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Abstract Although the lift-and-project operators of Lovász and Schrijver have been
the subject of intense study, their M(K , K ) operator has received little attention. We
consider an application of this operator to the stable set problem. We begin with an
initial linear programming (LP) relaxation consisting of clique and non-negativity
inequalities, and then apply the operator to obtain a stronger extended LP relaxation.
We discuss theoretical properties of the resulting relaxation, describe the issues that
must be overcome to obtain an effective practical implementation, and give extensive
computational results. Remarkably, the upper bounds obtained are sometimes stronger
than those obtained with semidefinite programming techniques.
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1 Introduction

Let G = (V, E) be an undirected graph, where V is the vertex set and E is the edge set,
and let n denote |V |. A vertex set S ⊆ V is called stable if the vertices in S are pairwise
non-adjacent. The stable set problem calls for a stable set of maximum cardinality,
or, if we are also given a weight vector w ∈ Qn+, of maximum weight. The stable set
problem is a well-known and fundamental combinatorial optimization problem, with
many applications, for example in timetabling and scheduling. It is equivalent to the
well-known max-clique problem.

The stable set problem is N P-hard in the strong sense, and hard even to approximate
[14]. This theoretical hardness is also borne out in practice: even with modern
algorithms and computers, some instances with only 300 vertices or so are remarkably
hard to solve to proven optimality. In particular, algorithms based on Linear Program-
ming (LP) have so far given disappointing results. Indeed, for unweighted instances,
relatively simple combinatorial algorithms (such as those of Régin [27] and Tomita
and Kameda [30]) perform nearly as well as sophisticated LP-based algorithms (such
as those of Nemhauser and Sigismondi [23] and Rossi and Smriglio [28]).

In a seminal paper, Lovász [20] proposed to use Semidefinite Programming (SDP)
to compute upper bounds for the stable set problem. His SDP relaxation, called the
theta relaxation, was studied in depth in Grötschel et al. [12]. Several researchers have
performed computational experiments either with the theta relaxation or with stronger
relaxations obtained by adding valid linear inequalities (e.g. [7,13,32]).

Another landmark paper was Lovász and Schrijver [21], which introduced several
‘operators’ that enable one to take the LP relaxation of any 0–1 LP and form stronger
LP or SDP relaxations in spaces of higher dimension. Lovász and Schrijver applied
two of their operators to the stable set problem: the N operator (based on LP) and
the N+ operator (based on SDP). Theoretically, the N+ operator turned out to yield a
much stronger relaxation than the N operator. Computational experiments with the two
operators have been conducted by Balas et al. [1] and Burer and Vandenbussche [3].

Since [21] appeared, a huge number of papers have been written on the application
of the Lovász–Schrijver operators to various combinatorial optimization problems.
There is however another operator in [21] that has received little attention: the so-
called M(K , K ) operator. Like the N operator, the M(K , K ) operator is based on
LP rather than SDP. Roughly speaking, it ‘squares’ the size of a linear system by
multiplying pairs of constraints together.

In this paper, we apply the M(K , K ) operator to the stable set problem. Our applica-
tion is rather non-conventional, in that our initial LP relaxation is already of exponential
size, consisting of the well-known clique and non-negativity inequalities. The result-
ing LP relaxation is also of exponential size, and N P-hard to solve. Nevertheless, we
show that it can be solved approximately, to a reasonable degree of accuracy, for many
instances of interest. We discuss theoretical properties of this LP relaxation, which
turns out to be remarkably tight. We also describe the algorithmic issues that must be
overcome to solve it approximately, and give extensive computational results. Inter-
estingly, the upper bounds obtained from our LP relaxation are sometimes stronger
than those obtained with the best SDP techniques.
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The remainder of the paper is structured as follows. In Sect. 2, we review the
relevant literature on LP and SDP relaxations. In Sect. 3, we explain the M(K , K )

operator in detail, and prove some theoretical results that establish the strength of the
resulting LP relaxation. This is done by projection, in the spirit of papers by Laurent
et al. [18] and Giandomenico and Letchford [11]. In Sect. 4, we discuss implementation
issues, and give extensive computational results on standard benchmark graphs. Finally,
concluding remarks are given in Sect. 5.

2 Review of known results

2.1 Standard formulation and inequalities

The (weighted) stable set problem can be formulated as the following 0–1 LP:

max
∑

i∈V

wi xi

s.t. xi + x j ≤ 1 (∀{i, j} ∈ E)

x ∈ {0, 1}n . (1)

The inequalities (1) are commonly called edge inequalities. The stable set polytope,
often denoted by STAB(G), is the convex hull in Rn+ of the incidence vectors of stable
sets, i.e.

STAB(G) = conv
{

x ∈ {0, 1}n : (1) hold
}
.

The study of STAB(G) was initiated by Padberg [24], who observed the following:

– For any i ∈ V , the non-negativity inequality xi ≥ 0 is facet-inducing.
– For any maximal clique (set of pairwise adjacent vertices) C ⊂ V , the clique

inequality
∑

i∈C xi ≤ 1 is facet-inducing.
– Given any H ⊂ V inducing a simple cycle of odd cardinality, the odd cycle

inequality
∑

i∈H xi ≤
⌊ |H |

2

⌋
is valid. (When |H | ≥ 5 and the cycle is chordless,

the inequality is called an odd hole inequality.)
– Given any H ⊂ V inducing an odd antihole (i.e. the complement of an odd hole),

the odd antihole inequality
∑

i∈A xi ≤ 2 is valid.
– The odd hole and odd antihole inequalities are not facet-inducing in general and

can often be strengthened by lifting. For example, if H induces an odd hole in
G and j /∈ H is adjacent to all vertices in H , then the odd wheel inequality
∑

i∈H xi +
⌊ |H |

2

⌋
x j ≤

⌊ |H |
2

⌋
is valid.

The polytope defined by the edge and non-negativity inequalities is usually called
the fractional stable set polytope and denoted by FRAC(G). The polytope defined by
the clique and non-negativity inequalities is usually denoted by QSTAB(G). Clearly,
we have STAB(G) ⊆ QSTAB(G) ⊆ FRAC(G), and inclusion is generally strict [12].

Trotter [31] introduced the web and antiweb inequalities, which include clique, odd
hole and odd antihole inequalities as special cases. Let p and q be integers satisfying
p > 2q+1 and q > 1. Here, arithmetic modulo p is used. A (p, q)-web is a graph with
vertex set {1, . . . , p} and with edges from i to {i+q, . . . , i−q}, for every 1 ≤ i ≤ p. A

123



384 M. Giandomenico et al.

(p, q)-antiweb is the complement of a (p, q)-web. The web inequalities take the form∑
i∈W xi ≤ q for every vertex set W inducing a (p, q)-web, and the antiweb inequal-

ities take the form
∑

i∈AW xi ≤ �p/q� for every vertex set AW inducing a (p, q)-
antiweb. Web and antiweb inequalities may again need to be lifted to obtain facets.

For the sake of brevity, we do not review the other known classes of valid inequalities
for STAB(G).

Note that the clique, odd hole, odd antihole, web and antiweb inequalities can all
be exponential in number. Thus, to use them as cutting planes, one needs a separa-
tion algorithm (see again [12]). Gerards and Schrijver [10] gave a polynomial-time
separation algorithm for odd cycle inequalities; Grötschel et al. [12] did the same for
odd wheel inequalities. The complexity of odd antihole, web and antiweb separation
is unknown, although Cheng and De Vries [4] gave a polynomial-time algorithm for
antiweb inequalities with fixed q.

The separation problem for clique inequalities is strongly N P-hard (e.g. Grötschel
et al. [12]). However, some effective separation heuristics are known for clique, lifted
odd hole and antihole inequalities [2,15,23], and for the so-called rank inequalities,
which include the web and antiweb inequalities as a special case [28].

Much more powerful separation results can be obtained using SDP—see the
following subsections.

These polyhedral results have been used in exact algorithms for the stable set
problem. Nemhauser and Sigismondi [23] described a cut-and-branch algorithm based
on clique and lifted odd hole inequalities, and, more recently, Rossi and Smriglio [28]
presented a branch-and-cut algorithm based on general rank inequalities. Although
such algorithms perform reasonably well, they can still run into difficulties when the
number of vertices exceeds around 300, especially when the graph is relatively sparse.

2.2 The Lovász theta relaxation

We now describe the famous theta relaxation of the stable set problem, due to Lovász
[20]. For ease of exposition, we follow the presentation of Lovász and Schrijver [21].
We introduce, for all {i, j} ⊂ V , the quadratic variable xi j , representing the product
xi x j . Note that x ji = xi j for all {i, j} ⊂ V and xii = xi for all i ∈ V . Now, let
X = xxT be the n × n matrix in which the entry in row i and column j is xi j . Also,

let Y be an augmented matrix representing the product
(1

x

)(1
x

)T
. That is,

Y :=
(

1 xT

x X

)
.

Since Y is the product of a real matrix and its transpose, it is real, symmetric, square
and positive semidefinite (psd). Then, an upper bound for the stable set problem is
given by:

max
∑

i∈V wi xi

s.t. xi = xii (i ∈ V )

xi j = 0 ({i, j} ∈ E)

Y ∈ Sn+1+ ,
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where Sn+1+ denotes the cone of real symmetric square psd matrices of order n + 1.
This upper bound is denoted by θ(G, w) (or just θ(G) in the unweighted case).

Grötschel et al. [12] denote by TH(G) the projection of the feasible region of this
SDP relaxation onto the subspace defined by the original (non-quadratic) variables.
TH(G) is convex, but not polyhedral in general. Remarkably, we have STAB(G) ⊆
TH(G) ⊆ QSTAB(G), with equality if and only if G is perfect. Since SDP can
be solved to arbitrary precision in polynomial time, this implies that there exists a
polynomial-time separation algorithm for a class of inequalities which includes all
clique inequalities. This is so despite the fact that clique separation itself is strongly
N P-hard.

The bound θ(G, w) is quite strong in practice (see, e.g. [13,32]), and there exist
classes of graphs for which it is much stronger than the bound obtained by using non-
negativity and clique inequalities [17]. The current fastest methods for computing
θ(G, w) appear to be the augmented Lagrangian algorithm of Povh et al. [26] and the
regularization method of Malick et al. [22].

2.3 Combining linear and semidefinite relaxations

Stronger formulations in the extended space can be obtained by adding valid linear
inequalities to the Lovász SDP relaxation. Schrijver [29] suggested adding the non-
negativity inequalities xi j ≥ 0 for all {i, j} /∈ E , which are not implied by the condition
Y ∈ Sn+1+ . The resulting upper bound is often called θ ′(G, w).

As we mentioned in the introduction, Lovász and Schrijver [21] defined several
general operators for strengthening LP relaxations of 0–1 LPs. Applying their so-called
M+ operation to FRAC(G), one obtains the polytope M+(FRAC(G)). This is formed
by adding the following inequalities to the above-mentioned relaxation of Schrijver:

xik + x jk ≤ xk ({i, j} ∈ E, k 
= i, j), (2)

xi + x j + xk ≤ 1 + xik + x jk ({i, j} ∈ E, k 
= i, j). (3)

The projection of M+(FRAC(G)) onto the non-quadratic space is called
N+(FRAC(G)). Lovász and Schrijver showed that N+(FRAC(G)) satisfies all clique,
odd cycle, odd antihole and odd wheel inequalities. Giandomenico and Letchford [11]
showed that, in fact, it satisfies all web inequalities. Thus, SDP provides a polynomial-
time separation algorithm for a class of inequalities which includes all web and odd
wheel inequalities (and therefore all clique, odd hole and odd antihole inequalities).

Computational results obtained by optimising over M+(FRAC(G)) have been given
for example by Balas et al. [1] (using lift-and-project cutting plane methods) and Burer
and Vandenbussche [3] (using an augmented Lagrangian method). The upper bounds
are often noticeably better than θ ′(G, w), but at the expense of very large running times.
Indeed, for many instances, the algorithms presented in [1,3] could not optimise over
M+(FRAC(G)) to within any meaningful accuracy within a reasonable time.

An even stronger relaxation can be obtained from a consideration of the so-called
boolean quadric polytope (see, e.g. [25]). This polytope is the convex hull of all
matrices X of the form xxT for some x ∈ {0, 1}n . As pointed out by Padberg, STAB(G)
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can be obtained by taking the face of the boolean quadric polytope defined by the
equations xi j = 0 for all {i, j} ∈ E , and projecting it onto the non-quadratic space.
The inequalities (2) and (3), along with the non-negativity inequalities xi j ≥ 0 for
all {i, j} /∈ E , are then easily seen to be special cases of the well-known triangle
inequalities, that induce facets of the boolean quadric polytope. This suggests that
the relaxation M+(FRAC(G)) can be strengthened by adding the remaining triangle
inequalities, which are:

xik + x jk ≤ xk + xi j (∀ stable {i, j, k} ⊂ V ) (4)

xi + x j + xk ≤ 1 + xi j + xik + x jk (∀ stable {i, j, k} ⊂ V ). (5)

Some experiments with the resulting SDP relaxation were conducted by Gruber and
Rendl [13] using an interior-point cutting-plane method. The upper bounds obtained
were very good, although again at the expense of large running times.

Dukanovic and Rendl [7] examined a weakened version of the relaxation of Gruber
and Rendl, in which the inhomogeneous constraints (3) and (5) are omitted. (This relax-
ation still dominates θ ′(G, w), but is incomparable with M+(FRAC(G)).) Dukanovic
and Rendl showed how to exploit the special structure of this relaxation within an
interior-point algorithm, to reduce the running time somewhat.

For related projection results, and connections with the well-known max-cut prob-
lem, see Laurent et al. [18] and Giandomenico and Letchford [11].

3 Applying the M(K, K ) operator to QSTAB(G)

3.1 Definition and elementary results

As we mentioned in the introduction, the Lovász–Schrijver M(K , K ) operator essen-
tially amounts to ‘squaring’ a given linear system in 0–1 variables. Specifically, for
any pair of linear inequalities αx − β ≥ 0 and α′x − β ′ ≥ 0, the ‘product’ inequality
(−β αT

)
Y

(−β ′
α′

)
≥ 0 is computed. The products xi x j , for all 1 ≤ i < j ≤ n, are

then replaced with new variables xi j , and the terms x2
i , for 1 ≤ i ≤ n, are replaced

with xi (which is valid when xi is binary.) This yields an extended LP formulation
which is provably stronger than the original.

In this paper, we have decided to investigate M(QSTAB(G),QSTAB(G)); that is, the
relaxation obtained by applying the M(K , K ) operation to the LP relaxation consisting
of the non-negativity and clique inequalities. For brevity, we refer to this relaxation
simply as M(K , K ) in what follows. We will see that, although solving the M(K , K )

relaxation is theoretically hard, one can solve it to reasonable accuracy in practice.
If we let � denote the set of all maximal cliques of G, QSTAB(G) is defined by

the following linear system:

1 −
∑

i∈C

xi ≥ 0 (C ∈ �) (6)

xi ≥ 0 (i ∈ V ). (7)
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Applying the M(K , K ) operation yields the following linear system:

xi − ∑
j∈C xi j ≥ 0 (C ∈ �, i ∈ V ) (8)

1 − ∑
i∈C xi − ∑

i∈C ′ xi + ∑
i∈C, j∈C ′ xi j ≥ 0 (C, C ′ ∈ �) (9)

xi j ≥ 0 ({i, j} ⊂ V ). (10)

Inequalities (8), (9) and (10) are obtained by multiplying a clique inequality and a
non-negativity inequality, two clique inequalities, and two nonnegativity inequalities,
respectively.

Note that, when i ∈ C , the inequalities (8) reduce to
∑

j∈C\{i} xi j ≤ 0. Hence,
M(K , K ) satisfies the equations xi j = 0 for all {i, j} ∈ E . Thus, the linear system
can be written in the following simplified form:

∑
j∈C :{i, j}∈Ē xi j − xi ≤ 0 (C ∈ �, i ∈ V \C) (11)

∑
i∈C∪C ′ xi − ∑

{i, j}∈Ē(C :C ′) xi j ≤ 1 (C, C ′ ∈ �) (12)

xi j = 0 ({i, j} ∈ E),

xi j ≥ 0 ({i, j} ∈ Ē),

where Ē := {{i, j} ⊂ V : {i, j} /∈ E} denotes the set of ‘non-edges’, and Ē(C : C ′)
denotes

{{i, j} ∈ Ē : i ∈ C, j ∈ C ′}.
It is easy to show that the inequalities (11) and (12) dominate the inequalities (2) and

(3) that appear in the definition of M+(FRAC(G)). However, they do not in general
dominate the additional triangle inequalities (4), (5). In any case, since we are not
imposing psd-ness on Y , in general M(K , K ) neither contains nor is contained in any
of the convex sets mentioned in Subsects. 2.2 and 2.3.

It can also be shown that the inequalities (11) and (12) are special cases of the
rounded psd inequalities explored by Giandomenico and Letchford [11]. In [11] it
was proved that the rounded psd inequalities imply by projection all web and antiweb
inequalities (and therefore all edge, clique, odd hole and odd antihole inequalities),
together with various lifted versions. In the following three subsections, we show that
these projection results still hold even if we restrict ourselves to the special inequalities
(11) and (12).

We follow Lovász and Schrijver [21] in letting N (K , K ) denote the projection of
M(K , K ) onto the subspace of the original (non-quadratic) variables.

3.2 A class of disjunctive cuts including all antiwebs

We now show that N (K , K ) satisfies a wide class of disjunctive cuts that includes all
antiweb inequalities. For this, we will need the following result of Balas et al. [1]:

Theorem 1 [1] Let P = {x ∈ [0, 1]n : Ax ≤ b} be a polytope and let C ⊂ {1, . . . , n}
be such that

∑
i∈C x∗

i ≤ 1 for all x∗ ∈ P. Consider the extended formulation obtained
by multiplying the system Ax ≤ b by xi for all i ∈ C, and by 1 − ∑

i∈C xi . The
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projection of the resulting polytope into the original space equals

conv {x ∈ P : xi ∈ {0, 1} (i ∈ C)} .

This more or less immediately implies the following:

Corollary 1 For any C ∈ �, N (K , K ) satisfies all inequalities that are implied by
the system (6), (7), and the following disjunction:

(
∑

i∈C

xi = 0

)
∨

(
∨

i∈C

xi = 1

)
. (13)

Proof It suffices to let P equal QSTAB(G) in Theorem 1 and note that, regardless of
the choice of C ∈ �, N (K , K ) is contained in the projected polytope mentioned in
the theorem. ��
In particular, we have:

Corollary 2 N (K , K ) satisfies all antiweb inequalities.

Proof Let AW (p, q) be an antiweb and let r = p mod q. Since the vertex set
{1, 2, . . . , q} forms a maximal clique, it suffices to show that the antiweb inequal-
ity

∑
i∈AW xi ≤ �p/q� is implied by the clique and non-negativity inequalities and

the following disjunction:

( q∑

i=1

xi = 0

)
∨ (x1 = 1) ∨ · · · ∨ (

xq = 1
)
.

All points in QSTAB(G) satisfying the first term of the disjunction clearly satisfy∑r
i=1 xi ≤ 0. This, together with the clique inequalities

∑(s+1)q+r
i=sq+r+1 xi ≤ 1 for s =

0, . . . , �p/q� − 1, implies the antiweb inequality. Similarly, all points in QSTAB(G)
satisfying x1 = 1 clearly satisfy

∑q
i=2 xi ≤ 0 and

∑p−1
i=p−r+1 xi ≤ 0. These, together

with the clique inequalities
∑(s+1)q

i=sq+1 xi ≤ 1 for s = 1, . . . , �p/q� − 1, imply the
antiweb inequality. The other terms of the disjunction are handled analogously by
symmetry. ��

3.3 Web inequalities

As mentioned in Subsect. 2.3, Giandomenico and Letchford [11] proved that the
Lovász–Schrijver relaxation N+(G) satisfies all web inequalities. We will now show
that this also holds for N (K , K ). Note that this is not a corollary of Theorem 1. Indeed,
one can show that the (p, q)-web inequality arises from a disjunction of the form (13)
only if p mod q ≤ �p/q�.

In what follows, we will refer to inequalities of the form (11) and (12) as clique-
variable and clique-product inequalities, or just CVIs and CPIs, respectively. Note that
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the CVIs and CPIs remain valid for M(K , K ) even if C and/or C ′ are not maximal
cliques in G. We will also use the notation ω = �p/q� and r = p mod q. Note that
ω is the cardinality of a maximum clique in the web W (p, q) and that p = ωq + r .

Lemma 1 Let G = W (p, q) be a web. For any j ∈ {1, . . . , q − 1}, the inequality

p∑

i=1

xi,i+ j +
p∑

i=1

xi+ j,i+q ≤
p∑

i=1

xi (14)

is implied by the CVIs.

Proof For any fixed i ∈ {1, . . . , p} and j ∈ {1, . . . , q − 1}, we have the trivial CVI
xi,i+ j + xi+ j,i+q ≤ xi+ j . Summing these CVIs over all i yields (14). ��
Lemma 2 Let G = W (p, q) be a web. For any j ∈ {1, . . . , r − 1}, the inequality

(ω + 2)

p∑

i=1

xi −
p∑

i=1

xi,i+ j −
p∑

i=1

xi+ j,i+r ≤ p (15)

is implied by the CPIs.

Proof Let i ∈ {1, . . . , p} and j ∈ {1, . . . , r − 1} be fixed. If we let C = {i, i +
q, . . . , i + (ω − 1)q} and C ′ = {i − r − q + j, i − r + j}, the CPI (12) reduces to:

∑

i∈C∪C ′
xi − xi−r−q,i−r−q+ j − xi,i−r+ j ≤ 1.

(To see this, note that i + (ω − 1)q mod p = i − r − q.) Summing these CPIs over
all i yields (15). ��
Lemma 3 Let G = W (p, q) be a web. For any j ∈ {1, . . . , q − r − 1}, the inequality

(ω + 1)

p∑

i=1

xi −
p∑

i=1

xi−r,i+ j −
p∑

i=1

xi+ j,i+q ≤ p (16)

is implied by the CPIs.

Proof Let i ∈ {1, . . . , p} and j ∈ {1, . . . , q − r − 1} be fixed. If we let C =
{i, i + q, . . . , i + (ω − 1)q} and C ′ = {i − q + j}, the CPI (12) reduces to:

∑

i∈C∪C ′
xi − xi−q−r,i−q+ j − xi,i−q+ j ≤ 1.

Summing these CPIs over all i yields (16). ��
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Lemma 4 Let G = W (p, q) be a web. The inequality

(ω + 1)

p∑

i=1

xi −
p∑

i=1

xi,i+r ≤ p (17)

is implied by the CPIs.

Proof Let i ∈ {1, . . . , p} be fixed. If we let C = {i, i + q, . . . , i + (ω − 1)q} and
C ′ = {i − q}, the CPI (12) reduces to:

∑

i∈C

xi + xi−q − xi−q,i−r−q ≤ 1.

Summing these CPIs over all i yields (17). ��
Theorem 2 N (K , K ) satisfies all web inequalities.

Proof If we sum together the inequalities (14) over all j ∈ {1, . . . , q−1}, and simplify,
we obtain:

2
p∑

i=1

q−1∑

j=1

xi,i+ j ≤ (q − 1)

p∑

i=1

xi . (18)

If we sum together the inequalities (15) over all j ∈ {1, . . . , r − 1}, and simplify, we
obtain:

(r − 1)(ω + 2)

p∑

i=1

xi − 2
p∑

i=1

r−1∑

j=1

xi,i+ j ≤ p(r − 1). (19)

If we sum the inequalities (16) over all j ∈ {1, . . . , q −r −1}, and simplify, we obtain:

(q − r − 1)(ω + 1)

p∑

i=1

xi − 2
p∑

i=1

q−1∑

j=r+1

xi,i+ j ≤ p(q − r − 1). (20)

Finally, summing together (18), (19), (20) and two times (17), and simplifying, we
obtain

∑p
i=1 pxi ≤ pq, which is equivalent to the web inequality

∑p
i=1 xi ≤ q. ��

3.4 Sequential lifting

In Giandomenico and Letchford [11], a certain sequential lifting procedure was intro-
duced for the stable set problem, and it was proved that, if a valid inequality for
STAB(G) is implied by the rounded psd inequalities, then so is any inequality obtained
by applying the lifting procedure. In this subsection, we prove that the same result
holds for N (K , K ).
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Let G = (V, E) be a graph, let αTx ≤ β be a valid inequality for STAB(G), and let
S be a stable set in G. For a given vertex i ∈ S, we denote by n(i) the set of neighbours
of i , and let n(S) := ⋃

i∈S n(i). Now consider a new graph G̃ = (Ṽ , Ẽ) obtained from
G by adding an extra vertex (u, say) which is adjacent to every vertex in S ∪ n(S).
We construct a valid inequality α̃Tx ≤ β for STAB(G̃) by setting α̃i = αi for all
i ∈ V and α̃u = ∑

i∈S αi . We say that the inequality α̃Tx ≤ β has been obtained from
αTx ≤ β by lifting on S. (When |S| = 1, this lifting operation reduces to the classical
replication operation studied for example by Lovász [19] and Fulkerson [8].)

Theorem 3 Let G = (V, E) be a graph, let αTx ≤ β be implied by the CVIs and
CPIs, and let S be a stable set in G. The lifted inequality α̃Tx ≤ β for ST AB(G̃),
obtained by lifting on S, is also implied by the CVIs and CPIs.

Proof Let us suppose that the inequality αTx ≤ β is a non-negative linear combination
of a family R of CVIs, of the form

∑

j∈Cr :{ir , j}∈Ē

xir j − xir ≤ 0 (∀r ∈ R)

and a family T of CPIs, of the form

∑

i∈Ct ∪C ′
t

xi −
∑

{i, j}∈Ē(Ct :C ′
t )

xi j ≤ 1 (∀t ∈ T ).

Let λr ≥ 0 and λt ≥ 0, for r ∈ R and t ∈ T , be the multipliers given to these CVIs
and CPIs in the linear combination.

For a given vertex i , let Ri be the set of CVIs that involve xi , i.e. Ri := {r ∈ R :
i = ir }, and let Ti be the set of CPIs that involve xi , i.e. Ti := {t ∈ T : i ∈ Ck ∪ C ′

k}.
We have by assumption that

∑

t∈Ti

λt −
∑

r∈Ri

λr = αi (∀i ∈ V ). (21)

Similarly, for a given ‘non-edge’ {i, j} ∈ Ē , let Ri j be the set of CVIs that involve
xi j , i.e.

Ri j := {r ∈ R : i = ir , j ∈ Cr } ∪ {r ∈ R : j = ir , i ∈ Cr },

and let Ti j be the set of CPIs that involve xi j , i.e.

Ti j := {t ∈ T : {i, j} ⊂ Ck ∪ C ′
k}.

We have by assumption that

∑

r∈Ri j

λr −
∑

t∈Ti j

λt = 0 (∀{i, j} ∈ Ē). (22)
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Now we modify the CVIs and CPIs in the linear combination, introducing where
necessary the additional vertex u, so as to obtain the desired lifted inequality. We use
the notation Ē+ := Ē(Ṽ : Ṽ ).

For each r ∈ R, we do the following. If ir /∈ S and |Cr ∩ S| = 1, we insert u into
Cr so that the CVI becomes

∑

j∈Cr ∪{u}:{ir , j}∈Ē+
xir j − xir ≤ 0. (23)

If Cr ∩ S = ∅ and ir ∈ S, we sum together the original CVI and the CVI obtained by
replacing ir with u, so that the CVI becomes:

∑

j∈Cr :{ir , j}∈Ē

xir j +
∑

j∈Cr :{u, j}∈Ē+
xu j − xir − xu ≤ 0. (24)

In all other cases, the CVI remains unchanged.
For each t ∈ T , we do the following. If Ct ∩ S = C ′

t ∩ S = ∅, the CPI remains
unchanged. If |Ct ∩ S| = 1 and C ′

t ∩ S = ∅, we insert u into Ct , so that the CPI
becomes:

∑

i∈Ct ∪C ′
t ∪{u}

xi −
∑

{i, j}∈Ē+(Ct ∪{u}:C ′
t )

xi j ≤ 1. (25)

If |C ′
t ∩ S| = 1 and Ct ∩ S = ∅, we insert u into C ′

t analogously. If |Ct ∩ S| =
|C ′

t ∩ S| = 1, we insert u into both Ct and C ′
t , yielding:

∑

i∈Ct ∪C ′
t ∪{u}

xi −
∑

{i, j}∈Ē(Ct :C ′
t )

xi j ≤ 1.

We now show that the linear combination of these modified CVIs and CPIs (using
the same multipliers as before) is the desired lifted inequality. Clearly, the coefficients
for variables not involving u are unchanged, and so is the right hand side β. The
coefficient of xiu , for any i ∈ V \ (S ∪ n(S)), is:

∑

j∈S

⎛

⎝
∑

r∈Ri j

λr −
∑

t∈Ti j

λt

⎞

⎠ ,

which, by Eq. (22), is zero. Finally, the coefficient of xu is:

∑

t∈⋃
i∈S Ti

λt −
∑

r∈R:ir ∈S,Cr ∩S=∅
λr .
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This is equivalent to:

∑

i∈S

⎛

⎝
∑

t∈Ti

λt −
∑

r∈Ri

λr

⎞

⎠ −
∑

{i, j}⊂S

⎛

⎝
∑

r∈Ri j

λr −
∑

t∈Ti j

λt

⎞

⎠ .

By Eqs. (22), the second summation vanishes. By Eqs. (21), the first summation equals∑
i∈S αi , as required. ��

4 Computational experiments

In this section, we turn our attention from theory to computation. In Subsect. 4.1,
we explain how we approximately solve the M(K , K ) relaxation. In Subsect. 4.2,
we give extensive computational results, and compare the upper bound obtained with
some of the other upper bounds that we mentioned in Sect. 2. We will see that the
M(K , K ) relaxation gives a very strong bound in many cases, despite the fact that it
is based on LP rather than SDP. In fact, it is frequently stronger than the Lovász theta
bound.

To our knowledge, the only other paper comparing LP and SDP bounds for the
stable set problem is Balas et al. [1]. One of their experiments, in which regular lift-
and-project cuts were compared with lift-and-project cuts using psd-ness, showed that
imposing psd-ness makes little difference if clique inequalities are included in the
initial LP relaxation. This is in line with our results.

4.1 The algorithm

Recall that the number of CVIs and CPIs depends on the number |�| of maximal
cliques in G. (To be precise, there are n|�| CVIs and |�|(|�|− 1)/2 CPIs.) Since |�|
is typically exponential in n, it is natural to consider using a standard simplex-based
cutting plane algorithm, in which violated CVIs and CPIs are iteratively added to the
LP relaxation. Unfortunately, some difficulties prevent such an approach. First, both
separation problems associated with the CPIs and CVIs are strongly N P-hard [9].
This in itself is not a major drawback, since effective separation heuristics can be
devised. However, we experienced that the cutting plane approach performs very
badly, exhibiting severe primal and dual degeneracy and ‘tailing off’.

A better approach turned out to be the following: construct a large collection of
‘promising’ CVIs and CPIs, and then feed them into an LP solver. After a great
deal of experimentation [9], we found that the following (non-standard) “three-phase”
approach allows one to optimize over M(K , K ) to good precision and in a reasonable
amount of time for many graphs of interest:

1. Clique selection. The first step consists of running the cutting plane algorithm
used in [28] in the original (non-quadratic) space, including only clique inequa-
lities as cutting planes, and collecting all of the maximal cliques generated during
the algorithm. We then build two distinct collections �CVI and �CPI containing
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the cliques whose associated clique inequalities have a small slack (computed at
the final fractional point). The thresholds for the slack (clique_slack_CVI
and clique_slack_CPI, respectively) are parameters in our algorithm. Then,
an inequality pool is constructed including all the CVIs and CPIs corresponding
to the cliques in �CVI and �CPI, respectively.

2. Core selection. In this phase a subset of the CVIs and CPIs stored in the pool
is selected so as to reduce the formulation size without degrading the resulting
upper bound. We construct a Lagrangian relaxation, obtained by dualizing all the
constraints in the pool and keeping only the box constraints in the Lagrangian sub-
problem. The traditional subgradient algorithm is used to improve the Lagrangian
multipliers, but is interrupted when the current value of the Lagrangian dual drops
below the optimal value of the clique relaxation of the previous phase. Then, the
core_size inequalities corresponding to the CVIs and CPIs with the largest
Lagrangian multipliers are loaded into the final formulation.

3. Optimization. An interior-point algorithm is executed to solve the core LP to
optimality. The use of interior-point rather than simplex enables one to avoid
problems with degeneracy and slow convergence.

We also tested the following alternative core selection strategy: solve the Lovász
theta relaxation, yielding an optimal solution matrix Ȳ , and then use CVIs and CPIs
which are near-tight at Ȳ to construct the core. Although this approach worked well
for a few graphs, it was outperformed by the Lagrangian approach. Thus, our preferred
method does not require any SDP tools.

4.2 Computational results

The algorithm was coded in C++ and the experiments run on a 2.0 GHz Pentium with
2 GB RAM. The LP solver in the clique selection phase was ILOG CPLEX 9.1, while
the interior point algorithm in the optimization phase was MOSEK 5.0.0.60.

The test-bed contains all of the graphs from the DIMACS second challenge [16]
with n < 400, available at the web site [5]. There are 34 such instances. It also
includes the uniform random graphs used in Dukanovic and Rendl [7] (downloadable
from [6]), and some very sparse random graphs generated with the same parameters
as those tested in Gruber and Rendl [13]. The graphs in the first two test sets were
complemented, because we are interested in the stability number rather than the clique
number. All instances are unweighted instances, which tend to be the most difficult in
practice. The upper bound obtained by our algorithm is denoted by U BM K K .

Experiment 1: DIMACS benchmark graphs. Table 1 compares U BM K K with an upper
bound obtained by optimising approximately over QSTAB(G) (denoted by U Bclique),
with θ(G), and with the bounds reported in [7] (DR) and [3] (BV). An asterisk in the
DR or BV columns means that results were not reported in the corresponding paper for
that instance. A rectangle is drawn whenever the corresponding entry is the (unique)
best bound.

In ten cases out of 34, θ(G) is the unique best bound. Although the bounds in
[3,7] are theoretically stronger than θ(G), few results are given in [7] and the method
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Table 1 DIMACS graphs: comparison among upper bounds

Graph n |E | α(G) U Bclique θ(G) U BM K K DR BV

brock200_1 200 5,066 21 38.20 27.5 30.25 ∗ 27.98

brock200_2 200 10,024 12 21.53 14.22 16.09 ∗ 17.08

brock200_3 200 7,852 15 27.73 18.82 21.16 ∗ 20.79

brock200_4 200 6,811 17 30.84 21.29 23.80 ∗ 22.8

C.125.9 125 787 34 43.06 37.89 36.53 ∗ *

C.250.9 250 3,141 44 71.50 56.24 59.96 ∗ *

c-fat200-1 200 18,336 12 12.53 12 12 ∗ 14.97

c-fat200-2 200 16,665 24 24 24 24 ∗ 24.08

c-fat200-5 200 11,427 58 66.67 60.34 58 ∗ 58.17

DSJC125.1 125 736 34 43.15 38.39 36.99 ∗ *

DSJC125.5 125 3,891 10 15.6 11.47 11.41 11.4 *

DSJC125.9 125 6,961 4 4.72 4.00 4 4.06 *

mann_a9 45 72 16 18.50 17.47 16.85 ∗ 17.17

mann_a27 378 702 126 135.00 132.76 131.39 ∗ *

gen200_p0.9_44 200 1,990 44 44 44 44 ∗ *

gen200_p0.9_55 200 1,990 55 55 55 55 ∗ *

hamming6-2 64 192 32 32 32 32 ∗ 32

hamming6-4 64 1,312 4 5.33 5.33 4 4 4.54

hamming8-2 256 1,024 128 128 128 128 ∗ 128

hamming8-4 256 11,776 16 16 16 16 ∗ 20.54

johnson8-2-4 28 168 4 4.22 4 4 ∗ 4

johnson8-4-4 70 560 14 14 14 14 ∗ 14

johnson16-2-4 120 1,620 8 8.20 8 8 ∗ 10.26

keller4 171 5,100 11 14.82 14.01 13.17 ∗ 15.41

p_hat300_1 300 33,917 8 15.68 10.1 11.40 ∗ 18.66

p_hat300_2 300 22,922 25 34.01 27 30.00 ∗ 30.1

p_hat300_3 300 11,460 36 54.74 41.16 47.32 ∗ 43.32

san200_0.7-1 200 5,970 30 30 30 30 ∗ 30.7

san200_0.7-2 200 5,970 18 21.14 18 18 ∗ 20.01

san200_0.9-1 200 1,990 70 70 70 70 ∗ 70.54

san200_0.9-2 200 1,990 60 60 60 60 ∗ 60.72

san200_0.9-3 200 1,990 44 45.13 44 44 ∗ 44.4

sanr200_07 200 6,032 18 33.48 23.8 26.12 ∗ 24.97

sanr200_09 200 2,037 42 60.04 49.3 50.73 ∗ 49.31

proposed in [3] frequently failed to compute a bound as good as θ(G), presumably
due to time or memory problems. In six cases, U BM K K is the unique best bound; and
in those cases it improves on θ(G) by a large amount. Notice that all such instances
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apart from c-fat200-5 have at most 35% density. In two other cases (DSJC125.5
and hamming6-4), a slight improvement on θ(G) is obtained by both U BM K K and
DR. In the remaining sixteen cases, α(G) = θ(G) = U BM K K .

The major difficulty for our algorithm comes from the large number of xi j variables,
which limits the size of the core LP solvable by MOSEK. Thus, rather small values
for core_size are sometimes needed, yielding an impairment of the upper bound.
This occurs particularly for brock200_1, C.250.9 and p_hat300-3.

In Table 2, some other computational details are reported: the sizes of the collection
�CVI, �CPI, the total number of CVIs and CPIs, the number of constraints in the core
LP, the time for core selection, the time for LP solving and the total time. In the last
column, we also include the computing times reported in [3]. They were obtained on
a Pentium 4 under Linux with a 2.4 GHz processor and 1GB RAM.

The total time required to compute U BM K K turns out to be remarkably smaller than
that reported in [3] (differences in the computers are not significant). Nevertheless, we
found that a very large number of subgradient iterations were required for effective
core selection in the case of the brock, p_hat and keller4 instances. This is the
reason for the large running times in those cases.

A complete comparison with Balas et al. [1] cannot be done since, in that paper, the
bounds at the root node of the branch-and-bound tree are not reported. However, in 17
cases out of the 21 tested in [1], U BM K K equals the stability number. We found that
in the remaining 4 cases (keller4, C125.9, brock200_2 and p_hat300-1),
the upper bound U Bclique is not significantly improved by the CPLEX disjunctive cuts
(even with the so-called ‘aggressive’ setting). Thus, we conclude that M(K , K ) gives
much stronger bounds than lift-and-project cuts. Of course, it should be borne in mind
that lift-and-project cuts can be easily embedded into a branch-and-bound scheme, as
demonstrated in [1], whereas embedding M(K , K ) within branch-and-bound is likely
to be more difficult.

Experiment 2: uniform random graphs. In our second experiment, we took the ran-
dom graphs used in Dukanovic and Rendl [7]. Since we had to complement them,
graph x .y represent the complement of the graph with n = x and 100 − y density
reported in [7]. Table 3 compares U BM K K with U Bclique, θ(G) and the bound reported
in [7]. The asterisks correspond to instances with memory requirements larger than
2GB.

For n = 100, M(K , K ) is computationally manageable and always returns the best
bound. As the size increases (n ≥ 150), the comparison among relaxations is affected
by the graph density.

In the denser cases (x .90 and x .75), DR is always the stronger bound, being often
slightly better than θ(G); U BM K K in these cases is slightly worse than θ(G).

In the medium density cases (x .50), DR slightly improves on θ(G) for n = 150 but
cannot be computed for n ≥ 200 due to memory limits. In all these cases, U BM K K is
outperformed by θ(G), and the difference is more marked for the larger instances.

In the sparsest cases (x .25, x .10), DR cannot be computed due to memory limits.
On the contrary, U BM K K is competitive. It improves on θ(G) in the case of 150.10
and is still close to θ(G) in the case of 200.10. For 250.10, the core size had to be
reduced, leading to a deterioration in U BM K K .
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Table 2 DIMACS graphs: computational details

Graph |�CVI| |�CPI| CVIs CPIs Core Core sel. LP sol. Total BV
(#) (#) size (#) time time time time

brock200_1 1,035 1,035 202,315 535,095 180,000 13,600 4,070 17,670 28,590

brock200_2 1,018 1,018 195,052 517,653 350,000 24,803 1,698 26,501 67,302

brock200_3 1,076 1,076 208,256 578,350 200,000 20,829 1,557 22,386 51,665

brock200_4 1,104 1,104 214,461 608,856 200,000 20,712 4,650 25,362 43,433

C.125.9 645 645 79,110 207,690 286,800 4 223 227 *

C.250.9 1,531 1,531 378,693 1,171,215 49,000 3,600 5,797 9,397 *

c-fat200-1 300 300 55,164 44,850 34,853 5 6 11 126,103

c-fat200-2 300 300 57,655 44,850 69,043 4 48 52 83,691

c-fat200-5 658 658 129,626 216,153 174,327 6 259 265 44,483

DSJC125.1 623 623 76,448 193,753 270,201 4 270 274 *

DSJC125.5 560 560 66,157 156,520 79,680 235 142 377 *

DSJC125.9 118 118 11,830 6,903 4,661 11 2 13 *

mann_a9 54 54 2,313 1,431 3,744 <1 <1 <1 50

mann_a27 628 628 236,091 196,878 432,969 5 388 393 *

gen200_p0.9_44 1,601 1,601 316,291 1,280,800 80,000 163 442 605 *

gen200_p0.9_55 1,253 1,253 247,464 784,378 80,000 114 640 754 *

hamming6-2 192 192 11,904 18,336 30,240 0 3 3 15

hamming6-4 98 98 5,181 4,753 9,934 <1 4 4 1,416

hamming8-2 1,024 1,024 260,096 523,776 191,232 100 4 104 728

hamming8-4 309 309 74,576 47,586 19,896 602 2,350 2,952 90,169

johnson8-2-4 34 34 782 561 1,343 <1 <1 <1 59

johnson8-4-4 114 114 6,669 6,441 4,042 4 3 7 479

johnson16-2-4 52 52 5,591 1,326 6,917 <1 31 31 3,140

keller4 1,029 1,029 167,728 528,906 650,000 13,676 1,648 15,324 19,319

p_hat300_1 1,673 332 471,567 54,946 200,000 3,500 1,410 4,910 322,287

p_hat300_2 911 911 265,303 414,505 30,000 18,200 6,137 24,337 244,428

p_hat300_3 1,140 1,140 336,003 649,230 30,000 41,643 4,765 46,408 101,995

san200_0.7-1 412 412 76,996 84,666 15,543 10 72 82 31,049

san200_0.7_2 173 173 33,179 14,878 15,543 55 245 300 37,102

san200_0.9-1 1,491 1,491 294,958 110,795 19,221 17 1 18 6,947

san200_0.9-2 925 925 182,893 537,166 19,221 14 2 16 6,977

san200_0.9-3 603 603 114,827 181,503 19,221 13 140 143 12,281

sanr200_07 4,443 1,049 874,433 549,676 200,000 7,400 2,571 9,971 36,576

sanr200_09 1,783 901 352,404 405,450 200,000 3,517 4,966 8,483 9,428

It is well known that improving on θ(G) for random graphs is a rather difficult task
[7]. These results show that U BM K K can give meaningful improvements in the cases
in which M(K , K ) is computationally manageable (see also Table 4).
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Table 3 Random graphs: comparison among upper bounds

Graph n |E| α(G) U Bclique θ(G) U BM K K DR07

100.10 100 490 31 37.27 33.16 31.76 32.34

100.25 100 1,216 17 23.33 19.49 19.03 19.26

100.50 100 2,419 9 13.96 10.82 10.58 10.74

100.75 100 3,710 5 7.45 5.82 5.47 5.80

100.90 100 4,463 4 4.21 4 4 4

150.10 150 1,096 37 49.08 41.99 41.56 *

150.25 150 2,724 19 31.57 24.33 25.25 *

150.50 150 5,510 10 18.40 12.90 13.61 12.82

150.75 150 8,373 6 9.80 6.86 6.86 6.84

150.90 150 10,038 5 5.31 5 5 5

200.10 200 1,958 42 61.44 50.14 51.28 *

200.25 200 4,851 22 39.48 28.68 31.21 *

200.50 200 9,874 11 22.33 14.68 16.57 *

200.75 200 14,801 7 12.00 7.81 8.34 7.78

200.90 200 17,853 4 6.86 4.44 4.66 4.44

250.10 250 2,998 46 73.85 58.06 62.18 *

250.25 250 7,584 23 46.18 31.83 37.20 *

250.50 250 15,457 11 25.99 16.19 19.52 *

250.75 250 23,199 7 14.11 8.53 9.89 8.50

250.90 250 27,976 4 7.77 4.80 5.25 4.80

As for running times, we experienced that, as the graph size increases, a larger
number of subgradient iterations are necessary to select the core LP, yielding larger
total times.

Experiment 3: uniform random graphs with [1, 5]% density. This experiment deals
with very sparse random graphs. Its relevance comes from the fact that these are the
only random graphs for which a significant improvement on θ(G) has been achieved.
Specifically, this was achieved by Gruber and Rendl [13], who added triangle inequal-
ities to the SDP relaxation.

The results are reported in Tables 5 and 6. In the last column, the percentage gap
closed with respect to θ(G) is included. This shows that U BM K K is significantly
stronger than θ(G) on these instances. Notice that in three cases, namely, 170.3, 200.2
and 400.1, U BM K K equals the stability number.

Even if a precise comparison with [13] cannot be conducted, since the graphs
involved are not exactly the same, the percentage gap closed with respect to θ(G) by
the two approaches looks comparable. As for running times, our LP-based approach
seems to be much faster.
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Table 4 Random graphs: computational details

Graph |�CVI| |�CPI| CVIs CPIs Core Core sel. LP sol. Total
(#) (#) size (#) time time time

100.10 433 433 42,306 93,528 135,834 1 91 92

100.25 1,081 1,081 105,220 583,740 500,000 140 224 364

100.50 1,024 1,024 96,790 523,776 80,000 3,360 48 3,408

100.75 1,577 204 140,302 20,706 30,000 1,200 3,181 4,381

100.90 1,109 442 86,965 97,461 5,000 295 1 296

150.10 983 983 145,149 482,653 400,000 100 1,877 1,977

150.25 2,574 1,157 379,182 668,746 700,000 1,047 871 1,918

150.50 1,227 1,227 175,381 752,151 300,000 3,100 423 3,523

150.75 8,419 846 1,206,755 357,435 500,000 4,856 65 4,921

150.90 966 149 119,868 11,026 5,000 3 2 5

200.10 1,690 1,690 333,932 1,427,205 200,000 1,800 13,977 15,777

200.25 1,449 1,449 283,808 1,049,076 210,000 5,200 5,748 10,948

200.50 1,078 1,078 206,821 580,503 200,000 3,000 1,903 4,903

200.75 6,040 533 1,124,114 141,778 700,000 3,000 274 3,274

200.90 3,671 202 643,122 20,301 650,000 4 1,122 1,126

250.10 1,579 1,579 390,583 1,245,831 60,000 11,400 4825 16,225

250.25 1,264 1,264 309,892 798,216 40,000 15,000 7201 22,201

250.50 948 948 228,524 448,878 100,000 16,800 6211 23,011

250.75 3,312 258 775,886 33,153 809,039 7 616 623

250.90 3,935 285 869,360 40,470 909,830 8 180 188

Table 5 Random graphs [1, 5]%: upper bounds and CPU times

Graph n |E| α(G) U Bclique θ(G) U BM K K % gap
closed

150.4 150 459 58 67.50 62.40 60.21 49.77

150.5 150 556 55 62.00 58.01 55.33 89.03

170.3 170 451 70 79.50 73.51 70.00 100.00

200.2 200 420 93 97.50 94.77 93.00 100.00

200.3 200 603 80 89.00 83.63 80.38 89.53

300.2 300 905 121 142.00 128.10 123.80 60.56

350.2 350 1,206 132 156.00 141.94 137.77 41.95

400.1 400 816 187 199.00 191.42 187.00 100.00

In summary, the three experiments show that optimizing over M(K , K ), which
does not theoretically dominate any of the SDP relaxations, yields in several cases
upper bounds which are stronger than those obtained so far with methods based on
SDP.
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Table 6 Random graphs [1, 5]%: computational details

Graph |�CVI| |�CPI| CVIs CPIs Core Core sel. LP sol. Total
(#) (#) size (#) time time time

150.4 515 515 76,169 132,355 208,524 1 556 557

150.5 549 549 81,159 150,426 231,585 1 659 660

170.3 342 342 57,437 58,311 22,000 17 6 23

200.2 284 284 56,220 40,186 23,000 13 2 15

200.3 693 693 137,149 239,778 376,927 3 3,952 3,955

300.2 1,084 1,084 322,977 586,986 190,000 1,000 12,906 13,906

350.2 881 881 306,534 387,640 150,000 1,900 6,535 8,435

400.1 646 646 257,102 208,335 170,000 76 25 101

5 Conclusions

We have explored for the first time, from both theoretical and computational points of
view, the polytope obtained by applying the Lovász–Schrijver M(K , K ) operation to
the clique polytope QSTAB(G). The main theoretical conclusion is that this polytope
(and its projection into the non-quadratic space) satisfies all web and antiweb inequal-
ities, along with various inequalities obtained by sequential lifting. This extends the
projection results given in Laurent et al. [18] and Giandomenico and Letchford [11].
The computational results show that the upper bound on the stability number obtained
by optimising over M(K , K ) is very strong, sometimes even stronger than the best
bounds obtained by SDP-based techniques.

A natural next step would be to attempt to use the CVIs and CPIs within an exact
(branch-and-bound or branch-and-cut) scheme for the stable set problem. However,
for such an approach to be viable, faster methods for (approximately) optimizing
over M(K , K ) will be required. Our computational experience suggests that the most
promising methods would be of Lagrangian type, such as bundle methods.
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