90 conformational 

changes in solution, shows a long range effects 

between Hsp90  

domains, as the binding of co-chaperones (or 

inhibitors) at NTD induce conformational changes in 

the MD and CTD (Phillips et al., 2007). The C-terminal 

domain has been implicated biochemically as the site of 

a possible second, cryptic ATP-binding site on Hsp90. 

Its contribution to the overall regulation of chaperone 

function is not clear, but the antibiotic novobiocin 

(Nvb) (c.f. structure in Figure 15) has been reported to 

bind this site and alter the conformation of the 

chaperone (Yun et al., 2004). 

Since pharmacological inhibition of Hsp90 by several 

families of small molecules leading to the degradation 

of oncogenic proteins, Hsp90 has become a target of 

interest against cancer and allowed the development of 

numerous small inhibitors (Biamonte et al., 2010). 

II) Hsp90 health and cancer (Powers and 

Workman, 2007) 

Hsp90 has probably been most widely acknowledged 

as a therapeutic target for the treatment of cancer 

(Mitsiades et al., 2007). Although there is no evidence 

of Hsp90 mutations in malignancy, there is increasing 

support for the view that this molecular chaperone 

plays an important role in the development, 

maintenance and progression of cancers. 

One of the principal debates concerning the inhibition 

of the highly abundant Hsp90 is the selectivity of 

inhibitors for the chaperone protein in malignant cells 

(Kamal et al., 2003). Some works suggest that Hsp90 

inhibitors could provide an exploitable therapeutic 

index (Banerji, 2005). Firstly, it has been reported that 

inhibitors were significantly more sensitive to Hsp90 in 

cancer cells (Neckers and Neckers, 2005; Powers and 

Workman, 2006; Chiosis, 2006; Whitesell et al., 1994; 

Neckers, 2006). In support to this surprising 

observation, Kamal et al. showed that the activity state 

of the Hsp90 chaperone machine was different in tumor 

cells. 
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Figure 3: Hsp90 cycle: GA: geldanamycin analogue; 40=Hsp40; 70=Hsp70; IP: immunophillin; HIP: Hsp70-interacting protein; 
HOP=Hsp70/Hsp90 organizing protein (Biamonte et al., 2010). 
 

Indeed, the Hsp90 is entirely bound in an active 

complex with co-chaperones, whereas most Hsp90 in 

normal tissues resides in a free, uncomplexed state 

(Workman, 2004; Kamal et al., 2003). Furthermore, 

Hsp90 is constitutively expressed at higher levels (2-10 

fold) in tumor cells compared with their normal 

counterparts. This higher Hsp90 activity is probably 

due to the overexpression/amplification of mutated 

Hsp90 clients, and this is in correlation with the higher 

level of cochaperones of Hsp90 observed in cancerous 

cells. 

Finally, the selective sensitivity of transformed cells for 

Hsp90 inhibitors may be partly due to the selective 

accumulation of these drugs in cancer cells since the in 

vivo observation of Hsp90 inhibitors in murine model 

system showed higher concentration in tumor tissue 

(Chiosis and Neckers, 2006). 

Consequently, the Hsp90 has emerged as an exciting 

target for the development of cancer 

chemotherapeutics. However, despite the numerous 

molecules which have prompted a phase I clinical trial, 

it remains to be verified if Hsp90 inhibitors will 

provide adequate treatment in clinic. 

III) Hsp90 inhibitors (Messaoudi, 2008) 

The Hsp90 protein function may be inhibited with 

molecules that bind the ATP pocket, or its chaperone 

activity may be disturbed by small molecules binders 

interfering with domains in the C-terminus or median 

region. Although Hsp90 function provides an attractive 

target for the treatment of cancer, the feasibility and 

efficacy of the inhibitors approach has just begun to be 

explored in clinic. 

Direct inhibitors of Hsp90 have been divided into two 

groups: 

A) N-terminal domain binders 

1) Ansamycin macrolactames 

1.a) Quinone derivatives 

Geldanamycin (Figure 4), was isolated from the broth 

of Streptomyces hygroscopicus in 1970s (De Boer et 

al., 1970). Further studies have shown that GA revert 

the phenotype of v-src oncogene transformed cells. 

However, this ability was not due to a direct action of 

the Src kinase activity, but to an inhibition of Hsp90. 

Subsequent immunoprecipitation and X-ray 

cristallographic studies have shown that GA competes 

with ATP and binds to the N-terminal domain site of 

Hsp90, leading the Hsp90 multichaperone complexes 

to the ubiquitin-mediated proteasome degradation (Roe 

et al., 1999; Stebbins et al., 1997). Since this 

observation, GA was used to identify additional Hsp90 

substrates and to understand the role of Hsp90 in 

promoting malignant transformation. Although GA 

provided very promising antitumor effects, it showed 

several pharmacologic limitations as poor solubility, 

limited in vivo stability and high hepatotoxicity in some 

of the human tumor models (Neckers, 2006; Supko et 

al., 1995). Thus, the 17-position of GA has been an 

attractive focal point for the synthesis of GA analogues. 

Structure-activity relationship (SAR) studies have 

shown that structurally and sterically diverse 17-

substituents  

can be introduced without destroying antitumor 

activity. Then, further derivatives of GA, with similar 

http://atlasgeneticsoncology.org/Genes/SRCID448ch20q11.html
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biological behaviour but a better toxicity profile, were 

synthesized (Schulte and Neckers, 1998). Therefore, 

new C-17 substituted derivatives 17-AAG (17-allyl-17-

desmethoxygeldanamycin, also designed KOS953, 

CNF 1010, tanespimycin, Figure 4) and 17-DMAG 

(17-(2-dimethylaminoethylamino)-17-

desmethoxygeldanamycin, KOS1022, alvespimycin, 

Figure 4) (Snader et al., 2002; Solit et al., 2007) were 

brought to the fore by displaying a significant 

enhancement of the chemical/metabolic stability. 

17-AAG can be used in single agent or in combination 

with other cancer therapeutics (KOS953/bortezomib 

(Anderson, 2007; Richardson et al., 2007), 

KOS953/trastuzumab (Modi et al., 2007), 17-

AAG/Paclitaxel (Sain et al., 2006), 17-AAG/cisplatin 

(McCollum et al., 2008)). 

To enhance the pharmacokinetics and dynamics of 17-

AAG, Kosan Biosciences Incorporated has developed a 

DMSO-free formulation (KOS953) contained 

cremophor, which is actually in Phase I clinical testing. 

Although 17-AAG and its numerous formulations have 

shown some encouraging clinical responses, they 

present important drawbacks (e.g.; liver toxicity and 

cumbersome formulation) that may limit their clinical 

applications whereas 17-DMAG exhibits a better water 

solubility and oral bioavailability (Ronnen et al., 2006). 

However, although clinical trials in myeloid leukemia 

seemed to be promising, the 17-DMAG was 

discontinued in 2008 (ClinicalTrials.gov). 

1.b) Hydroquinone derivatives 

In a different approach, Infinity Pharmaceuticals has 

developed IPI504 (retaspimycin or 17-AAG 

hydroquinone, Figure 4) (Adams et al., 2005; Sydor et 

al., 2006), a new GA analogue, in which the quinone 

moiety was replaced by a dihydroquinone one. Indeed, 

the preclinical data suggested that the hepatotoxicity of 

17-AAG was attributable to the ansamycin 

benzoquinone moiety, prone to nucleophilic attack. 

Furthermore, it was recently reported that the 

hydroquinone form binds Hsp90 with more efficiency 

than the corresponding quinone form (Maroney et al., 

2006). In biological conditions, the hydroquinone form 

can interconvert with GA, depending on redox 

equilibrium existing in cell. It has been recently 

proposed, that NQ01 (NAD(P)H: quinone 

oxidoreductase) can produce the active hydroquinone 

from the quinone form of IPI504 (Chiosis, 2006). 

However, Infinity Pharmaceuticals showed that if the 

overexpression of NQ01 increased the level of 

hydroquinone and cell sensitivity to IPI504, it has no 

significant effect on its growth inhibitory activity. 

These results suggest that NQ01 is not a determinant of 

IPI504 activity in vivo (Douglas et al., 2009). 

1.c) Clinical trials 

In 2007, results of the phase I clinical trial of 

tanespimicyn (KOS953) with bortezomib in patients 

with relapsed refractory multiple myeloma were 

reported (Solit and Chiosis, 2008; Taldone et al., 2008). 

Dose escalations in the trial ranged from 100 to 340 

mg/m
2
 for tanespimycin, and from 0.7 to 1.3 mg/m

2
 for 

bortezomib. Results showed that two patients, on the 41 

enrolled, exhibited stable disease after two cycles, and 

18 of them demonstrated a response to combination 

(Richardson et al., 2007). Moreover, the tanespimicyn 

was co-administrated with trastuzumab on 25 patients 

treated with up to 450 mg/m
2
 of drug on a weekly 

schedule. This combination induced a regression of 21, 

22 and 25% in three patients, which had failed 

trastuzumab therapy, with HER2-amplified breast 

cancer (Modi et al., 2007). 

 
Figure 4: GA, 17-AAG, 17-DMAG and IPI504. 

 

http://atlasgeneticsoncology.org/Anomalies/ClassifAMLID1238.html
http://clinicaltrials.gov/
http://atlasgeneticsoncology.org/Genes/NQO1ID375.html
http://atlasgeneticsoncology.org/Anomalies/MMULID2038.html
http://atlasgeneticsoncology.org/Tumors/breastID5018.html
http://atlasgeneticsoncology.org/Tumors/breastID5018.html
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In 2008, Infinity Pharmaceuticals reported the results 

of a dose escalation Phase I/II clinical trial of 

retaspimycin hydrochloride in patients with metastatic 

and/or unresectable gastrointestinal stromal tumors 

(GIST) on a twice weekly schedule (400 mg/m
2
). 4 of 

the 18 patients enrolled, achieved a partial response and 

11/18 achieved stable disease. These results had 

initiated the phase III clinical trial of the study in 2008. 

However, Infinity Pharmaceuticals reported on April 

2009, the decision to end its phase III study (RING 

trial) of IPI504 hydrochloride in patients with 

refractory gastrointestinal stromal tumors (Infinity 

Press Release). The trial was based on 46 patients 

whose tumors persist despite treatment with Gleevec 

(imatinib) and Sutent (sunitinib). Resulting data 

showed a higher than anticipated mortality rate. In this 

heavily pretreated population, IPI504 was not tolerated 

(400 mg/m
2
 or placebo in 21 days cycles as a 30 min 

intravenous infusion twice weekly for 2 weeks 

followed by a 1 week rest) and the study was 

terminated early. 

Nevertheless, the IPI504 is still evaluating in phase II 

trials in patients with non-small cell lung cancer, and in 

combination with herceptin (trastuzumab) in patients 

with HER-2 positive metastatic breast cancer. 

In the same month, KOSAN, acquired by BMS in 2008, 

reported that the phase III clinical trial concerning the 

KOS953 or tanespimycin, in combination with 

Bortezomib in patients with multiple myeloma in first 

relapse has been suspended. This was probably a 

precaution as the metabolization of tanespimycin leads 

to IPI504. 

Conforma Therapeutics/Biogen idec developed a 

hydroquinone form of the 17-AAG (CNF1010), 

trapped as HCl salt, which was in clinical phase I 

against chronic lymphocytic leukemia. However, to 

date, this program is terminated. Moreover, the 

CNF1010 had started a phase III trial against GIST in 

2008. This study was also suspended due to the 

anticipated mortality rate of patients enrolled 

(ClinicalTrials.gov). Parallel efforts to improve the 

solubility and bioavailability of 17-AAG have led the 

NCI and Kosan to develop 17-DMAG (KOS1022) as a 

second generation alternative which has entered Phase I 

clinical testing (Santi et al., 2007). Promising results 

were obtained in patients with chemotherapy refractory 

acute myelogenous leukemia, as 3 of 17 patients had a 

complete response to therapy (Lancet et al., 2006). 

However, researches were given up in 2008, as the 17-

DMAG presents an unusable toxicity profile. 

1.d) Other analogues 

Diverse derivatives of 17-AAG bearing non-redox-

active phenol group designed by Kosan Biosciences 

were reported (Tian et al., 2007). Amongst them, 

KOSN1559 was claimed as the most potent Hsp90 

inhibitor (e.g.; SKBr3 Cell Line IC50=860 nM, Kd=16 

nM) (Figure 5). To date, no clinical trial had been 

reported with this compound. 

 
Figure 5: Structure of KOSN 1559.  

 

2) Purines 

2.a) Purines analogues  

Limitations in the clinical use of 17-AAG and 17-

DMAG have prompted the discovery of novel Hsp90 

ATPase inhibitors with improved "drug-like" structural 

characteristics and better pharmacological profiles. To 

this end, structure-based design and high-throughput 

screening approaches performed at the Memorial 

Sloane Kettering Institute, have been taken to identify 

new chemotypes that inhibit Hsp90 ATPase activity. A 

significant breakthrough in the preparation of synthetic 

Hsp90 inhibitor was the PU3 (Figure 6). On the basis 

of X-ray analysis and molecular modelling, Chiosis's 

group, showed that PU3 was designed to place the 

purine moiety into the same spatial orientation as 

adenine ring of ATP in the nucleotide pocket of Hsp90 

(Chiosis et al., 2001). PU3 presented molecular 

signature of Hsp90 inhibition, including the 

degradation of HER2, even if its affinity for Hsp90 is 

moderate. 

Chiosis's group and Conforma therapeutics/Biogen 

Idec optimized this class of compounds leading to new 

analogues bearing a thioether bridge to connect the 

purine nucleus to substituted phenyl rings. Among 

them, the PUH58 (Figure 7) (Llauger et al., 2005), an 

8-arylsulfanyl analogue of PU3, has been identified as 

the most potent and selective purine. Further efforts in 

optimization of this lead compound led to the 

development of PU24F-Cl, (Figure 7) which presents a 

higher affinity (30 times more than PU3) for the N-

terminus of the Hsp90, and low micromolar activity in 

a cell proliferation assay (Chiosis et al., 2002; 

Vilenchik et al., 2004). In an in vivo experiment in 

MCF-7 tumor bearing mice, PU24FCl led to 70% 

inhibition when administered at a dose of 200 mg/kg 

every second day for 30 days (Vilenchik et al., 2004). 

http://atlasgeneticsoncology.org/Tumors/GastricTumOverviewID5410.html
http://atlasgeneticsoncology.org/Tumors/LungNonSmallCellID5141.html
http://atlasgeneticsoncology.org/Anomalies/CLL.html
http://clinicaltrials.gov/
http://atlasgeneticsoncology.org/Deep/..%22Anomalies/ClassifAMLID1238.html%22
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Figure 6: Co-crystal structures of ADP (left, in green) and PU3 (right, in magenta) with Hsp90. 

 
Figure 7: Structures of PU24FCl and analogues. 

 

Additional investigations concerning the 

pharmacophore of this family were done. It was 

demonstrated that the presence of an amino group on 

the C2 position of the purine nucleus respects the 

global size of the molecule in regard to the parent one 

(PU3). In addition, it offers multiple possibilities for 

hydrogen bonding, and thus allowed the connection of 

the benzyl group on the N-9 rather than the C-8 of the 

purine. Thus, Conforma-Biogen idec have identifed the 

BIIB021 (originally named CNF 2024, Figure 7) 

(Kasibhatla et al., 2007) which displayed a binding 

affinity of 1.7 nM (4.6 nM for 17-AAG) and induces 

degradation of HER2 with an IC50 of 38 nM in MCF-7 

cells (Lundgren et al., 2009). BIIB021 compound was 

entered in clinical trials in 2005. 

2.b) Clinical trial  

Currently, BIIB021 is the only purine analogue 

evaluated in phase I/II clinical trials in combination 

with trastuzumab (herceptin) against breast cancer, 

with an aromatase inhibitor (exemestane) in metastatic 

HER2-advanced breast cancer, or alone in subjects with 

gastrointestinal stromal tumors. Results from the phase 

I trials showed that BIIB021 was well tolerated (800 

mg twice weekly) and induced a significant inhibition 

of the HER2 (Elfiky et al., 2008). 

3) Pyrazole and isoxazole derivatives  

3.a) Pyrazole analogues 

In 2004, CCT018159 (Figure 8), the first Hsp90 

inhibitor in the pyrazole series, was identified by 

Workman et al. from a library of 60000 compounds, 

using a high throughput screening (HTS), in the Cancer 

Research UK Centre for Cancer Therapeutics 

(Rowlands, 2004). This compound inhibits the N-

terminal ATPase activity of yeast and human Hsp90 

with an IC50 of 7.1 and 3.2 µM, respectively (Cheung et 

al., 2005; Sharp et al., 2007a). Further HTS studies 

undertaken by Genomics institute of the Novartis 

Research Foundation (GNF) and based on time-

resolved fluorescence resonance energy transfer (TR-

FRET) had allowed identifying two leads, G3129 and 
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G3130 (Figure 8), amongst the one million molecules 

screened (Kreusch et al., 2005). However, both 

compounds exhibited relatively poor binding affinity to 

N-terminal domain of the Hsp90 (Kd=680 and 280 nM 

respectively). In SkBr3 breast cancer cells, G3130 

caused the degradation of HER2 (IC50=30 µM) while 

G3129 was ineffective. 

In addition, the co-crystal structures of G3129 and 

G3130, bound to the N-terminus of human Hsp90α, 

were reported (Kreusch et al., 2005). From this study, it 

was showed that the resorcinol ring bound Hsp90 in a 

similar way than that of radicicol, a resorcylic lactone 

that inhibits Hsp90. 

 
Figure 8: Structure of analogues G3129 and G3130. 

 
Figure 9: Co-crystal structure of G3130 bound to the N-terminus of human Hsp90α. 

 
Figure 10: VER49009 and VER50589. 
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Furthermore, the 5-ethyl appendage projected into the 

aromatic pocket that accommodates the benzyl group 

of the purine analogues described before. The pyrazole 

provides hydrogen bound acceptor, and the imidazole 

(G3130) occupies the same pocket as the quinone of 

GA (Figure 9). 

Based on these data, medicinal chemistry efforts led to 

the identification of the more potent analogue of 

CCT018159, the VER49009 (IC50 ATPase 

activity=0.14 µM, Figure 10), where the amide group 

was a key in forming a new interaction with the residue 

Gly97 of the protein (Dymock et al., 2005). 

Synta Pharmaceuticals Corp. had reported another 

class of triazoles analogues as modulators of Hsp90 

(Figure 11) (Ying et al., 2009). It has been shown that 

STA-9090, an unspecified new resorcinol-containing 

triazole compound (Lin et al., 2008), inhibits the 

activity of Hsp90 protein from 10 to 100 µM and 

thereby leading to degradation of Hsp90 client proteins 

such as HER2 gene product (Ying et al., 2009). More 

recently, it had been shown that the STA-1474, a 

highly soluble phosphate prodrug of STA-9090, 

exhibits very interesting biologic activity against 

osteosarcoma cell lines (McCleese et al., 2009). 

 
Figure 11: Pyrazoles reported by Synta Pharmaceuticals.  

3.b) Isoxazole analogues 

Further optimization of potency, pharmakinetic and 

pharmacodynamic properties of VER49009, were 

undertaken by Vernalis Ltd. (in collaboration with 

Novartis) to offer a series of isoxazole resorcinol 

inhibitors. One of these was the VER50589 (Figure 10) 

which exhibited a higher affinity (Kd=5 nM) than 

VER49009 (Kd=78 nM) (Sharp et al., 2007b). Thus, 

the pyrazole to isoxazole switch does not affect the 

critical hydrogen bound of the pyrazole resorcinol unit 

that anchors this class of inhibitors to the Hsp90 NH2-

terminal ATP site (Brough et al., 2008). Moreover, 

VER50589 also showed improved cellular uptake over 

VER49009. 

Brough et al. from Vernalis, reported recently the 

identification of new diarylisoxazole compound 

VER52296 (Figure 12) (Brough et al., 2008; Eccles et 

al., 2008). The areas of interest for SAR studies were 

the 5' positon on the resorcinol ring, and the para 

substitution of the phenyl group on the isoxazole ring. 

It has been shown with the X-ray cristal structure, that 

the replacement of the chlorine, in regard to 

VER50589, by an isopropyl group, results in an 

additional hydrophobic interaction with Leu107 in the 

flexible lipophilic pocket of the N-terminal site of 

Hsp90. Additional hydrophobic interactions were also 

observed with Thr109 and Gly135 from the morpholine 

moiety present in VER52296/NVP-AUY922 (Figure 

12). This latter, subsequently developed by Novartis, 

was found to be very potent in the Hsp90 Fluorescence 

Polarization binding assay (IC50=21 nM) and displays 

an average GI50 of 2-40 nM in antiproliferation assays 

against different human tumor cell lines (Brough et al., 

2008). In addition, as evaluated by cassette dosing to 

mice bearing subcutaneous HCT116 human colon 

cancer, VER52296/NVP-AUY922 was retained in 

HCT116 xenograft tumors when administered i.p., at 

concentrations well above the GI50. Further in vivo 

characterization in a human colon cancer xenograft 

model, VER52296/NVP-AUY922, also inhibits tumor 

growth by ~50% when dosed at 50 mg/kg i.p. daily. 

Moreover VER52296/NVP-AUY922 induces the 

degradation of HER2 with an IC50 of 7 nM. In addition, 

VER52296/NVP-AUY922 was tested in several 

xenografts (colon, glioblastoma, breast, ovarian, 

prostate) and a therapeutic response was observed in 

each case (Cheung et al., 2005; Jensen et al., 2008; 

Eccles et al., 2008). 

 
Figure 12: Structure of VER52296/NVP-AUY922. 

3.c) Clinical trials 

The VER52296/NVP-AUY922 is the sole isoxazole 

analogue currently in phase I/II clinical trials as a 

single agent or in combination with bortezomib or 

dexamethasone, in patients with relapsed or refractory 

multiple myeloma. AUY922 is also used as a single 

agent, in advanced solid malignancies and efficacy in 

http://atlasgeneticsoncology.org/Tumors/OsteosarcID5043.html
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HER2
+
 or ER

+
 locally advanced or metastatic breast 

cancer patients. In this latter phase I/II trial, 

VER52296/NVP-AUY922 was intravenously 

administrated once a week schedule. The maximum 

dose reported is 54 mg/m
2
. At 40 mg/m

2
, VER52296 

induces an up regulation (4-19 fold) of Hsp70 and a 

20% reduction in soluble HER2 was achieved by 74% 

of patients. 

Noteworthy, the STA9090 (Figure 11) is currently 

enrolling patients in several phase I/II clinical trials 

against solid tumor, myeloid leukemia, non-small cell 

lung cancer and gastrointestinal stromal tumor. 

4) Dihydroindazolone derivatives 

4.a) SNX2112 and SNX5422 

In 2007, Serenex Inc./Pfizer had started a phase I 

clinical trial program for the SNX5422 (Figure 13). 

Using a new screening platform, the compounds 

retained on the ATP-affinity column were analyzed by 

mass spectrometry leading to the identification of a 

poorly soluble analogue, SNX2112, which will become 

the glycine prodrug SNX5422. The SNX2112 showed 

higher activity to bind Hsp90 (Ki=1 nM) than that of 

17-DMAG and induced the degradation of HER2 with 

an IC50 of 20 nM. Based on the observation that breast 

cancer cell lines with HER2 amplification are more 

sensitive to 17-AAG, the SNX2112 was tested using a 

panel of breast, lung, and ovarian cancer cell lines. In 

all cell lines studied, SNX2112 inhibited cell 

proliferation with IC50 ranging from 10 to 50 nmol/L. 

In contrast to 17-AAG, the sensitivity of cancer cell 

lines to SNX2112 in vitro did not correlate with the 

level of HER2 expression (Chandarlapaty et al., 2008; 

Huang et al., 2006). This compound uniformly targets 

both the pro-proliferation pathways driven by HER2 

and ERK as well as the anti-apoptotic Akt pathway 

(Okawa et al., 2009). Indeed, it exhibits potent in vivo 

antitumor activity that extends significantly the effects 

observed with GA analogues. 

4.b) Clinical trial 

SNX-5422 is currently in a phase I clinical trial in 

treating patients with solid tumor or lymphoma that has 

not responded to treatment. SNX5422 is equally  

tested to treat solid tumor cancer and lymphomas, and, 

in subjects with refractory hematological and solid 

tumor malignancies. In 2008, results of a phase I dose-

escalation study of SNX5422 reported that this 

compound was well tolerated at 21 mg/m
2
. 

5) Other inhibitors  

Another class of ATP Hsp90 inhibitors bearing a 

resorcinol moiety is radicicol (Rd) (Figure 14), a 

natural resorcylic lactone, isolated from the fungus 

Monocillium nordinii and Monosporium bonorden. Rd, 

also known as monorden, has been described to reverse 

the Src-transformed morphology of fibroblast 

(Whitesell et al., 1994). This effect was first attributed 

to the inhibition of the oncogenic Src (v-Src), and later 

proved to act as an inhibitor of Hsp90 despite its 

difference in structure to GA. Moreover, Rd was found 

to compete with GA for binding to the NTD of the 

chaperone, suggesting that Rd shares the geldanamycin 

binding site. This compound is a potent and specific 

inhibitor of the ATPase activity of Hsp90 with 

nanomolar affinity (Kd=19 nM). This causes 

destabilization of Hsp90 client proteins (v-Src, Raf-1, 

ErbB2 and Ras), many of which are essential for tumor 

cell growth. Although, the in vitro antitumoral activity 

of Rd is very promising however, its in vivo activity is 

very weak probably because of its chemical instability 

in serum and its rapid conversion into inactive 

metabolites due to the electrophilic nature of the 

dienone moiety. 

Therefore, synthetic efforts have been directed to 

identify radicicol derivatives with improved in vivo 

activity (Proisy et al., 2006). To date, Kyowa Hakko 

described novel oxime-derivatives of Rd, including 

KF55823 and KF25706 (Soga et al., 2003) (Figure 14). 

Although these compounds exhibit potent antitumor 

activities in preclinical models and do not seem to 

cause hepatotoxicity, their clinical evaluations of these 

compounds has not been pursued. 

 
Figure 13: Structure of SNX5422 and SNX2112. 

 

http://atlasgeneticsoncology.org/Deep/..Tumors/LungTumOverviewID5030.html
http://atlasgeneticsoncology.org/Tumors/OvarianTumOverviewID5231.html
http://atlasgeneticsoncology.org/Genes/RAF1ID42032ch3p25.html
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Figure 14: Resorcylic inhibitors. 

 

 
Figure 15: Structures of novobiocin, chlorobiocin and coumermycin A1. 

 

B) C-terminal domain binders 

In 1991, Csermely, Kahn and co-workers reported the 

presence of a C-terminal ATP binding site on Hsp90 

which becomes accessible when the N-terminal 

Bergerat pocket is occupied (Sõti et al., 2002). A 

decade later, it has been shown that Nvb interacts with 

an ATP-binding domain in the C-terminus of Hsp90 

(Marcu et al., 2000a). Biochemical studies on the CTD 

of Hsp90 have identified an allosteric regulation 

process with the N-terminus site, where the occupancy 

of one site blocks the interaction of the ligand with the 

other site (Garnier et al., 2002). The structure of the full 

length and middle and C-terminal construction of 

Hsp90 with different nucleotide states (apo, ATP) have 

shown that there is a hinge region between the middle 

and C-terminal region of Hsp90. The conformation of 

this region is dictated by the status of the nucleotide at 

the N-terminal site. This observation is in accordance 

with the allosteric regulation of ATP binding. It 

suggests that the putative secondary ATP site could be 

located at the immediate proximity of the hinge. 

IV) Coumarin inhibitors 

Coumarin group antibiotics, such as novobiocin (Nvb), 

coumermycin A1 (Kd=10 nM) and clorobiocin (Figure 

15), are potent inhibitors of the bacterial ATP binding 

gyrase B, a type II DNA topoisomerase (Gormley et al., 

1996). Their affinity for gyrase is considerably higher 

than that of modern fluoroquinolones. These antibiotics 

have been isolated from various Streptomyces species 

(Lanoot et al., 2002) and all possess a 3-amino-4-

hydroxycoumarin moiety as a key structural feature. 

Nvb is licensed as an antibiotic for clinical use 

(Albamycin; Pharmacia-Upjohn) and for the treatment 

of infections with multi-resistant gram-positive bacteria 

such as Staphylococcus aureus and S. epidermidis  
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(Raad et al., 1995; Raad et al., 1998; Rappa et al., 

2000). It had been demonstrated that the interaction of 

Nvb with Hsp90 induces alteration in the affinity of the 

chaperone for GA and Rd and causes in vitro and in 

vivo depletion of key regulatory Hsp90-dependant 

kinases including v-Src, Raf-1 and ErbB2 (e.g., ErbB2 

in SkBr3 breast cancer cells ~700 µM). In addition, 

Nvb was found to bind the C-terminal nucleotide 

binding region of Hsp90, albeit with a lower affinity 

than with gyrase B. Moreover, Nvb disrupts the 

interaction of both the cochaperones p23 and HSC70 

with the Hsp90 complex. 

In 2005, the first attempt to improve the inhibitory 

activity of Nvb against Hsp90 was reported (Yu et al., 

2005; Blagg et al., 2006). These authors have 

highlighted the crucial role of the noviose moiety at the 

7-position of the coumarin ring for the biological 

activity. Compound A4 lacking the 4-hydroxyl of the 

coumarin moiety and containing an N-acetyl side chain 

in lieu of the benzamide was the most active 

compound. This compound was identified as Hsp90 

inhibitor that induced degradation of Hsp90-dependent 

client proteins at 70-fold lower concentration than Nvb. 

Recently, in continuation of their structural 

modification studies, the same authors reported that 3'-

descarbamoyl-4-deshydroxynovobiocin DHN2 (Figure 

16) and compound KU135 (Shelton et al., 2009) proved 

to be a more effective and selective Hsp90 inhibitor 

(degradation of ErbB2 and p53 between 0.1 and 1.0 

µM) (Burlison et al., 2006). 

Our group reported a novel series of 3-aminocoumarin 

analogues (Le Bras et al., 2007a; Le Bras et al., 2007b) 

lacking the noviose moiety as a class of highly potent 

Hsp90 inhibitors. A representative example of this new 

class of inhibitors is 4TCNA (Figure 17) (Le Bras et 

al., 2007b).  

In these analogues, the introduction of a tosyl 

substituent on C-4 position of coumarin nucleus 

(4TCNA) contributed to a significant extent for 

maximal activity despite weaker water solubility. 

Moreover, this lead has a particular implication in 

apoptotic process. Thus, 4TCNA promotes apoptosis 

through activation of caspases 7 and 8 in ER-positive 

MCF-7 human breast cancer cells, whereas in Ishikawa 

endometrial adenocarcinoma cells, it induced apoptosis 

that was associated with caspase activation and 

cleavage of PARP. Furthermore, characterization of its 

mode of action revealed that 4TCNA induced-cleavage 

of the p23, recently identified as a prostaglandine E2-

Syntase, which plays an important role in activity of a 

number of transcription factors of steroids/thyroid 

receptors family. These results demonstrate that this 

new denoviose compound presents originality in regard 

to Nvb osidic derivatives already known. 

In another study based on a simplified 3-

aminocoumarin scaffold, we also demonstrated that 4-

tosyl-7-deshydroxycyclonovobiocic acid (4TDHCNA) 

(Figure 17) (Radanyi et al., 2008), exhibit increased 

inhibitory activity against the Hsp90 protein folding 

process (MCF7 IC50=50 µM). 

This result shows that removal of C7/C8 substituents is 

not detrimental for Hsp90 inhibitory activity and 

strongly enhances the capacity of 4DHTCNA to inhibit 

Hsp90. This compound was identified to be the most 

potent representative of the new family of simplified 

coumarins. Results from this study suggest that 

4TDHCNA and 4TCNA, which exerted similar 

biological profile may be considered interesting 

compounds for the development of more potent 

novobiocin analogues. 

More recently, results from our group allowed the 

identification of a new family of novobiocin analogues 

in which the coumarin unit has been replaced by a 2-

quinoleinone moiety (unpublished results). The 

quinolone-scaffold represents a platform for the 

creation of easily synthesizable soluble molecules. 

Compound 4-tosyl-3[(chroman-6-yl) carboxylamino]-

2-quinolon (4TCCQ, Figure 17) (IC50=5-8 µM) is 100-

fold more potent than the parent natural compound 

(novobiocin) and 6-fold more active than the synthetic 

analogue 4TCNA. Additionally, 4TCCQ induces the 

degradation of ERα and strongly induces the cell death 

in MCF-7 breast cancer cell line.  

Overall, these data provides compelling evidence for 

the continued development of novobiocin-based C-

terminal domain Hsp90 inhibitors as promising 

alternative to N-terminal domain inhibitors. 

 
Figure 16: Structures of A4, DHN2 and KU135. 
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Figure 17: Structures of 4TCNA, 4TDHCNA and 4TTCQ. 

 

 
Figure 18: Tau-Hsp90 in AD. 

 

V) HSP 90 in Alzheimer's disease 

Hsp90, a molecular chaperone, has come into its own 

as a tantalizing target for cancer therapies. However, its 

important functions of stabilization, rematuration, 

disaggregation of many client proteins could be 

exploitable in others diseases.  

Indeed, neurodegenerative diseases are characterized 

by the accumulation of misfolded proteins that results 

in plaque formation. These proteins rely upon HSP's for 

their refolding and viability. Recently, it was suggested 

that Hsp90 may play a crucial role in maintaining 

pathogenic changes that lead to neurodegenerative 

diseases (Luo et al., 2008). Furthermore, the inhibition 

of Hsp90 by 17-AAG derivatives and geldanamycin, 

induces the HSP induction via HSF-1 activation, 

resulting in neuroprotective activities. In the 

Alzheimer's disease, the most common tauopathy, in 

addition to β-amyloid deposition, there is an 

accumulation of abnormal species of 

hyperphosphorylated protein tau which leads to the 

formation of toxic neurofibrillary tangles (Luo et al., 

2007; Dickey et al., 2007). This hyperphosphorylation 

is caused by abnormal kinases (CdK4, GSK-3β) 

activities resulting in dissociation of transformed tau 

from microtubules, aggregation and formation of 

neurofibrillary tangles which can block the synaptic 

transmission (Figure 18). 

Thus, the decrease of hyperphosphorylated tau levels 

through refolding or degradation may provide a 

possible therapeutic strategy against AD. In this 

purpose, Dickey and Luo have presented evidence that 

the stability of p35, (neuronal activator of CdK4) and 

P301L mutant (most common mutation in Alzheimer 

disease) are maintaining by Hsp90. 

Dou et al. 2007 reported that Hsp90 associates with 

GSK-3β, regulating its stability and function, 

preventing its degradation by the proteasome and so 

allowing the increase of tau hyperphosphorylation. 

Thus, the use of Hsp90 inhibitors leads to a 

destabilization of GSK-3β and to a decrease of 

hyperphosphorylated tau protein. 

Dickey et al. 2007 demonstrated that CHIP (a tau 

ubiquitin ligase) is intimately linked to tau degradation 

following Hsp90 inhibition and that this process is 

specific for promoting degradation of only aberrant 

phosphorylated tau due to the fact that the Hsp90 

complex, in AD brain, presents higher affinity for 

inhibitors than in unaffected brain tissue. 

Recently, compound A4 (Figure 16) was found to 

exhibit significant protection against the Aβ-induced 

http://atlasgeneticsoncology.org/Genes/CDK4ID238ch12q14.html
http://atlasgeneticsoncology.org/Genes/GSK3BID40761ch3q13.html
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toxicity at low concentrations (Lu, 2009). These results 

suggest that novobiocin analogues may represent an 

effective class of novel compounds for treatment of 

AD. 

VI) Conclusion 

Since the first discovery of natural analogues, GA and 

RD, the search for inhibitors of Hsp90 has generated 

considerable interest as evidenced by the number of 

compounds in clinical evaluations (Table 1).  

However, if the first clinical results were very  

encouraging, it seems that currently the development of 

Hsp90 inhibitors experiencing some difficulties, 

especially due to their toxicity. Stopping clinical trials 

of IPI504, which represented the most advanced HSP90 

inhibitors, is the unfortunate illustration of that. Thus, 

many efforts are still needed in the understanding of the 

administration of these agents but also in the synthesis 

of new molecules. Moreover, the involvement of 

Hsp90 in other non-oncological diseases such as 

Alzheimer's disease shows the importance of acquiring 

new and more potent inhibitors with suitable 

pharmacological and pharmacokinetic profiles. 

 
Table 1: Current clinical trials.  

 
Condition: R: recruiting, ANR: active, not recruiting, C: completed, NYR: not yet recruiting, S: suspended, T: terminated.  
Therapy: ADL: Advanced Dedifferentiated Liposarcoma, AGC: Advanced Gastric Cancer, AM: Advanced Malignancies, AML: Acute 
Myeloid Leukemia, AST: Advanced Solid Tumors, BC: Breast Cancer, CLL: B-Cell Chronic Lymphotic Leukemia, CLL: Chronic 
Lymphocytic Leukemia, CML: Chronic Myelogenous Leukemia, ALL: Acute Lymphoid Leukemia, MM: Multiple Myeloma, MetM: 
Metastatic Myeloma, NSCLC: Non Small Cell Lung Cancer, PC: Prostate Cancer, GIST: Gastrointestinal Stroma Tumor, RRMM: 
Relapsed or Refractory Multiple Myeloma, ST: Solid Tumors, UST: Unresectable Solid Tumors. 
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