

Leukaemia Section

Mini Review

t(3;4)(p21;q34)

Adriana Zamecnikova

Kuwait Cancer Control Center, Laboratory of Cancer Genetics, Department of Hematology, Shuwaikh, 70653, Kuwait

Published in Atlas Database: August 2007

Online updated version: http://AtlasGeneticsOncology.org/Anomalies/t0304p21q34ID1433.html DOI: 10.4267/2042/38562

This work is licensed under a Creative Commons Attribution-Non-commercial-No Derivative Works 2.0 France Licence. © 2008 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Clinics and pathology

Disease

Myeloid lineage, found in 1 myelodysplastic syndrome (MDS) and 1 Acute Myeloid Leukemia (AML).

Phenotype / cell stem origin

MDS-RA and M1 AML by FAB criteria, a primitive myeloid progenitor is likely to be involved.

Etiology

No known prior exposure.

Epidemiology

Only 2 cases to date, a 69 year old female and a 31 year old male, sex ratio 1M/1F.

Clinics

Elevated WBC (68x10⁹l), 93% blasts in blood, lymphadenopaty, hepatosplenomegaly, high LDH in AML patient.

Cytology

Positive for CD 34, HLDR, CD33, CD68, MPO in AML.

Treatment

Chemotherapy followed by bone marrow transplantation in AML.

Evolution

After the first cycle of therapy, persistent bone marrow infiltration with 11% blasts.

Prognosis

Survival 6 month in MDS, 15 month+ in AML.

Cytogenetics

Cytogenetics morphological

May be misinterpreted as t(3;5) in suboptimal preparations.

Cytogenetics molecular

FISH analysis is recommended to exclude the more frequent t(3;5).

FISH with WCP 3 and 4 and LSI BCL6 and 5q EGR1 probes.

Probes

WCP 3 and 4 probes, locus specific BCl6 and 5q probes.

Additional anomalies

t(3;4)(p21;q34) is part of a complex karyotype in MDS case associated with del(20q), sole abnormality in AML case.

Genes involved and Proteins

Note: 3p21 is a recurrent breakpoint in MDS/AML and t-MDS/t-AML suggesting, 3p21 site is likely to contain a gene (genes) involved in the pathogenesis of t(3;4)(p21;q34). Frequent deletion or allelic loss of band 3p21 is common in solid tumors, indicating the presence of tumor suppressor genes on this chromosome arm. The association among structural chromosome 3 aberrations and fragile sites on 3p may indicate the importance of previous mutagen exposure in the etiology of these diseases.

Although several cancer-related genes have been located to 3p21, no gene has yet been identified to be related with hematological malignancies. One of the candidate genes may be the AF3p21 gene, a novel

fusion partner of the MLL gene described in a patient who had developed therapy-related leukemia with t(3;11)(p21;q23). AF3p21 encodes a protein localized

exclusively in the cell nucleus, suggesting the possibility that AF3p21 protein plays a role in signal transduction in the nucleus.

References

Shi G, Weh HJ, Martensen S, Seeger D, Hossfeld DK. 3p21 is a recurrent treatment-related breakpoint in myelodysplastic syndrome and acute myeloid leukemia. Cytogenet Cell Genet 1996;74:295-299.

Sano K, Hayakawa A, Piao JH, Kosaka Y, Nakamura H. A novel SH3 protein encoded by the AF3p21 gene is fused to MLL in a therapy-related leukemia with t(3;11)(p21;q23). Blood 2000;95:1066-1068.

Hayakawa A, Matsuda Y, Daibata M, Nakamura H, Sano K. Genomic organization, tissue expression, and cellular localization of AF3p21, a fusion partner of MLL in therapy-related leukemia. Genes Chromosomes Cancer 2001;30:364-374.

Liu YC, Ito Y, Hsiao HH, Sashida G, Kodama A, Ohyashiki Jh, Ohyashiji K. Risk factor analysis in myelodysplastic syndrome patients with del(20q): prognosis revisited. Cancer Genet Cytogenet 2006;171:9-16.

Zamecnikova A. t(3;4)(p21;q34) as a sole anomaly in acute myeloid leukemia patient. Atlas Genet Cytogenet Oncol Haematol 2008;12(4).

This article should be referenced as such:

Zamecnikova A. t(3;4)(p21;q34). Atlas Genet Cytogenet Oncol Haematol.2008;12(4):347-348.