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Identity 
Other names: CTHBP; OIP3; PK2; PK3; PKM; 
TCB; THBP1 
HGNC (Hugo): PKM2 
Location: 15q22 

DNA/RNA 
Note 
Pyruvate kinase isoenzyme type M2 (alias M2-PK, 
alias PKM2) is one of four pyruvate kinase isoenzymes 
which differ widely in their occurrence according to the 
type of tissue, their kinetic characteristics and 
regulation mechanisms. The three other pyruvate 
kinase isoenzymes are type M1, type L and type R. The 
PKM-gene encodes for pyruvate kinase isoenzyme type 
M2 as well as pyruvate kinase isoenzyme type M1. 

Description 
The human PKM gene is 32,315 kb long and consists 
of 12 exons and 11 introns. 

Transcription 
Pyruvate kinase isoenzymes type M1 and type M2 are 
different splicing products of the PKM gene (exon 9 for 
M1-PK and exon 10 for M2-PK). Both mRNAs are 
1593 base pairs long and differ from another within 
160 nucleotide residues from 1143-1303. The PKM 
gene is induced by hormones, mitogenic pathways and 
nutrients. The thyroid gland hormone triiodothyronine 
(T3) induces PKM gene expression in rat pituitary cells 
and the monomeric form of the PKM protein has been 
identified as T3-receptor. Interleukin 2 stimulates PKM 
transcription in proliferating thymocytes, resulting in 
increased PKM2 mRNA and protein levels in the S 
phase of the cell cycle. In NIH3T3 L1 adipocytes PKM 
gene expression is induced by insulin. Evidence for a 
role of hypoxia, and the key nutrients glucose and 
glutamine, in the regulation of PKM gene expression 
has also been reported. The regulation of the PKM gene 
at the promoter level is, however, not well understood. 
The PKM gene contains putative DNA-consensus 
binding sites for the transcription factors Sp1 and Sp3 
(GC-boxes)  

 
Exon/intron structure of the PKM gene and the PKM1 and PKM2 mRNAs derived by alternative splicing. 
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and Sp1/Sp3-dependent stimulation of PKM gene 
transcription has been demonstrated. The GC-boxes 
appear to also play a role in glucose-dependent PKM-
gene induction. A carbohydrate-response element 
(ChoRE), which integrates regulation of many 
glycolytic genes in response to changes in glucose 
concentration, has not yet been precisely localized in 
the PKM promoter region. However, putative 
consensus DNA-binding elements for USF (Upstream 
stimulating factor), a transcription factor which is 
involved in glucose-response, HIF-1alpha (Hypoxia-
inducible factor) and the oncogenic transcription factor 
Myc are present within the PKM promoter region. The 
USF-box (5'-CACGTG-3'), the HIF-1alpha DNA-
binding consensus element (5'-RCGTG-3') as well as 
the MYC consensus element (E-box; 5'-CACGTG-3') 
match the consensus core DNA-binding sites (5'-
CACGTG-3') of the ChoRE. However, direct evidence 
for a role of these transcription factors in the 
stimulation of PKM gene expression has bot been 
obtained. 

Pseudogene 
No Pseudogenes. 

Protein 
Note 
In various references pyruvate kinase isoenzyme type 
M2 (abbreviations M2-PK or PKM2) has been termed 
type III, type A, type B, type K or type K4. 

Description 
Each monomer of PKM2 consists of 531 amino acids 
and can be subdivided into four domains: the N-domain 
(aa 1-43), the A-domain (aa 44-116 and 219-389), the 
B-domain (aa 117-218) and the C-domain (aa 390-
531). The molecular weight of the M2-PK monomer is 
58 kD. In contrast to the other PK isoenzymes which 
are characterized by a tetrameric quaternary structure, 
M2-PK occurs in a tetrameric as well as dimeric form. 
The dimeric form of M2-PK is the result of 
intracellular contact between the A-domain of two 
monomers. The tetrameric form occurs by association 
of the interface of the C-domains of two dimers. The C-
domain contains 44 amino acids of the 56 amino acid 
stretch (aa 378-434) which differs between M1 and 
M2-PK-isoenzymes and is responsible for the different 
kinetic characteristics and regulation  

mechanisms found for M1 and M2-PK, i.e. fructose 
1,6-P2 activation and interaction with different 
oncoproteins. The cleft formed between the A- and B-
domain is the location of the active site of the enzyme. 
The C-domain (aa 393-531) comprises an inducible 
nuclear translocation signal. 

Expression 
Pyruvate kinase isoenzyme type M2 is expressed in 
some differentiated tissues, such as lung, fat tissue, 
retina, pancreatic islets as well as in all cells with a 
high rate of nucleic acid synthesis, which include all 
proliferating cells, such as normal proliferating cells, 
embryonic cells, adult stem cells and especially tumor 
cells. In healthy tissues all pyruvate kinase isoenzymes 
consist of four subunits whereby hybrids of the 
different forms can also occur. Hybrids between M1 
and M2-PK were found in the oesophagus and the 
stomach. L-PK and M2-PK hybrids were found in the 
jejunum, colon and rectum. During differentiation of 
embryonic cells M2-PK is progressively replaced by 
the respective tissue specific isoenzyme. Conversely, 
during tumorigenesis the tissue specific isoenzymes 
disappear and M2-PK is expressed. 

Localisation 
Pyruvate kinase type M2 is found predominantly in the 
cytosol and to a minor extent in the nucleus. Cytosolic 
M2-PK is associated with other glycolytic enzymes, i.e. 
hexokinase, glyceraldehyde 3-P dehydrogenase, 
phosphoglycerate kinase, phosphoglyceromutase, 
enolase and lactate dehydrogenase in a so-called 
glycolytic enzyme complex. 

Function 
Pyruvate kinase (ATP: pyruvate O2-phosphotransferase; 
EC 2.7.1.40) catalyzes the last step within glycolysis, 
the dephosphorylation of phosphoenolpyruvate (PEP) 
to pyruvate while producing one mole of ATP per mole 
of PEP. Depending upon the tetramer to dimer ratio 
M2-PK plays a bi-functional role within tumor 
metabolism. The tetrameric form of M2-PK favors the 
degradation of glucose to pyruvate and lactate with 
regeneration of energy due to a high affinity to its 
substrate PEP. The dimeric form is characterized by a 
low PEP affinity and is nearly inactive at physiological 
PEP concentrations.  
 

 
Molecular structure of the human PKM2 protein. NLS = nuclear localization signal. 
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This leads to an expansion of all phosphometabolites 
above the pyruvate kinase reaction and an increased 
channeling of glucose carbons into synthetic processes, 
i.e. DNA, phospholipid and amino acid synthesis. 
Tumor cells contain high levels of dimeric M2-PK, 
which has therefore been termed 'Tumor M2-PK'. 
The M2-PK tetramer to dimer ratio fluctuates in tumor 
cells depending upon the concentrations of signal 
metabolites. High fructose 1,6-P2 levels induce the 
association of the inactive dimeric form of M2-PK to 
the highly active tetrameric form. When FBP levels 
drop below a critical value the tetrameric form 
dissociates to the dimeric form. Dimerization of M2-
PK is induced by direct interaction with different 
oncoproteins, i.e. pp60v-src, A-Raf and HPV-16 E7. 
The importance of M2-PK for oncogenesis is further 
underlined by the impairment of the oncogenic activity 
of activated A-Raf (gag-A-Raf) by a kinase-dead 
mutant of M2-PK and the enhancement of the 
transforming activity of gag-A-Raf by ectopically 
expressed wild type M2-PK. Similarly, a knockdown of 
M2-PK expression by short hairpin RNA and 
replacement with M1-PK led to a reduction in tumor 
growth rate. Peptide aptamers which specifically bind 
to M2-PK and not to the 96% homologous PK 
isoenzyme type M1 were found to avoid re-association 
of M2-PK to the tetrameric form thereby reducing ATP 
levels and decelerating tumor cell proliferation. 
Recent work has shown that the binding of cytosolic 
promyelocytic leukemia (PML) tumor suppressor 
protein to M2-PK leads to inhibition of the activity of 
the tetrameric form of M2-PK which results in a 
suppression of lactate production. The interaction of 
M2-PK with HERC-1, PKCdelta and tumor endothelial 
marker TEM8 has also been reported; however, the 
physiological functions of these findings are not yet 
well understood. 
Regarding the function of M2-PK in the nucleus both 
pro-proliferative, but also pro-apoptotic stimuli have 
been described. Thus, interleukin-3-induced nuclear 
translocation of M2-PK stimulated cell proliferation, 
whereas nuclear translocation of M2-PK induced by 
TT232, H2O2 or UV-irradiation was linked to the 
induction of caspase independent programmed cell 
death. Nuclear M2-PK was found to participate in the 
phosphorylation of histone H1 by direct phosphate 
transfer from PEP to histone H1. Furthermore, M2-PK 
was shown to interact with Oct-4 and stimulates 
transactivation by the transcription factor; however, the 
functional consequences of these findings have not 
been elucidated. 
The interaction between PKM2 with gonococcal Opa 
proteins points to a physiological role of M2-PK in 
bacterial pathogenesis. 

Homology 
It is assumed that M1 and M2-PK diverged shortly 
before the evolution of fish. The pyruvate kinase amino  

acid sequence is highly conserved. The homology 
between human M1-PK and human M2-PK is 96%. 
Comparison of the M2-PK amino acid sequence 
between different species revealed the following 
homologies: human and rat: 93%; human and mus 
musculus: 93 %; rat and mus musculus 98%; human 
and S. cerevisiae: 50%. 

Mutations 
Note 
There is one report which describes a missense 
mutation and a frame shift mutation in exon 10 of the 
M gene in three B-lymphoblastoid cell lines established 
from three Bloom syndrome patients. Exon 10 encodes 
for the intersubunit contact domain of the M2-PK 
protein. These mutations have a dominant negative 
effect leading to inactivation of M2-PK. However, the 
relevance of these mutations has not yet been 
determined. 

Implicated in 
Note 
M2-PK is overexpressed in all tumor entities thus far 
investigated, such as gastrointestinal tumors, 
melanoma, tumors of the lung, breast, prostate, ovary 
and cervix. Tumor M2-PK, the dimeric form of M2-
PK, is released from tumors into the blood, and pleural 
fluid and from tumors of the lower gastrointestinal tract 
also into the stool of tumor patients. The amount of 
Tumor M2-PK in plasma and stool was found to 
correlate with staging and may be used for early 
detection of tumors and follow up studies during 
therapy. For some tumor entities correlations with 
certain oncoprotein expressions have been described. 

Renal cell carcinoma 
Disease 
The term renal cell carcinoma (RCC) comprises 
different histological types whereby the clear cell renal 
cell carcinoma is the most common histologic variant, 
accounting for approximately 70% of all cases. 
Estimated incidences rank RCC as the 13th most 
common malignancy in men and 15th in women. In 
addition to sporadic forms, hereditary forms of RCC 
also occur, e.g. in a high proportion of patients with 
von Hippel-Lindau disease (VHL). 
Oncogenesis 
In patients with von Hippel-Lindau disease and in a 
high percentage of tumors from patients with sporadic 
clear cell RCC, one inherited allele of the VHL gene - a 
master regulator of HIF (hypoxia-inducible factor) - is 
mutated and the second allele  
is deleted. VHL mutations lead to a pseudo-hypoxic 
state with overproduction of HIF-1a. The PKM 
promotor contains a binding site for HIF-1. Hypoxia 
correlates with an increase in PKM2 mRNA. 
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Tumors of the uterine cervix 
Disease 
Cervical carcinoma is the 2nd most common cancer in 
women worldwide. It originates for the most part from 
the transformation zone of the cervix. The histologic 
morphology is predominantly of the squamous cell 
type. 
Oncogenesis 
Chronic infection with human papillomavirus (HPV) 
plays a major aetiological role in the evolution of 
cervical carcinomas. The products of the oncogenes E6 
and E7 from HPV 16 are able to form stable complexes 
with cellular proteins thereby modifying or inactivating 
their normal functions. It has been shown that the E7 
protein physically interacts with and stabilizes the 
dimeric form of PKM2. 

Gastric carcinoma 
Note 
In different gastric carcinoma cell lines cisplatin 
resistance was found to correlate with low M2-PK 
protein levels and activities. Lowering of M2-PK 
expression through antisense transfection increased 
cisplatin resistance. 
Disease 
Stomach cancer is the 4th most common cancer 
worldwide. Helicobacter pylori infection appears to 
play a pivotal aetiological role in the induction of the 
intestinal type of gastric carcinoma, whereby its action 
is probably indirect by provoking an inflammatory 
response. Thus, gastritis is usually the first step in 
cancer induction and may lead to multifocal atrophic 
gastritis followed by intestinal metaplasia as an 
important precursor lesion. 

Colon and rectum cancer 
Disease 
Colorectal cancers rank 4th in frequency in men and 
3rd in women. Most carcinomas develop from 
adenomas, which constitute their precursor lesion. 
These adenomas may occur sporadically or as part of a 
polyposis syndrome. More than ninety percent of all 
large bowel tumors are ordinary adenocarcinomas. 
Oncogenesis 
Inactivating mutations of the adenomatous polyposis 
coli (APC) gene is an early event and a key molecular 
step in adenoma formation. Further progression to 
colon cancer is a multistep process wherein multiple 
alterations may be relevant, e.g. mutations in the DCC, 
k-ras, and/or p53 genes; loss of heterozygosity; and 
DNA methylations. A recent report described the 
coexistence of mutational activation of the k-ras gene 
and HPV high risk types infection in colon cancer. It 
has been shown that the HPV-16 E7 protein, which 
cooperates with ras in cell transformation, directly 
binds to PKM2, thereby inducing and stabilizing the 
dimeric form of this isoenzyme. 
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