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Identity 
Other names: AKT; C-AKT; EC 2.7.11.1; 
MGC99656; PKB; PKB-ALPHA; PRKBA; RAC; 
RAC-ALPHA; RAC-PK-alpha 

HGNC (Hugo): AKT1 

Location: 14q32.33 

Note 
Location in the mouse: chromosome 12, 57.0 cM, 
113892032 to 113912401 bp, complement strand. 

For a comparison of the gene location among Homo 
sapiens, mouse and rat see: NCBI Map Viewer. 

DNA/RNA 
Description 
The human AKT1 gene is composed of 14 exons 
spanning a genomic region of about 26.4 Kb. The open 
reading frame of the coding region is 1443 bp. 

Transcription 
The human AKT1 coding sequence consists of 1443 bp 
from the start codon to the stop codon. Multiple 
alternatively spliced transcript variants have been found 
for this gene (Entrez Gene). 

Pseudogene 
No pseudogene of AKT1 known. 

Protein 
Note 
Although the AKT isoforms are activated in a similar 
manner and share the same downstream substrates, 
indicating functional redundancy of the AKT isoforms, 
their biological function is likely to be different in 
AKT-knockout mouse models. AKT1 mutant mice 
display developmental defects, showing decreased size 
in all organs and impaired placental development 
(Yang et al., 2004).  

 
a. Genomic organization of human AKT1. The line indicates untranslated regions and boxes indicate coding regions (exon 1-14) of the 
gene. Exon and intron lengths (in bp) are reported in the upper and lower part of the diagram, respectively. The ATG transcription start 
site is located in exon 2 and the TGA termination codon is located in exon 14. b. mRNA of human AKT1. 
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a. Diagram of the human AKT1 protein in scale. The protein domains and their length (indicated by number of limiting residues) are 
reported. AKT1 contains a pleckstrin homology domain (PH), an helical region (Helix), a kinase domain (Kinase), and a regulatory motif 
(Regulatory). The two phosphorylation sites essential for complete activation of AKT1 (threonine 308, serine 473) are indicated in the 
diagram. C: carboxyl-terminal; N: amino-terminal. 
b. Schematic representation of the AKT signaling activation and regulation. 
 
AKT1 deficient mice exhibit perinatal morbidity with 
partial lethality between E13.5 and 3 weeks after birth 
and growth retardation. Surviving adults are fertile, but 
show 20% weight reduction accom-panied by reduced 
sizes of multiple organs, and enhanced apoptosis in 
some cell types. No effect seen on glucose metabolism. 
Moreover, AKT1/ AKT2 double-knockout mice 
display impeded adipogenesis, severe growth 
deficiency including impaired skin development, severe 
muscle atrophy, impaired bone development and die 
shortly after birth (Peng et al., 2003). 

Description 
Structure. AKT1 protein consists of 480 amino acids, 
with a molecular weight of 55,686 Da. AKT1 is 
constituted by a PH domain, a short helical region, a 
catalytic kinase domain and a regulatory hydrophobic 
motif. 

PH domain is a conserved domain of about 100 
residues that occurs in a wide range of proteins 

involved as cytoskeletal constituents or in intracellular 
signaling; the structure of the PH domain consists of 
two perpendicular anti-parallel beta-sheets followed by 
a C-terminal amphipathic helix; the common fold of 
PH domains is electrostatically polarized. The PH 
domain recruits AKT to the plasma membrane by 
phosphoinositides binding and is required for 
activation. 

The kinase domain has been evolutionarily conserved 
from Escherichia coli to Homo sapiens; conserved 
regions are: i) a glycine-rich stretch of residues in close 
proximity of a lysine amino acid (179, by similarity), 
involved in ATP binding; ii) an highly conserved 
activation loop, called T-loop, located between DFG 
and APE motifs, with a threonine residue important for 
enzyme activation; iii) a conserved aspartic acid (274, 
by similarity) as proton acceptor residue, important for 
the catalytic activity of the enzyme. The kinase domain 
catalyzes the transfer of the gamma-phosphoryl group 
from ATP to serine/threonine residues on a consensus 
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sequence on protein substrates, resulting in a 
conformational change affecting protein function, 
cellular location or association with other proteins 
(Knighton et al., 1991). 

The carboxyl-terminal hydrophobic regulatory domain 
contains several proline-rich regions that potentially 
serve as protein-protein interaction sites with important 
roles in regulation of AKT1 activity; this region 
contains the 473 residue important for the activation 
process. This domain possesses the F-X-X-F/Y-S/T-
Y/F hydrophobic motif, where X is any amino acid, 
that is characteristic of the AGC kinase family; in 
mammalian AKT isoforms, this motif is identical 
(FPQFSY) and is thought to be very important for the 
enzymatic activity. The conserved SH3-domain binding 
motif P-X-X-P in the regulatory region is involved in 
the interaction between AKT1 and its upstream 
tyrosine kinase Src (Jiang et al., 2003). 

The crystallographic structure of AKT1 has been 
solved (PDB ID 3CQW, 3CQU). 

Activation. The serine-threonine protein kinase AKT1 
is a catalytically inactive cytoplasmic protein. AKT 
activation occurs by means of stimulation of the growth 
factor receptor-associated phosphatidylinositol 3-kinase 
(PI3K) and is a multi-step process that involves both 
membrane translocation and phosphorylation. When 
PI3K is activated by either growth factors, cytokines or 
hormones, PI3K generates 3'-phosphorylated 
phosphoinositides, i.e. phosphatidylinositol-3,4,5-
trisphosphate (PIP3) and phosphatidylinositol-3,4-
bisphosphate (PIP2) at the plasma membrane. Both 
phospholipids bind with high affinity to the PH 
domain, mediating membrane translocation of AKT. At 
the membrane, AKT1 is phosphorylated at threonine 
308 by PDK1 (Andjelkovic et al., 1997; Walker et al., 
1998) and at serine 473 by a second kinase identified 
with mTOR when bound to Rictor in the so called 
TORC2 complex (Santos et al., 2001; Sarbassov et al., 
2005); however, it is still controversial if this second 
phosphorylation may occur by DNA-dependent protein 
kinase (Feng et al., 2004; Hill et al., 2002). Other 
kinases that have been reported to phosphorylate serine 
473 are PKC (Kawakami et al., 2004), integrin-linked 
kinase (ILK) (Troussard et al., 2003; Lynch et al., 
1999; Delcommenne et al., 1998), MAP kinase-
activated protein kinase-2 (MK2) (Rane et al., 2001), 
PDK-1 (Balendran et al., 1999) or Akt itself (Toker et 
al., 2000). The full activation of AKT1 requires 
phosphorylation at both sites; threonine 308 
phosphorylation increases the enzymatic activity up to 
100-fold and serine 473 phosphorylation by a further 
10-fold, thus both phosphorylation events enhance 
AKT1 activity by 1000-fold (Kumar et al., 2005; Alessi 
et al., 1996). The activation is rapid and specific, and it 
is abrogated by mutations in the AKT PH domain. 
Once activated, AKT1 dissociates from the membrane 
and phosphorylates targets in the cytoplasm and the cell 
nucleus. 

Beside these essential activation sites, threonine 72 and 
serine 246 residues undergo auto-phosphoryla-tion (Li 
et al., 2006), serine 124 and threonine 450 residues are 
constitutively phosphorylated, while tyrosine 315 and 
326 in the activation loop can be phosphorylated by Src 
kinase, maybe regulating AKT1 activity (Chen et al., 
2001). 

Regulation. AKT activation is inversely regulated by 
phosphatases: PH domain leucine-rich repeat protein 
phosphatase (PHLPP) dephosphorylates the serine 473 
residue of AKT1 (Brognard et al., 2007), and protein 
phosphatase 2 (PP2) dephosphorylates the threonine 
308 residue (Gao et al., 2005). PI(3,4,5)P3 is 
hydrolyzed by phosphatase and tensin homolog deleted 
on chromosome 10 (PTEN) and Src homology domain-
containing inositol phosphatases SHIP1/SHIP2. PTEN 
antagonizes PI3K activity by removing the phosphate 
at the D3 position generating PI(4,5)P2 (Maehama et 
al., 1998), while SHIP1/2 dephosphorylates the D5 
position to produce PI(3,4)P2 (Deleris et al., 2003; 
Damen et al., 1996). 

Expression 
AKT1 is the predominant isoform in the major part of 
tissues as determined by using quantitative RT-PCR 
(Yang et al., 2003) and is ubiquitously expressed in 
most tissues at high levels and in all the human cell 
types so far analyzed (Hanada et al., 2004; Zinda et al., 
2001). A Northern blot analysis of AKT1 in rat tissues 
indicated lower expression levels in kidney, liver, and 
spleen (Coffer et al., 1991). 

Localisation 
AKT1 protein is predominantly cytoplasmic; it has 
been found at the plasma membrane for its activation 
and activated AKT1 is able to translocate into the 
nucleus. AKT1 translocation into nucleus has been 
demonstrated in several cell lines in response to stimuli 
as after IGF-I treatment of NIH3T3 cells (Meier, 1997), 
NGF stimulation of PC12 cells (Xuan Nguyen et al., 
2006; Borgatti et al., 2003), EPO in K562 cells and 
IGF-I or PDGF mitogen factors in MC3T3 (Neri et al., 
2002). Also if AKT1 contains a sequence for nuclear 
export rich in leucine (Saji et al., 2005) and some 
proteins may have a role of localization signal for its 
intranuclear migration, a nuclear localisation sequence 
on AKT1 inside motif has not yet been identified. 

Function 
AKT mediates many of the downstream events of the 
PI3K signal transduction pathway by its serine-
threonine kinase activity. AKT exhibits tight control 
over cell viability and proliferation, having main role in 
apoptosis inhibition and promotion of cell cycle 
progression. AKT is involved also in differentiation; in 
nervous system development AKT is a critical mediator 
of growth factor-induced neuronal survival. Further, 
AKT mediates glucose metabolism, angiogenesis, 
translation, transcript-tional events, pre-mRNA splicing 
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and other important nuclear functions such as 
chromatin condensation and genes transactivation. 

AKT exerts its kinase activity toward proteins 
containing the minimal consensus sequence R/K-X-
R/K-X-X-S/T, where S or T are the phosphorylable 
residues. More subtle AKT preferences were also 
uncovered for other residues surrounding the 
phosphorylation site, such as a preference for T at -2 or 
a bulky hydrophobic residue at +1 (Manning et al., 
2007). More than 400 different proteins contain-ing the 
consensus sequence for AKT phosphoryla-tion have 
been identified, also if many of them still have to be 
characterized (Nicholson et al., 2002; Obenauer et al., 
2003). The heterogeneity of proteins potentially 
phosphorylated by AKT supports the key role of this 
kinase. Over 100 non-redundant AKT substrates are 
reported in the literature, of which 25% do not contain 
the minimal requirements for an AKT site. Around 40 
substrates which mediate the pleiotropic AKT functions 
have been characterized (see table below). 

Apoptosis inhibition. Survival factors can suppress 
apoptosis and enhance survival of cells by activating 
AKT, which inactivates components of the apoptotic 
machinery. AKT directly regulates apoptosis by 
phosphorylating and inactivating pro-apoptotic proteins 
such as bad, which controls release of cytochrome c 
from mitochondria, caspase-9, which after AKT 
dependent phospho-rylation promotes cell survival 
(Donepudi et al., 2002; Downward et al., 1999; Franke 
et al., 2003) and apoptosis signal-regulating kinase-1 
(ASK1), a mitogen-activated protein kinase involved in 
stress- and cytokine-induced cell death that, once 
phosphorylated on serine 83, reduces apoptosis (Autret 
et al., 2008; Datta et al., 1997; Del Peso et al., 1997; 
Zha et al., 1996). The pro-survival proline-rich AKT 
substrate of 40kDa (PRAS40) can be phosphorylated 
on threonine 246, attenuating its ability to inhibit 
mTORC1 kinase activity (Van der Haar, 2007). 
PRAS40 appears to protect neuronal cells from 
apoptosis after stroke (Kovacina et al., 2003) and has 
been proposed to promote cell survival in cancer cells 
(Huang et al., 2005). 

Proliferation. AKT can stimulate cell cycle 
progression through the inhibitory phosphorylation of 
the cyclin-dependent kinase inhibitors p21 and p27 
(Viglietto et al., 2002; Liang et al., 2002; Shin et al., 
2002; Zhou et al., 2001; Rossig et al., 2001). The AKT 
dependent inhibition of GSK3 stimulates cell cycle 
progression by stabilizing cyclin D1 expression (Diehl 
et al., 1998). AKT activation can promote progression 
through mitosis, even in the presence of DNA damage 
(Kandel et al., 2002); a mechanism explaining this 
observation is that AKT directly phosphorylates the 
DNA damage checkpoint kinase Chk1 on serine 280 
(King et al., 2004), blocking checkpoint function by 
stimulating Chk1 translocation to the cytosol. With no 
K protein kinase-1 (WNK1) seems to be a negative 
regulatory element in the insulin signaling pathway that 

regulates cell proliferation. AKT phospho-rylates 
WNK1 on threonine 60 within the AKT consensus 
sequence (Vitari et al., 2004). The neuro-fibromatosis-2 
(NF2) tumour-suppressor gene encodes an intracellular 
membrane-associated protein, called merlin, with 
growth-suppressive function. AKT phosphorylates 
merlin on threonine 230 and serine 315 residues, 
abolishing binding partners and leading to merlin 
degradation by ubiquitination (Tang et al., 2007). 

Metabolism. AKT phosphorylates the GSK3alpha and 
GSK3beta isoforms, which are involved in metabolism 
regulation by decreasing glycogen synthesis and 
increasing glycolytic enzymes transcription (Jope et al., 
2004; Kohn et al., 1996), thus relating AKT activation 
with high glycolysis efficiency in cancer cells 
(Warburg effect). AKT1 is also involved in tolerance of 
cells to nutrient depletion, allowing tumor progression 
under hypovascular conditions (Izuishi et al., 2000). 
The TBC1 domain family member 1 (TBC1D1), AKT 
substrate phosphorylated on threonine 590, may be 
involved in controlling GLUT1 glucose transporter 
expression through the mTOR/p70S6K pathway (Zhou 
et al., 2008). The Rab-GAP AS160 (also known as 
TBC1D4) has emerged as an important direct target of 
AKT involved in GLUT4 trans-location to the plasma 
membrane (Sano et al., 2003). In hepatocytes, AKT can 
also inhibit gluconeogenesis and fatty acid oxidation 
through direct phosphorylation on serine 570 of PGC-
1alpha (Li et al., 2007), which is a gene coactivator 
with FoxO1 and other transcription factors. 

Angiogenesis. AKT plays important roles in 
angiogenesis through effects in both endothelial cells 
and cells producing angiogenic signals. AKT activates 
endothelial nitric oxide synthase (eNOS) through direct 
phosphorylation on the serine 1179 site, resulting in 
increased production of nitric oxide (NO) in vascular 
endothelium, which stimulates vasodilatation, vascular 
remodelling and angiogenesis (Iantorno et al., 2007). 

Translation. A well known AKT substrate is the 
serine/threonine kinase mammalian target of rapamycin 
(mTOR), which controls the translation of several 
proteins important for cell cycle progression and 
growth (Starkman et al., 2005; Varma et al., 2007). 
AKT can directly phospho-rylate and activate mTOR, 
as well as cause indirect activation of mTOR by 
phosphorylating two sites on the tuberous sclerosis 
complex 2 (TSC2) tumour suppressor protein, also 
called tuberin (Manning et al., 2002). mTOR forms two 
complexes: TORC1, in which mTOR is bound to 
Raptor, and TORC2, in which mTOR is bound to 
Rictor. In the TORC1 complex, mTOR signals to its 
downstream effectors S6 kinase/ribosomal protein and 
4EBP-1/eIF-4E to control protein translation. In the 
TORC2 complex, mTOR can phosphorylate AKT itself 
thus providing a positive feedback on the pathway 
(Sarbassov et al., 2005). The mTOR effector S6 kinase-
1 (S6K1) can also regulate the pathway by inhibiting 
the insulin receptor substrate (IRS), thus preventing 
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IRS proteins from activating the PI3K/AKT signaling 
(Harrington et al., 2004; Shah et al., 2004). The Y box-
binding protein 1 (YB-1) is a DNA/RNA-binding 
protein through the Y-box motif in target sequences. 
AKT phosphorylates YB-1 on serine 102, leading to an 
enhancement of cap-dependent translation of multidrug 
resistance 1 (MDR1) gene (Bader et al., 2008). 

Nuclear functions. Among the AKT substrates 
identified into cell nucleus, acinus is a nuclear factor 
required for chromatin condensation which induces 
resistance to caspases proteolysis and to apoptosis 
when phosphorylated by AKT on serine 422 and 573 
(Hu et al., 2005). Phosphorylation of the murine double 
minute 2 (MDM2/HDM2 in humans) oncogene by 
AKT promotes its translocation to the nucleus, where it 
negatively regulates p53 function with subsequent 
modification of the cell cycle in relation to DNA repair 
mechanisms (Vousden et al., 2002; Mayo et al., 2005). 
Several Akt substrates are nuclear transcription factors: 
AKT blocks forkhead trans-cription factors 
(FKHR/FOXO1) and in particular the FoxO subfamily-
mediated transcription of genes that promote apoptosis, 
cell cycle arrest and metabolic processes. When 
phosphorylated by AKT, FKHR are sequestrated in the 
cytoplasm thus inhibiting transcription (Nicholson et 
al., 2002; Datta et al., 1997). AKT can phosphorylate 
IKK, indirectly increasing the activity of nuclear factor 
kappa B (NF-kB), which stimulates the trans-cription 
of pro-survival genes and regulates the immunity 
response (Ozes et al., 1999; Romashkova et al., 1999; 
Verdu et al., 1999). The cAMP-response element 
binding protein (CREB) is a direct target for 
phosphorylation by AKT, occurring on a site that 
increases binding of CREB to proteins necessary for 
induction of genes containing cAMP responsive 
elements (CREs) in their promoter regions; CREB has 
been shown to mediate AKT-induced expression of 
antiapoptotic genes bcl-2 and mcl-1 (Du et al., 1998). 
AKT can regulate the telomerase activity necessary for 
DNA replication; recombinant AKT was found to 
enhance telomerase activity by phosphorylating the 
human telomerase reverse transcriptase (hTERT) 
subunit, which contains a consensus motif as AKT 
substrate. The helix-loop-helix transcription factor tal1, 
required for blood cell development, is specifically 
phosphorylated by AKT at threonine 90, causing its 
nuclear redistribution (Palamarchuk et al., 2005b). 
Insulin induces GATA2 phosphorylation on serine 401 
by AKT. GATA2 transcription factor is an inhibitor of 
adipogenesis and activator of vascular cells. AHNAK is 
a protein of exceptionally large size localized into 
nuclei and able to shuttle between nucleus and 
cytoplasm; it is downregulated in several tumors 
(Amagai et al., 2004). It has been reported that in 
epithelial cells its extranuclear localization is regulated 
by AKT dependent phosphorylation (Sussman et al., 
2001). ALY is a nuclear speckle protein implicated in 
mRNA export. The PI3K/AKT signaling regulates its 

subnuclear residency, cell proliferation, and mRNA 
export activities through nuclear AKT dependent 
phosphorylation on threonine 219 and phosphoino-
sitide association (Okada et al., 2008). AKT 
specifically phosphorylates serine 350 of the Nur77 
protein within its DNA-binding domain, decreasing its 
transcriptional activity by 50-85% and connecting the 
AKT axis with a nuclear receptor pathway (Pekarsky et 
al., 2001). The breast cancer susceptibility gene 
BRCA1 encodes a nuclear phosphoprotein that acts as a 
tumor suppressor; heregulin induces AKT-dependent 
phosphorylation of BRCA1, which has been implicated 
in altering its function (Altiok et al., 1999). 

 
* substrates assessed independently by multiple reports 
(Manning et al., 2007). 

Homology 
Homologs. AKT belongs to the AGC protein kinase 
family, sharing a high similarity in the catalytic domain 
with more than 80 kinases from the AGC family 
(PhosphositePlus). Three isoforms, AKT1, AKT2 and 
AKT3, plus a fourth isoform defined AKTgamma1, 
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have been identified in humans. They are codified by 
different genes with 80% sequence homology.  

The AKT isoforms share 80% homology in amino acid 
sequence.  

In particular, the identity between each domain of the 
AKT isoforms ranges from 76% to 84% in the PH 
domain, from 87% to 90% in the catalytic domain, and 
from 66% to 76% in the C-terminal domain (Masure et 
al., 1999; Kumar et al., 2005). The AKT isoforms are 
identical in the ATP binding region, except for one 
residue: AKT1 A230 is conserved in AKT2 (A232), 
but switches in AKT3 (V228). 

Orthologs. AKT is evolutionarily conserved in 
eukaryotes ranging from Caenorhabditis elegans to 
man. The amino acid identity between C. elegans and 
human AKT1 is around 60%; the mouse AKT1 is 90% 
homologous to human AKT1 at the nucleic acid level 
and 98% homologous at the amino acid level (Hanada 
et al., 2004; Bellacosa et al., 1993). 

For details see: HomoloGene. 

Also the phosphorylation sites on the AKT sub-strates 
are conserved amongst the orthologs from all 
mammals; this evolutionary conservation can be 
indicative of the relevance of the substrate toward the 
AKT cellular functions. 

 

Mutations 
Note 
Although mutation of AKT1 is rare, different types of 
AKT1 alterations are involved in several human 
diseases, especially in cancer.  

No AKT1 mutations have been collected in the 
COSMIC database. 

 
Schematic representation of SNPs and point mutation in the 
AKT1 gene. Missense (red), synonymous (green) and 
frameshift (blue) SNPs are indicated in the upper part; point 
mutation is reported in the lower part of the figure. 
For details see: Single Nucleotide Polymorphism. 

Germinal 
No germline mutations of AKT1 have been described. 

Somatic 
Amplification and LOH. Amplification of AKT1 has 
been described in human gastric adenocar-cinoma, in 
lung and other cancers (Staal, 1987; Lockwood et al., 
2008). 

High level amplification in breast tissues and LOH in 
several tissues have been reported: CONAN: Copy 
Number Analysis. 

SNPs. 17 esonic variations (missense, synonymous and 
frameshift SNPs) have been described. 

Moreover, statistical significance for single markers 
and multilocus haplotypes has been reported for the 
association between the AKT1 gene variants in samples 
of families with schizophrenia using single-nucleotide 
polymorphisms (Schwab et al., 2005; Emamian et al., 
2004). 

Point mutation. The E17K mutation occurs in the 
lipid-binding pocket of AKT1 PH domain. Lysine 17 
alters the electrostatic interactions of the pocket and 
forms new hydrogen bonds with a phosphoinositide 
ligand. This mutation activates AKT1 by means of 
pathological localization to the plasma membrane, 
stimulates downstream signaling, transforms cells and 
induces leukemia in mice. The E17K mutation occurs 
in a small percentage of human breast, ovarian, and 
colorectal cancers (Carpten et al., 2007). It has been 
found also in squamous cell carcinoma of the lung and 
in prostate cancer (Malanga et al., 2008; Boormans et 
al., 2008). Some authors suggested that this mutation 
may not play a crucial role in the development of the 
most types of human cancers (Kim et al., 2008). 

Implicated in 
Various cancers 
Prognosis 
Immunohistochemical analysis has been used to 
demonstrate prognostic significance of AKT1 
activation. Phosphorylation of AKT1 at serine 473 has 
been associated with poor prognosis in cancer of the 
skin (Dai et al., 2005), pancreas (Yamamoto et al., 
2004), liver (Nakanishi et al., 2005), prostate 
(Kreisberg et al., 2004), breast (Perez-Tenorio et al., 
2002), endometrium (Terakawa et al., 2003), stomach 
(Nam et al., 2003), brain (Ermoian et al., 2002) and 
blood (Min et al., 2004). It has been reported that AKT 
phosphorylation on both serine 473 and threonine 308 
sites is a better predictor of poor prognosis in tumors 
versus normal tissues than serine 473 alone (Tsurutani 
et al., 2006; Kornblau et al., 2006). 

Oncogenesis 
The PI3K/AKT pathway is a prototypic survival 
signaling that is constitutively activated in many types 
of cancer, due to AKT gene amplification or as a result 
of mutations in components of the signaling that  
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activates AKT. Once activated, signaling through AKT 
can be propagated to a diverse array of substrates. This 
pathway is an attractive therapeutic target in cancer 
because it serves as a convergence point for many 
growth stimuli, and through its downstream substrates,  

controls cellular processes that contribute to cancer 
progression. Moreover, activation of the PI3K/AKT 
pathway confers resistance to many types of cancer 
therapy, and is poor prognostic factor for several 
tumors. Thus, combining conventional therapy with 
PI3K/AKT pathway inhibitors can overcome this 
resistance. 

Hyper-activation of AKT1 has been found associated to 
several human cancers: 

-Thyroid carcinoma 

-Breast carcinoma 

-Non-small cell lung carcinoma 

-Gastric carcinoma 

-Gastro-intestinal stromal tumors 

-Pancreatic carcinoma  

-Bile duct carcinoma 

-Ovarian carcinoma 

-Prostate carcinoma 

-Renal cell carcinoma 

-Acute and chronic leukemia 

-Multiple myeloma 

-Lymphoma 

Thyroid cancer 
Note 
Genetic alterations in the AKT pathway have been 
observed in anaplastic and follicular thyroid cancers, in 
particular AKT has been shown highly phosphorylated 
in thyroid cancer cell lines and human thyroid cancer 
specimens (Liu et al., 2008; Mandal et al., 2005). 
Activated AKT is common to both human and mouse 
follicular thyroid cancer and is correlated with 
increased cell motility in vitro and metastasis in vivo 
(Kim et al., 2005). 

Breast cancer 
Note 
Somatic mutation E17K occurs in the PH domain of 
AKT1 in 8% of human breast cancers (Carpten et al., 
2007). Overexpression of cyclin D1 has been found in 
breast cancer; elevated cyclin D1 levels result in 
shortened cell cycle times and thereby contribute to 
tumor progression. AKT is involved in this mechanism 
by regulating cyclin D1 expression at transcription, 
translation and protein stability level (Nicholson et al., 
2002). Anti-estrogens such as tamoxifen inhibit the 
growth of (estrogens receptors) ER-positive breast 
cancers by reducing the expression of estrogen-
regulated genes. AKT, by activating ER, protects breast 
cancer cells from tamoxifen-induced apoptosis 

(Campbell et al., 2001). It has been shown that 
activation of AKT/mTOR promotes angiogenesis via 
HIF1alpha stabilization in breast cancer cells 
(Laughner et al., 2001). Recent studies have shown that 
AKT1 can attenuate breast cancer cell motility, 
whereas AKT2 enhances this phenotype. AKT1 blocks 
the migration of breast cancer cells through GSK3beta 
inactivation and transcription factor NFAT inhibition 
(Yoeli-Lerner et al., 2009). 

Lung cancer 
Note 
Although AKT1 mutations are apparently rare in  

lung cancer (1.9%), the oncogenic properties of E17K-
AKT1 may contribute to the development of a fraction 
of lung carcinoma with squamous histotype (Malanga 
et al., 2008). Adenocarcinomas of the lung commonly 
show an increase in the activity of PI3K/AKT signaling 
pathway. The simultaneous inhibition AKT1 siRNA 
and Bcl-xL function greatly enhanced the apoptotic 
response, suggesting that AKT1 and Bcl-xL control cell 
death in lung adenocarcinoma cells in a synergistic 
manner (Qian et al., 2009). AKT1 is overexpressed as a 
direct result of gene amplification in lung cancer, 
suggesting that amplification of this genome hotspot is 
a common mechanism of oncogene activation 
(Lockwood et al., 2008). 

Gastric carcinoma 
Note 
AKT1 gene amplification has been observed in gastric 
carcinoma. Most gastric adenocarcinomas arise as a 
longterm complication of Helicobacter pylori infection 
of the stomach; phosphorylation of AKT and its 
substrates is inducible by epithelial mitogens such as 
EGF, which is implicated in the pathogenesis of H. 
pylori gastritis (Ang et al., 2005). NF-KB activation 
was frequently observed in early-stage gastric 
carcinoma and was significantly correlated with better 
prognosis and Akt activation (Lee et al., 2005). AKT 
activation and LOH of PTEN play an important role in 
conferring a broad-spectrum chemoresistance in gastric 
cancer patients (Oki et al., 2005). 

Colorectal cancer 
Note 
The transforming E17K point mutation in the PH 
domain of AKT1 in human colorectal cancer (6%) has 
been identified (Carpten et al., 2007). The 
Src/PI3K/FAK/AKT pathway has been described as 
responsible of colon cancer cells metastatic adhesion 
(Thamilselvan et al., 2007). Cytoplasmic 
mislocalization of p27, caused by activated AKT1, and 
functional losses of p27 and p53 have been associated 
with poor prognosis and are involved in the 
development of various subtypes of colorectal cancer 
(Ogino et al., 2007). The inhibitor of the apoptosis 
protein (IAP) family member XIAP is essential for cell 
survival in colorectal cancer cells and is activated 
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through the AKT pathway. The AKT-XIAP up-
regulation was shown to be correlated to colorectal 
cancer progression and may be a potential molecular 
target for therapy (Takeuchi et al., 2005). 

Glioblastoma and gliosarcoma 
Note 
AKT1 amplification and overexpression have been 
observed in human glioblastoma and gliosarcoma, a 
variant of glioblastoma multiforme characterized by 
two components displaying gliomatous or sarcoma-tous 
differentiation (Actor et al., 2002; Staal et al., 1987). 
Glioblastomas frequently carry mutations in PTEN 
gene, which tumor suppressor properties are closely 
related to its inhibitory effect on the AKT signaling 
(Knobbe et al., 2003). 

Pancreatic cancer 
Note 
It was reported that constitutively active AKT1 in 
mouse pancreas requires S6 kinase 1 for insulinoma 
formation (Alliouachene et al., 2008). AKT1 serine 473 
may undergo both phosphorylation and O-GlcNAc 
modification, and the balance between these events 
may regulate murine beta-pancreatic cell apoptosis 
(Kang et al., 2008). All the AKT isoforms may have 
protective effects within the cell depending on the type 
of apoptotic stimuli in human pancreatic MiaPaCa-2 
cells (Han et al., 2008). Overexpression of bcl-2 is 
common in pancreatic cancer, confers resistance to the 
apoptotic effect of chemo- and radiotherapy and is 
accompanied to increased activity of AKT as well as its 
downstream target IKK (Mortenson et al., 2007). 

Hepatocellular carcinoma (HCC) 
Note 
Hyper-activation of the AKT pathway frequently 
occurs in HCC (Roberts et al., 2005). It was reported 
that Bortezomib induces apoptosis in HCC cell lines by 
down-regulating phospho-AKT. Down-regulation of 
phospho-AKT may thus represent a biomarker for 
predicting clinical response to HCC treatment (Chen et 
al., 2008). Moreover, it was observed that a cancer 
stem cell population in HCC contributes to 
chemoresistance through preferential activation of 
AKT and bcl-2 cell survival response (Ma et al., 2008). 
Knockdown of insulin receptor substrate in primary 
human HCC HepG2 cell line resulted in reduction of 
insulin stimulated AKT1 phosphorylation at serine 473 
and 50% reduction in the basal level of phosphorylated 
mTOR (Ser 2448), indicating a pivotal role of the AKT 
signaling in HCC (Varma et al., 2008). It was also 
presented that AKT1 was upregulated in HCC cells, 
and its active phosphorylated form was mainly located 
in the nucleus (Zhu et al., 2007). 

Ovarian cancer 
Note 
The transforming E17K point mutation in the PH 

domain of AKT1 in human ovarian cancer (2%) has 
been identified (Carpten et al., 2007). The AKT 
pathway plays an important role in cell prolifera-tion, 
migration, and invasion in ovarian cancer cells; 
particular importance has the signaling specificity of 
AKT1, as the inhibition of AKT1 is sufficient to affect 
these events (Meng et al., 2006; Kim et al., 2008; Gu et 
al., 2008). 

Prostate cancer 
Note 
Increased AKT1 kinase activity was reported in more 
than 50% of prostate carcinomas. The androgen 
receptor (AR) factors phosphorylated by AKT lead to 
inhibition of their activity and blockade of androgen-
induced apoptosis in a prostate cancer cell line (Lin et 
al., 2001). A study of prostate cancer indicates that 
AKT is involved more in cancer progression than 
initiation. The E17K mutation was identified in clinical 
prostate cancer samples. The mutation was mutually 
exclusive with respect to PTEN inactivation and PI3K 
activation; it was suggested that tumors carrying the 
AKT1 mutation may follow a more favourable clinical 
course (Boormans et al., 2008). 

Renal cancer 
Note 
Phospho-AKT expression is significantly increased in 
renal carcinoma cells. A decreased expression of PTEN 
may be an underlying mechanism for AKT activation 
and thus an AKT inhibitor may be a therapeutic option 
for the subset of renal cell carcinoma patients with 
elevated AKT activity (Hara et al., 2005). 

Melanoma 
Note 
Common mutations and/or deregulated expression of 
proteins of the AKT signaling, as B-RAF, PTEN, 
MDM2 and AKT itself, were identified in melanoma 
(Ch'ng et al., 2009). AKT-dependent phosphorylation 
of hTERT increases telomerase activity in melanoma 
cells, indicating that AKT promotes the 
immortalization of cancer cells by preventing 
replicative senescence (Kang et al., 1999). 

Acute leukemia 
Note 
The AKT signaling is important for governing cell 
survival and proliferation in acute myeloid leukemia 
(AML). The level of AKT phosphorylation on 
threonine 308 but not on serine 473 is associated with 
high-risk cytogenetics and predicts poor overall 
survival in AML (Gallay et al., 2009). AKT activation 
critically mediates survival during the early phase of 
drug (i.e. imatinib) resistance development (Burchert et 
al., 2005). PTEN phosphorylation, associated with 
increased AKT phosphorylation, is found in 75% of 
AML (Cheong et al., 2003a). Also SHIP1 alteration is 
shown to result in AKT activation in AML cells (Luo et 
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al., 2003). AKT constitutive activation is observed in 
more than 50% of AML cases and correlates with 
chemotherapy resistance and poor prognosis (Min et 
al., 2003; Grandage et al., 2005; Martelli et al., 2007). 
In acute leukemias, AKT  

activation gives rise to the upregulation of several 
downstream targets as FoxO transcription factors in 
AML patients with poor prognosis (Tamburini et al., 
2007; Cheong et al., 2003b), Bad, p27, GSK3beta, 
IKK, p70S6K and 4E-BP1 in AML blasts (Zhao et al., 
2004; Guzman et al., 2001; Xu et al., 2003). 

AKT signaling plays an important role in cell survival 
mechanisms in acute promyelocytic leukemia (APL) 
(Billottet et al., 2009); recent advances have defined a 
novel PML/PTEN/ AKT/mTOR/FoxO signaling 
network (Ito et al., 2009). The promyelocytic leukemia 
protein (PML) has established activities as a potent 
repressor of proliferation and oncogenic 
transformation, a promoter of apoptosis, an inducer of 
senescence, and may act as angiogenesis inhibitor. 
PML tumour suppressor prevents cancer by 
inactivating phospho-AKT inside the nucleus and 
suppressing apoptotic rescue (Culjkovic et al., 2008). 

In acute lymphoblastic leukemia (ALL) cell lines such 
as Jurkat T cells, PTEN is deleted thus activating the 
AKT pathway and promoting survival (Xu et al., 2002; 
Uddin et al., 2004). In addition, an activating mutation 
of Notch1 receptor in ALL cells is found to inhibit 
PTEN expression with subsequent AKT activation 
(Palomero et al., 2007). 

Chronic leukemia 
Note 
Chronic myelogenous leukemia (CML) is caused by 
BCR-ABL fusion gene product, that has constitutive 
tyrosine kinase activity and evokes the PI3K/AKT 
signaling pathway (Steelman et al., 2004). AKT is 
constitutively active in primary CML cells of both the 
chronic phase and blast crisis as well as in CML cell 
lines (Kawauchi et al., 2003). Introduction of a 
dominant-negative kinase-deficient AKT mutant 
(K179M) inhibits leukemo-genesis in murine cells, 
indicating an important role of AKT in transformation 
with BCR-ABL through the possible effectors FoxO, 
MDM2, GSK3beta, S6K and 4EBP-1 (Skorski et al, 
1997; Kharas et al., 2005). Furthermore, AKT-
dependent phosphoryla-tion of FoxO3A is required for 
maintaining the leukemic phenotype (Birkenkamp et 
al., 2007). 

Myeloma 
Note 
In both myeloma cell lines and primary cells IL-6 and 
IGF-1 activate the PI3K/AKT pathway accompanied by 
enhanced phosphorylation of downstream targets such 
as Bad, GSK3beta, and FoxO (Hideshima et al., 2001; 
Tu et al., 2000; Hsu et al., 2002). The expression of 
CD45 in myeloma cells negatively regulates the 

responsiveness to IGF-1 stimulation that leads to AKT 
activation (Descamps et al., 2004). Furthermore, IL-6 
and IGF-1 both upregulate telomerase activity, which is 
usually coupled with cell division, mediated by AKT 
signaling (Akiyama et al., 2002). Constitutive 
phosphorylation of AKT has been reported in primary 
samples from patients with myeloma (Pene et al., 
2002). In addition, inhibition of mTOR induces 
prevention in tumor proliferation and angiogenesis in 
myeloma cells associated with high levels of AKT 
activation (Frost et al., 2004). 

Lymphomas 
Note 
AKT activation has been demonstrated in a variety of 
B-cell non-Hodgkin's lymphomas (NHL) including 
Follicular Lymphoma (FL), diffuse large B-cell 
lymphoma (DLBCL), marginal zone B-cell lymphoma 
and Mantle Cell Lymphoma (MCL) (Rudelius et al., 
2006; Dal Col et al., 2008). Constitutive 
phosphorylation of AKT on serine 473 has been found 
also in peripheral leukemia cells of T-cell large 
granular lymphocytic leukemia (T-LGL) (Schade et al., 
2006). Constitutive phosphorylation of AKT, 
GSK3beta, and mTOR substrates such as S6K and 4E-
BP1 was demonstrated in Hodgkin's lymphoma (HL) 
cell lines, suggesting that the AKT pathway plays a 
crucial role in survival of HL cells (Dutton et al., 
2005). Moreover, proteomic analysis of FL tissues 
showed overexpression of phospho-AKT on serine 473 
(Gulman et al., 2005). In primary DLBCL samples, 
there is a correlation between poor prognosis and 
constitutive activation of AKT (Uddin et al., 2006; 
Ogasawara et al., 2003). In primary samples from 
anaplastic large cell lymphoma (ALCL) patients, 
around half of ALCLs exhibit constitutive 
phosphorylation of AKT on serine 473 and the AKT 
target p27 is downregulated in ALCL cell lines 
(Rassidakis et al., 2005). Moreover, mTOR, S6K and 
4E-BP1 are constitutively phosphorylated in cell lines 
and in tissue samples from ALCL patients (Vega et al., 
2006), indicating that the AKT pathway may be 
implicated in cell proliferation and survival of ALCL 
tumors. AKT and its downstream targets, including 
GSK3, FoxO3A, p27, MDM2, Bad, p70S6K and 4E-
BP1, have been shown to be constitutively 
phosphorylated in both primary MCL cells and MCL 
cell lines (Rudelius et al., 2006). AKT is likely to be 
more active in blastoid MCL variants than in typical 
MCL, suggesting that the AKT pathway plays a critical 
role in pathogenesis in aggressive MCL cases. 
Constitutive AKT activation has been demonstrated in 
adult T-cell leukemic (ATL) cells as well as in ATL 
cell lines. HSP90, a chaperone protein for AKT, and 
the mTOR pathway are required for cell proliferation 
and survival in primary ATL samples, suggesting a 
crucial role for the AKT/mTOR axis in ATL expansion 
(Kawakami et al., 2007). B-cell antigen receptor (BCR)  
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stimulation has been shown to induce AKT 
phosphorylation on serine 473 (Poggi et al., 2008; 
Longo et al., 2007). In addition, CpG-
oligodeoxynucleotide (CpG-ODN) stimulates leukemia 
cell proliferation accompanied by upregulation of AKT 
phosphorylation on 473 residue in B-CLL patients with 
poor prognosis (Longo et al., 2008). Therefore, AKT 
activation seems to be involved in CLL B-cell 
expansion. 

Various diseases 
Note 
Alteration of AKT activity is associated with several 
human diseases, including atherosclerosis, 
cardiovascular disease, Alzheimer disease, 
schizophrenia and diabetes. 

Atherosclerosis 
Note 
Oxidized low-density lipoproteins LDLs activate the 
PI3K/AKT network in macrophages/foam cells (Biwa 
et al., 2000). The amount of phosphorylated AKT and 
other phosphorylated effector proteins as S6K, S6, 
GSK3beta and FKHR was found to be reduced in 
atherosclerotic lesions. 

Cardiovascular disease 
Note 
The first report on a role of the PI3K/AKT pathway in 
the control of cell and organ size was published more 
than 10 years ago (Leevers et al., 1996). AKT signaling 
is relayed via mTOR to control the heart size. The 
cardiomyocyte-specific inactivation of the lipid 
phosphatase PTEN and subsequent AKT hyper-
activation also triggers heart hypertrophy and 
culminates in reduced cardiac contractility (Crackower 
et al., 2002). AKT is involved in the therapy for 
ischemic limb or heart (Huang et al., 2009; Kruger et 
al., 2009). Moreover, long-term activation of 
AKT/mTOR signaling links diet-induced obesity with 
vascular senescence and cardiovascular disease (Wang 
et al., 2009). 

Alzheimer disease 
Note 
Microtubule-associated protein tau contains a 
consensus motif for AKT encompassing the double 
phospho-epitope (T212/S214). AKT dependent 
phosphorylation of tau occurs in vitro at both threonine 
212 and serine 214 and may play specific roles relevant 
to Alzheimer disease and other neurodegenerations 
(Ksiezak-Reding et al., 2003). Modulators of the PI3K 
pathway might be reduced during aging leading to a 
sustained activation of GSK3beta, which in turn would 
increase the risk of tau hyper-phosphorylation 
(Mercado-Gomez et al., 2008). In primary cultures, 
AKT selectively phosphorylates tau at serine 214, 
raising the possibility that 214 residue may participate 

in AKT-mediated anti-apoptotic signaling (Kyoung 
Pyo et al., 2004). 

Schizophrenia 
Note 
Association between schizophrenia and an AKT1  

haplotype associated with lower AKT1 levels and a 
greater sensitivity to the sensorimotor gating-disruptive 
effect of amphetamine, conferred by AKT1 deficiency, 
has been described. Alterations in AKT1/GSK3beta 
signaling contribute to schizophrenia pathogenesis and 
AKT1 gene may confer potential schizophrenia 
susceptibility. Consistent with this proposal, it has been 
shown that haloperidol induces a stepwise increase in 
regulatory phosphorylation of AKT1 in the brains of 
treated mice, that could compensate for an impaired 
function of this signaling pathway in schizophrenia 
(Emamian et al., 2004). 

Diabetes type 2 
Note 
AKT is involved in the pathomechanism of diabetes as 
it determines beta-cell apoptosis of Langerhans islets 
and insulin sensitivity of the cells (Cseh et al., 2009; 
Schulthess et al., 2009). It has been reported that 
alterations of the AKT/mTOR or the AKT/PRAS40 
axis contributes to a diabetic phenotype (Marshall et 
al., 2006; Nascimento et al., 2006). AKT is required for 
the metabolic actions of insulin; muscle cells from type 
2 diabetic patients displayed defective insulin action 
and a drastic reduction of insulin-stimulated activity of 
all AKT isoforms, in particular with altered AKT1 
phosphorylation on threonine 308 residue (Cozzone et 
al., 2008). Insulin resistance can be induced by 
stimulating the degradation of important molecules in 
the insulin signaling pathway as AKT1 (Wing et al., 
2008). 
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