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Abstract

In this paper, a capacity allocation problem is discussed based on a more complex supply chain than has been typically

considered in previous quantitative modelling studies. This study analyses an integrated supply chain operation from raw

material purchasing to final product distribution. The aim is to optimize the allocation of capacities among different

facilities and product items. In this paper, a mixed integer programming model with dynamic characteristics is presented

first, and then alternative solution procedures are introduced. The solution procedures include the development of a

decomposition heuristic and an integrated heuristic algorithm. A computation study compares the solution procedures and

uses sensitivity analysis to show that the heuristics work well. Thus, by adequately modelling a more realistic sized supply

chain problem, this study represents an important advance in supply chain modelling research.

r 2007 Elsevier B.V. All rights reserved.

Keywords: Supply chain management; Supply chain modelling and optimization; Strategic capacity allocation; Large-scale mixed integer

programming; Heuristics
1. Introduction

Quantitative modelling for strategic supply chain
planning continues to be a fruitful research area.
The purpose of the modelling is usually to provide
effective decision support for strategic resource
allocation in the longer term, including factors such
as: Selection of suppliers, configuration of manu-
facturers and distributors’ capacities, as well as
allocation of these capacities to products and so
forth. At present, increased world competition is
forcing supply chain companies to reconsider their
capacity allocation strategies, particularly given that
front matter r 2007 Elsevier B.V. All rights reserved
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decisions, such as capacity allocation decisions,
have a significant impact on supply chain perfor-
mance. Given limited raw material supplies and
limited capacities for production, final product
transportation and distribution centres, the capacity
allocation problem determines how best to use these
resources to meet final product demand.

Although quite a few researchers have done
valuable studies regarding strategic supply chain
capacity allocation problems, the majority of the
published research treats each stage of the supply
chain as a separate system, e.g. only the manufac-
turing stage, or production and distribution inte-
gration. Few studies have considered a supply chain
network from raw material procurement to
final product distribution and their interactions.
.
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However, as Park (2005) said ‘‘in order to imple-
ment the integrated planning approach properly, a
company must involve all major planning opera-
tions in model construction and data processing’’.
Thus by including raw material procurement and
final product distribution in the model, this study
addresses a more realistic supply chain problem
than those typically previously discussed in the
literature. In addition, this paper considers the
problem of how to allocate capacity over time
rather than looking at a single planning period. This
is a significant advance over previous approaches
that have considered the raw material purchasing
stage which have focused on a single period, making
significant simplifying assumptions.

The importance of considering a more realistic
supply chain problem has been shown by research-
ers such as Park (2005) who discussed the effective-
ness of integrated analysis for a production and
distribution planning problem. He found that the
integrated planning approach produced more net
profit than the decoupled method for supply chain
planning, and produced a higher demand fill rate. In
other words, the integrated planning methods were
shown to lead to better solutions.

In this paper, a strategic capacity allocation
problem for a complex supply chain operation
process is considered with a series of fixed operation
costs and supply, production, transportation, and
distribution capacity constraints. First, a large-scale
mixed integer programming (MIP) model is for-
mulated to solve a multi-period, multi-product
capacity allocation problem involving multiple
suppliers, multiple production sites and multiple
distribution centres. The model objective is to
maximize the overall profit of the whole supply
chain, and to minimize the costs of raw material
purchasing and inventory, product production,
transportation and distribution, as well as inventory
holding and product shortage, production change-
over, etc. In addition, the model also considers the
dynamic characteristics of production and inven-
tories in different stages of the supply chain.

Given that MIP can only be solved for small
problems due to computational time restrictions,
heuristics are considered to solve the large problems
and two alternative algorithms are compared. The
sensitivity of the capacity and price parameters to
the relative performance of the algorithms is also
addressed.

The remainder of this paper is organized as
follows. Section 2 presents a review of related
literature and further explains the advances in the
approach proposed. In Section 3, the proposed
problem is specified and the mathematical model is
presented. Sections 4 and 5 describe the algorithms
and show the computational results. Sensitivity
analysis results are reported in Section 6. Section 7
presents some results on a comparison study with
Park’s study. Finally, conclusions and future
research directions are given in Section 8.

2. Literature review

Many researchers have made tremendous con-
tributions to capacity allocation methods, but the
majority of the published articles on capacity
allocation have focused on the single-period pro-
blem, or the manufacturing stage rather than the
entire supply chain network. For example, Eppen
et al. (1989) presented a multi-product, multi-plant,
multi-period capacity allocation model. It was
probably one of the earliest successful efforts to
model capacity allocation problems. The authors
presented a stochastic MIP model based on a
scenario planning approach. In this approach, the
authors assumed that the demand was realized
before the production decision is made, and no
inventory is held from one period to the next.
Although this approach has generated a practical
application model, it was limited to a single
manufacturing stage.

To overcome the limitations of considering only a
single manufacturing stage, a number of researchers
have considered the integrated production–distribu-
tion problem. Vidal and Goetschackx (1997) pre-
sented a critical extensive literature review of
strategic production–distribution models. In this
paper, the authors categorized the literature into
four groups: Previous reviews, optimization models,
additional issues for modelling, and case studies. A
particular emphasis of their review was on MIP
models. Thus, they identified the main character-
istics of the MIP models, including the terms
considered in the objective function, the constraints,
and the specific characteristics of the solution
methods and computation experiences.

Since this important review, further examples of
studies addressing the production–distribution pro-
blem have emerged. For example, Dhaenens-Flipo
and Finke (2001) studied a deterministic MIP model
considering multi-products with significant set-ups,
multi-facilities, and multi-periods simultaneously.
The authors implemented a number of numerical
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experiments with different sizes of problems.
Although this study discussed the interactions
between production and distribution activities, the
final model is based on some strict assumptions such
as no transportation and distribution capacity
constrains and so forth. As with all models of this
type, the key limitation is that the raw material
procurement activities are not considered.

More recently, Ryu et al. (2004) addressed bi-
level decision-making problems in the context of
enterprise-wide supply chain optimization with one
level corresponding to a plant planning problem,
and the other one corresponding to a distribution
network problem. This study explored some issues
on decomposition of supply chain planning pro-
blems. Although the authors intend to consider
production and distribution activities simulta-
neously, they just proposed a decoupled linear
programming model, rather than realizing the
integration of the supply chain. Moreover, the raw
material procurement procedure is not combined
into their model. In addition, the authors consid-
ered a single decision making objective, minimiza-
tion of overall cost. This is insufficient at present
given the increase of competition in the market
which has led to the need to include other factors in
the objective such as the demand fill rate or
customer service level. In general, this model was
significantly oversimplified since all fixed cost
factors and logical constraints are ignored.

In a recent paper on supply chain integrated
modelling, Park (2005) presented a method for
integrated production and distribution planning. He
investigated the effectiveness of the integration
through a computational study with the objective
of maximizing the total net profit. This is considered
one of the best production–distribution models in
the literature, because it is a relatively realistic
model considering multiple capacity constraints
within a multi-period planning horizon. Moreover,
the model involves some fixed costs at different
operation stages. Having proposed a MIP model,
Park then presented alternative solutions and
compared them in a computational study. In
addition, sensitivity analysis was carried out on
capacities and fixed costs. However, this study
assumed that the plants have unlimited storage
capacity and the firm can change the fleet size freely
without extra cost, but in real operations, these
assumptions are not often realized. Additionally,
the model did not take changeover cost and
production batch size constraints into account at
the production stage. Moreover, the solution
procedures have some limitations, for example, the
decoupled models do not always give feasible
solutions since they ignore the interactions of
different operation stages. Although the problem
considered a supply chain network configuration
including multi-plants, multi-retailers, multi-items,
and multi-period environment, the key disadvan-
tage is that no raw material procurement activities
were considered.

Whilst there have been a considerable number of
papers that consider the production–distribution
problem, fewer studies have added the integration
of the raw material procurement. Three key excep-
tions are discussed next. Firstly, Jayaraman and
Pirkul (2001) presented a MIP model in which they
noted the raw material input issue to manufacturing
plants with traditional production transportation
and distribution together. However, this is a single-
period model without consideration of set-up times
or costs and changeover costs. In addition, this
paper presented a heuristic algorithm based on
Lagrangean relaxation. The influence of capacity
constraints on the solution was not addressed.

Additionally, Lim and Kim (1999) and Chen and
Wang (1997) both studied the integrated production
and distribution planning problem considering raw
material purchasing. Although the authors intended
to solve a relatively practical integrated supply
chain planning problem, the model was oversimpli-
fied. First, they both formulated the problem as a
single-period linear programming model; second,
their linear programming methods ignored some
key fixed costs; furthermore, raw material and
product inventory are not considered.

In conclusion, whilst there have been some
attempts to consider the integrated supply–produc-
tion–distribution problem in the literature, all of
these have considerable simplifying assumptions.
Thus, the addition of the raw material procurement
activities has not led to an overall improvement in
the realism of the supply chain considered. There-
fore, the model of Park is considered to be the most
realistic supply chain model in the literature to date,
even though it does not include the raw material
procurement activities. In the model presented in
Section 3 below, the major influence is the realism
attained by Park as it assumes a multi-period, multi-
plant, multi-retailer and multi-item environment. It
then makes advances on this model by adding
in the integration of the supplier raw material
procurement problem; and making more realistic
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assumptions regarding storage capacity restrictions
and fleet size, and including changeover costs. In
terms of solution methods, heuristic algorithms and
decomposition algorithms have been studied and
applied extensively in the literatures. In this study,
similar approaches are attempted to those discussed
in Park (2005).

3. Model formulations

3.1. Problem description

In this paper, a supply chain network based on
raw material flow and product flow as depicted in
Fig. 1 will be considered.

This complex supply chain network includes multi-
ple plants, distributions centres and suppliers. Based
on the network, a hypothetical capacity allocation
problem will be considered, where multiple products
can be produced within a planning horizon of 3–5
years. The aim is to determine how capacities should
be allocated optimally to product items in a complete
supply chain, whereby the capacity constraints of
supply, production, transportation and distribution
are considered simultaneously. Here, production
capacity is defined as the available production time
in each plant and each period, and the capacity of
each plant is independent of the others; distribution
and transportation capacity are the maximum volume
available in each transportation fleet and distribution
site in each period, and the supply capacity is the
maximum amount of raw material that can be
provided by each supplier in each period. In addition,
some other factors, such as production changeovers
and minimum production batch size limitations, are
considered. Overall, the study is based on the
following assumptions:
(1)
Supp

Supp

Supp

.

No inventory is held in production sites for all
periods. In other words, all products are
transported to distribution centres in each
Factory 1

Factory 2

Factory J

DC 1

DC K

DC 2

lier 1

lier L

lier 2

.. ......

Fig. 1. Supply chain network structure.
period, and product inventory incurs in dis-
tribution sites at the end of each period.
(2)
 The model considers the demands generated at
each distribution centre independently from
each other.
(3)
 A type of product can be produced in more than
one plant, and each plant can produce at least
one type of product.
(4)
 There is transportation between certain produc-
tion sites and distribution centres, but no
transportation between production sites.
(5)
 The model uses some big time bucket formula-
tions, namely, quarterly periods are considered.
(6)
 The plants usually hold raw material stock to
maintain production.
(7)
 The time lags between procurement, production
and distribution are assumed to be negligible.
This is reasonable if the time bucket is large
compared to those time lags. In our numerical
experiment (Section 5), the time unit is set to 3
months.
3.2. Mathematical model

The notations that will be used to describe the
problem and algorithm are as follows:
(1)
 Indices:
i, index on product, where i ¼ 1, y, I, I is the
number of types of products produced;
j, index on plant, where j ¼ 1, y, J, J is the
number of plants (production sites);
k, index on distribution centre, where k ¼ 1, y,
K, K is the number of distribution centres;
l, index on supplier, where l ¼ 1, y, L, L is the
number of suppliers;
h, index on raw material, where h ¼ 1, y, H, H

is the number of types of raw materials;
t, index on periods of planning, where t ¼ 1, y,
T or t ¼ 1, y, n, npT.
(2)
 Demand parameters:
dikt, demand for product i generated from
distributor k in period t.
(3)
 Capacity parameters:
CSlht, capacity of supplier l for raw material h in
period t (amount of raw material);
CPjt, production capacity of plant j in period t

(available production time);
CDkt, capacity of distribution centre k in period
t (available inventory space);
CTjt, transportation capacity from plant j in
period t (the number of lorries).
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(4)
 Cost parameters:
cfvlhjt, fixed procurement cost of raw material h

from supplier l delivered to plant j in period t;
cvvlhjt, variable procurement cost per unit of
raw material h from supplier l delivered to plant
j in period t;
cfpijt, fixed production cost in plant j for
product i in period t;
cvpijt, variable production cost in plant j per
unit of product i in period t;
cftijkt, fixed cost of transporting product i from
plant j to distribution centre k in period t;
cvtijkt, variable cost of transportation per unit of
product i from plant j to distribution centre k in
period t;
cfsikt, fixed distribution centre operations cost of
product i in distribution centre k in period t;
cvsikt, variable distribution centre operations
cost for per unit of product i in distribution
centre k in period t;
ccojt, average changeover cost of plant j in
period t between two sequential setups;
civikt, holding costs of product i in distribution
centre k at the end of period t;
csit, shortage cost of product i in period t;
rmschjt, inventory cost of raw material h in plant
j in period t.
(5)
 Other parameters:
rih, amount of raw material h needed to produce
one unit of product i;
ptij, processing time per unit of product i in
plant j;
sutij, set-up time of product i in plant j;
upsik, fraction of distribution capacity re-
quired for distributing product i in distribution
centre k;
PLCi, the capacity of each lorry for product i;
MBPi, the minimum production batch size of
product i;
pit, the price of product i in period t;
Gx

ijt, G
y
ijkt, Gu

ikt are large numbers greater than
total demand, and Gz

lhjt is a big number greater
than rih times total demand.
(6)
 Decision variables:
xijt, amount of product i produced in plant j in
period t;
yijkt, amount of product i delivered to distribu-
tion centre k from plant j in period t;
uikt, amount of product i distributed by dis-
tribution centre k in period t;
zljht, amount of the raw material h supplied to
plant j from supplier l in period t;
tikt, unsatisfied demand for product i produced
from distribution centre k in period t;
rmhjt, the inventory amount of raw material h in
plant j in period t;

X ijt ¼

1 if xijt40;

0 if xijt ¼ 0;

(
;

Uikt ¼
1 if uikt40;

0 if uikt ¼ 0;

(

Y ijkt ¼

1 if yijkt40;

0 if yijkt ¼ 0;

(
;

Zlhjt ¼

1 if zlhjt40;

0 if zlhjt ¼ 0;

(

Iikt, inventory amount of product i in distribu-
tion centre k at the end of period t;
zij, a general integer to represent the number of
changeovers.
With respect to the problem defined above, a MIP
model P is formulated
P : max V ¼
XT

t¼1

XI

i¼1

pit

XK

k¼1

ðdikt � tiktÞ

 

�
XI

i¼1

XJ

j¼1

cvpijtxijt þ
XI

i¼1

XJ

j¼1

cfpijtX ijt

 

þ
XI

i¼1

XJ

j¼1

XK

k¼1

cvtijktyijkt

þ
XI

i¼1

XJ

j¼1

XK

k¼1

cftijktY ijkt

þ
XI

i¼1

XK

k¼1

cvsiktuikt þ
XI

i¼1

XK

k¼1

cfsiktUikt

þ
XJ

j¼1

ccojtzjt þ
XJ

j¼1

XI

i¼1

XK

k¼1

civiktI ikt

þ
XI

i¼1

csit

XK

k¼1

tikt

þ
XL

l¼1

XH
h¼1

XJ

j¼1

cvvlhjtzlhjt

þ
XL

l¼1

XH
h¼1

XJ

j¼1

cfvlhjtZlhjt

þ
XH
h¼1

XJ

j¼1

rmschjtrmhjt

!!
ð1Þ
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Subject to
Demand constraints:

Xn

t¼1

uiktX

Xn

t¼1

dikt � 0:95; 8i; k; n ¼ 1; . . . ;T ,

(2a)

uikt ¼ dikt þ I ikt � I ikðt�1Þ � tikt; 8i; k; t, (2b)

I ik0 ¼ 0; 8i; k. (2c)

Logical constraints:

XK

k¼1

yijkt ¼ xijt; 8i; j; t, (3a)

XJ

j¼1

yijkt ¼ uikt; 8i; k; t, (3b)

Xn

t¼1

XL

l¼1

zlhjtX

Xn

t¼1

XI

i¼1

xijtrih; 8h; j; n ¼ 1; . . . ;T ,

(3c)

XL

l¼1

zlhjt þ rmhjðt�1ÞX

XI

i¼1

rihxijt þ rmhjt; 8h; j; t,

(3d)

rmhj0 ¼ 0; 8h; j. (3e)

Production batch size constraints:

xijtXMBPi � X ijt; 8i; j; t. (4)

Capacity constraints:

XI

i¼1

ðptijxijt þ sutijX ijtÞpCPjt; 8j; t, (5a)

XI

i¼1

uikt � upsikpCDkt; 8k; t, (5b)

XI

i¼1

XK

k¼1

yijkt

PLCi

� �
pCTjt; 8j; t, (5c)

XJ

j¼1

zlhjtpCSlht; 8l; h; t. (5d)

Binary constraints:

xijtpGx
ijtX ijt; 8i; j; t, (6a)

yijktpG
y
ijtY ijkt; 8i; j; k; t, (6b)
uiktpGu
iktUikt; 8i; k; t, (6c)

zlhjtpGz
lhjtZlhjt; 8l; h; j; t, (6d)

XI

i¼1

X ijt � 1pzjt; 8j; t. (6e)

Bounds:

xijt; yijkt; uikt; zlhjt; rmhjt; I ikt; tiktX0; 8i; j; k; l; h; t,

(7a)

X ijt;Y ijkt;Uikt;ZlhjtX0; 8i; j; k; l; h; t, (7b)

zjtX0; and integer. (7c)

The objective function (1) maximizes the total
profit of the supply chain by maximizing the total
revenue minus the total costs including the fixed and
variable costs of production, raw material procure-
ment and inventory, as well as product transporta-
tion, distribution and inventory. Constraints (2a)
guarantee a minimum accumulated demand fill rate
of 95% over the whole planning horizon. Con-
straints (2b) and (2c) ensure the distribution amount
equals to demand minus any shortages taking into
account inventory level. Constraints (3a) guarantee
no inventory at the production sites. Constraints
(3b) maintain a sufficient raw material supply over
the whole planning horizon. Constraints (3c) and
(3d) ensure that sufficient raw materials are avail-
able in each period. Constraints (4) ensure that the
production amount is greater than a minimum
batch size limitation. Constraints (5a)–(5d) are a
group of capacity limitations including supply,
production, distribution and final product trans-
portation. Constraints (6a)–(6d) are binary con-
straints, (6e) are the general integer constraints for
changeover variables. Constraints (7a)–(7c) define
the variable bounds.

4. Solution procedure

The use of conventional tools for solving the MIP
problem is limited due to the complexity of the
problem and the large number of variables and
constraints, particularly for realistically sized pro-
blems. Indeed, even for the simpler models studied
in the literature, heuristic algorithms have been
applied extensively. For example, Jayaraman and
Pirkul (2001) outlined a heuristic solution procedure
that utilizes the linear programming technique as



ARTICLE IN PRESS
H. Li et al. / Int. J. Production Economics 121 (2009) 505–518 511
well as results from a Lagrangean relaxation
procedure. However, there is no standard heuristic
algorithm construction framework for diverse
mathematical programming problems. A heuristic
procedure is often problem or decision objective
oriented. With regard to the MIP model P described
above, two specific heuristic algorithms are pre-
sented in Sections 4.2 and 4.3 below to solve the
problem within an acceptable computation time and
without too much loss of optimality. Before we
present the two heuristic algorithms, in subsection
3.4.1, the integrated Lagrangian relaxation method
is first used to obtain upper bound on the objective
value of the original problems. The upper bound
will be used to assess the quality of the heuristic
solutions.
4.1. Upper bound

Lagrangean relaxation is a tool that is increas-
ingly being used in large-scale mathematical pro-
gramming applications (Fisher, 1985). It provides
an upper bound of the objective value for an
original maximizing problem. The Lagrangean
relaxation method works by relaxing the constraints
that cause the computational difficulty, and adding
them into the objective function with corresponding
Lagrangean multipliers. On the model P, computa-
tion experiments relaxing the binary constraints and
the capacity constraints, respectively, have been
tried; the results indicate that relaxing capacity
constraints gave the better solutions. Thus, the
algorithm will be constructed by relaxing all
capacity constraints (5a)–(5d), and an integrated
Lagrangean relaxation model LIP is formulated
below

max V� ¼ Vþ
XJ

j¼1

ajt

XI

i¼1

ðptijxijt þ sutijX ijtÞ � CPjt

 !

þ
XK

k¼1

bkt

XI

i¼1

upsikuikt � CDkt

 !

þ
XJ

j¼1

ljt

XI

i¼1

XK

k¼1

yijkt

PLCi

� CTjt

 !

þ
XL

l¼1

XH
h¼1

glht

XJ

j¼1

zlhjt � CSlht

 !
ð8Þ

Subject to (2a)–(2c), (3a)–(3d), (4), (6a)–(6e),
(7a)–(7c), where ajtX0, bktX0, ljtX0, glhtX0 are
Lagrangean multipliers corresponding to the original
constraints (5a)–(5d). In addition, V is the objective
function from equation (1).

The relaxations reduce the numbers of constraints
dramatically. Thus, even very large problems can be
solved effectively. However, to determine the
optimal Lagrangean multiplier is often a difficult
task. Subgradient optimization method is often
effective to obtain a reasonably good set of multi-
pliers (Larsson et al., 1996), and therefore used here.
The steps of the algorithm, numbered 1, are
described below (refer to Tragantalerngsak et al.,
1997).

Step 1.1: Initialize the Problem LIP with Lagran-
gean multipliers ajt, bkt, ljt, glht ¼ 0.

Step 1.2: Solve the Lagrangean problem LIP
using CPLEX and find a feasible solution.

Step 1.3: Calculate subgradients for each relaxed
constraints. The subgradients of production capa-
city are sp ¼ fsjtjsjt ¼

PI
i¼1xijtptjt þ

PI
i¼1X ijtsutjt�

CPjtg. Similarly, find the transportation capacity,
distribution capacity and supply capacity subgra-
dients st, sd, ss.

Step 1.4: If any one of the following terms holds
(1) jspj2 þ jstj2 þ jsdj2 þ jssj2 ¼ 0; (2) multipliers
are no longer changing; (3) the number of iterations
is over 200, stop, and then output the objective
value V* and variable solutions. Otherwise, go to
Step 1.6.

Step 1.5: Computation of step size y ¼ rðZUB�

ZLBÞ=
PT

t¼1

PJ
j¼1s

2
jt, r ¼ 2.where ZUB is an estimated

value which is greater than the optimal objective
value, and ZLB is the current objective value of LIP
from Step 1.2.

Step 1.6: Update the Lagrangean multipliers. Let

ajt ¼
ajt þ s�jty if sjt40;

0 if sjtp0:

(

Similarly, update bkt, ljt, glht, then go to Step 1.2.
Algorithm 1 always gives a same or better upper

bound than the exact relaxation solutions. How-
ever, since the Lagrangean algorithm cannot guar-
antee the solution to be feasible for the original
problem. Therefore, usually, a complete Lagran-
gean relaxation algorithm should include a step to
adjust the solutions to be feasible. However, given
the concern of computational complexity, and the
large number of the Lagrangean multipliers in
problem LIP it is impossible to adjust the final
solutions. Thus, the solution found using this
approach gives an upper bound rather than an
optimum solution to the problem.
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4.2. A decomposition heuristic algorithm based on

Lagrangean relaxation

Since decomposition methods often help split a
super large problem into a few relatively small sub-
problems and reduce the computation complexity
dramatically, some algorithms that combine mod-
ern heuristics and decomposition methods continue
to be effective and prevalent. For example, the decom-
position method based on Lagrangean relaxation has
been applied successfully to solve a large scale MIP
problem (Jayaraman and Pirkul, 2001).

Observing the characteristics of the problem LIP,
it is easy to split the model LIP into the following
submodels using surrogates and relaxations: Pro-
duction stage model, distribution stage model and
supply stage model below.

4.2.1. Production stage submodel DMp

max Vp ¼
XT

t¼1

XI

i¼1

pit

XK

k¼1

dikt

 

�
XI

i¼1

XJ

j¼1

cvpijtxijt

 

þ
XI

i¼1

XJ

j¼1

cfpijtX ijt þ
XJ

j¼1

ccojtzjt

!!

ð9Þ

Subject toXn

t¼1

XJ

j¼1

xijtX

Xn

t¼1

XK

k¼1

dikt � 0:95,

8i; t; n ¼ 1; 2; . . . ;T ð10Þ

and (4), (5a), (6a), (6e), (7a)–(7c), where constraints
(10) are the surrogate constraints of constraints
(2a). Here, a 95% of accumulated demand fill rate is
required as a minimum for each product in all
distribution centres.

4.2.2. Distribution stage submodel DMd

min Vd ¼
XT

t¼1

XI

i¼1

XJ

j¼1

XK

k¼1

XI

i¼1

XJ

j¼1

XK

k¼1

cvtijktyijkt

 

þ
XI

i¼1

XJ

j¼1

XK

k¼1

cftijktY ijkt

þ
XI

i¼1

XK

k¼1

cvsiktuikt
þ
XI

i¼1

XK

k¼1

cfsiktUikt

þ
XI

i¼1

XK

k¼1

civiktI ikt

þ
XI

i¼1

pit

XK

k¼1

tikt

þ
XI

i¼1

ðcsit þ pitÞ
XK

k¼1

tikt

þ
XK

k¼1

bkt

XI

i¼1

upsikuikt � CDkt

 !!
ð11Þ

Subject to (2b)–(2c), (3a), (3b), (5b), (5c), (6b), (6d),
(7a)–(7c).

In this submodel, distribution capacity con-
straints are relaxed, since distribution capacity
constraints are the reason that there are no feasible
solutions for the fixed production plan generated
from the production stage submodel, while the plant
is often in charge of the purchase of transportation
capacity. Therefore, relaxing distribution capacity
provides the possibility to find a feasible solution for
the original MIP model based on the predetermined
production plan from production stage submodel.
4.2.3. Raw material supply submodel DMs:

min Vs ¼
XT

t¼1

XL

l¼1

XH
h¼1

XJ

j¼1

cvvlhjtzlhjt

 

þ
XL

l¼1

XH
h¼1

XJ

j¼1

cfvlhjtZlhjt

þ
XH
h¼1

XJ

j¼1

rmschjtrmhjt

!
ð12Þ

Subject to (3c)–(3d), (5d), (6c), and (7a)–(7c).
Submodel DMp is a plant production planning

model, DMd is a transportation and distribution
planning model and DMs is a raw material
procurement planning model. According to the
propositions of the Lagrangean relaxation method,
the profit of the original problem P will be obtained
by solving the submodels individually. Assume that
the available best objective value of these submodels
are Vp, Vd(l) and Vs, respectively. Then, the overall
objective value of model P can be calculated as
V ¼ Vp�Vd(l)�Vs.

The following algorithm, numbered 2, is used to
solve the decomposition model.
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Step 2.1: Initialize the problem DMp with the
necessary parameters, and solve the problem exactly,
output the solutions xijt and objective value Vp;

Step 2.2: Initialize the problem DMd with the
necessary input parameters including xijt;

Step 2.3: Initialize the Lagrangean multipliers ljt,
and solve the problem;

Step 2.4: Apply the subgradient optimization
procedure (see above algorithm 1);

Step 2.5: Adjust the solutions to be feasible;
If there exists any subgradients sdjt40, transfer
the excess production to an other plant or
period with sdjto0 and the least distribution costs
cvvijkt, so that sdjto0 for all plants and periods,
and output the solutions of objective value and
variables;

Step 2.6: Determine the production plan accord-
ing to the solutions from Step 2.5, output xijt and
calculate the Vd;

Step 2.7: Solve the models DMs exactly. xijt will
be the input data. Output all variable solutions and
objective value Vs;

Step 2.8: Calculate the overall profit V ¼ Vp
�Vd(l)�Vs, Stop.

The solution from algorithm 2 provides a feasible
solution to the model P. This also provides a lower
bound to the original problem. Although the
computational results indicate that the algorithm
is efficient, the decomposition algorithm usually
loses some objective profit since it ignores the
interactions among different operations facilities
and periods. Moreover, the performance of
Lagrangean relaxation is not always stable, and
the solution often fluctuates dramatically given the
selection of the initial Lagrangean multipliers
and the determination of step size. Additionally,
since the decoupled models ignore the interaction
among the different operation stages, it often causes
unnecessary shortage in some distribution centres,
or unnecessary inventory in some other distribution
centres. Therefore, an integrated heuristic approach
is developed as described below, in order to try to
improve the solution further.

4.3. An integrated heuristic algorithm

Bradley and Arntzen (1999) suggested that
simultaneous consideration of capacity, production,
and inventory decisions yields superior financial
results. Thus, concerning the original problem P, an
integrated heuristic algorithm, numbered 3, is
described below.
Step 3.1: Solve a simplified problem IHA below
derived from the original problem.

max V ¼
XT

t¼1
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i¼1

pit
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k¼1

ðdikt � tiktÞ
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þ
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þ
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!!
ð13Þ

Subject to

XI

i¼1

ptij
XK

k¼1

yijkt

 !
þ
XI

i¼1

sutijpCPjt; 8j; t, (14)

Xn

t¼1

XJ

j¼1

XI

i¼1

XK

k¼1

yijktrih

 !
p
Xn

t¼1

XL

l¼1

CSlht,

8h; n ¼ 1; . . . ;T ð15Þ

and (2a)–(2c), (5b), (5c), (6b), (6c), and (7a)–(7c).
Here, constraints (14) are transformations of the
original constraints (5a), such that set-up time is
always considered for each product, in each plant
and each period regardless whether or not there is a
set-up for product i. Constraints (15) are surrogate
constraints of (5d) and (3c). Apparently, the
problem IHA can be solved easily due to the
reduction of constraints and variables. Output
solutions for variables yijkt, uikt,

Step 3.2: Based on the logical constraints (3a),
calculate the variables xijt ¼

PK
k¼1yijkt.

Step 3.3: Judge whether solutions of the variables
xijt satisfy constraints (4) or not. If there exists
xijt�MBPi�Xijto0, adjust the xijt to equal to the
minimum production batch. If there are sufficient
excess transportation capacity and distribution
capacity in plant j and DC k, the corresponding
yijkt with the minimum variable distribution costs
will be increased and the amount increased equals to
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(xijt�MBPi�Xijt) for each product, plant and
period; otherwise, reduce the xijt to 0, and transform
the amount of xijt to the other plant with sufficient
excess production and transportation capacity, and
the corresponding yijkt will be adjusted.

Step 3.4: Calculate the distribution, inventory and
shortage amount of product uikt, Iikt and tikt

according to the adjusted production and transpor-
tation plan.

Step 3.5: Assign raw material procurement
according to xijt. Sort variable supply cost cvvlhjt

in ascending order by suppliers for each plant, each
raw material item and each period, and then set
procurement plan based on the order considering
the capacity constraints of suppliers.

Step 3.6: Adjust the raw material procurement
plan. Observing the raw material inventory
rmhjt40, if existed rmschjtrmhjt4cfvlhj(t+1) and
supplier l still has excess capacity on raw material
h in period t, transit the stock to be ordered in next
period.

Step 3.7: Calculate the total profit and output the
solutions on all variables, stop.

5. Computational study

The two heuristic algorithms were coded in
VC++.net and compared using some test pro-
blems categorized into three sizes of small, medium
and large. The problem features are described in
Table 1.

In practice, some cost and other data can be
collected from the real operations, and others could
Table 1

The configuration and scale features of example problems

Problem No. of

products

No. of

plants

No. of

suppliers

No. of

DCs

No. of

periods

S1 2 3 3 3 4

S2 4 3 3 3 4

S3 2 5 4 4 4

S4 4 5 4 4 4

M1 10 3 3 3 4

M2 20 3 3 3 4

M3 10 5 4 4 4

M4 20 5 4 4 4

L1 50 3 3 3 4

L2 100 3 3 3 4

L3 50 5 4 4 4

L4 100 5 4 4 4
be estimated by practitioners. In this paper, we
investigate the general performance of the model
and algorithms, and thus, a large quantity of
hypothetical data are applied. For example, demand
data in each period and each distribution centre are
generated from a uniform distribution U(15, 25).
Capacity of production facility, CPjt, is generated
from a uniform distribution U(pc1, pc2) where pc1
and pc2 are estimated according to the total demand
of all products in all distribution centres in each
period and product processing time and set-up time.
Similarly, other capacities are generated by corre-
sponding uniform distributions such as CDkt�

U(dc1, dc2), CTjt�U(tc1, tc2) and CSlht�U(sc1,
sc2). All costs and other parameters such as unit
processing and set-up time are also generated from a
series of uniform distribution functions. Finally, the
price parameters are generated based on the total
cost, including costs for raw materials procurement,
product production as well as transportation and
distribution. The prices for each product in each
period are generated from a uniform distribution
function pit�U(pl, ph). (pl, ph) is a possible price
interval of a product estimated based on the total
cost from raw material consumption to production,
transportation and distribution. For the sake of
brevity, the real values of the parameters are
omitted.

Tests are implemented first on a PC with a
Pentium IV processor and solved using CPLEX9.1.
The results indicated that CPLEX performs well for
small size problems. However, for medium or large
size problems, it often took excessive time and
No. of raw

materials

No. of

constraints

No. of

variables

No. of integer

variables

2 608 721 336

2 928 1137 528

4 1348 1777 832

4 1852 2473 1160

2 1888 2385 1104

2 3488 4465 2064

4 3364 4561 2144

4 5884 8041 3784

2 8288 10705 4944

2 16288 21105 9744

4 13444 18481 8704

4 26044 35881 16904
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Table 2

Solution comparison of integrated heuristic algorithm and decomposition heuristic algorithm

Problems Upper

bounds

Optimal

profit

CPU

time (s)

Decomposition

heuristic profit

Gap 1a

(%) (4)

Gap 2b

(%) (5)

Integrated

heuristics

profit

Gap 3c

(%) (7)

Gap 4d

(%) (8)

Gap5e

(%) (9)

(1) (2) (3) ((1)�(3))/

(1)

((2)�(3))/

(2)

(6) (1)�(6))/

(1)

((2)�(6))/

(2)

((6)�(3))/

(6)

S1 1194 260 1193 220 65 1178 754 1.30 1.21 1192 764 0.13 0.04 1.17

S2 2548 220 2545 390 21 2516 649 1.24 1.13 2542 940 0.21 0.10 1.03

S3 1663 270 1659 640 417 1639 011 1.46 1.24 1658 303 0.30 0.08 1.16

S4 3172 980 3162 970 1736 3128 332 1.41 1.10 3159 566 0.42 0.11 0.99

M1 6546 090 6418 958 1.94 6521 420 0.38 1.57

M2 13344 400 13115 624 1.71 13287 365 0.43 1.29

M3 8640 430 8509 040 1.52 8602 061 0.44 1.08

M4 17364 000 17025 814 1.95 17259 748 0.60 1.36

L1 33298 900 32718 096 1.74 33205 314 0.28 1.47

L2 60511 400 59452 193 1.75 60228 230 0.47 1.29

L3 39776 600 39006 021 1.94 39598 837 0.45 1.50

L4 79013 000 77390 680 2.05 78724 552 0.37 1.69

Average 1.67 1.17 0.37 0.08 1.30

aThe error rate between the decomposition solution and the upper bound.
bThe error rate between the decomposition solution and the optimal value.
cThe error rate between the integrated solution and the upper bound.
dThe error rate between the integrated solution and the optimal solution.
eThe profit increase rate of the integrated algorithm compared with the decomposition algorithm.
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sometimes ran out of memory. Therefore, the two
heuristic algorithms described in Sections 4.2 and
4.3 are applied and compared below. In addition,
upper bounds of the objective value are also
calculated by using the integrated Lagrangean
relaxation method for all problems.

Firstly, the two heuristic algorithms were used to
solve the small size test problems, and the results
were compared with those obtained by CPLEX and
the upper bounds of the objective value. The
detailed computational results are presented in
Table 2. The computation indicates that CPLEX
solves the problems optimally, but the computation
is time consuming, even for these small size
problems. However, the decomposition heuristic
algorithm and the integrated heuristic algorithm
solve the problems within a very short CPU time.
Moreover, the integrated solutions are always better
than the decomposition ones. The average differ-
ences between the two kinds of heuristic solutions
and optimal solution are 1.17% and 0.08%,
respectively.

Furthermore, the medium and large problems
were solved using the decomposition and integrated
heuristic algorithm, respectively, and the results are
presented in Table 2 above. If we compare the
solutions of the heuristic algorithms with the upper
bounds, the average gap is just 1.67% and 0.37%.
Therefore, the solution results of both heuristics are
acceptable within a short computational time.

However, the integrated algorithm usually gives a
better objective value than the decomposition
approach. Observing the maximum profits of the
decomposition and integrated heuristics, we found
the average gap between them is 1.30%. The
integrated algorithm is more flexible to adjust the
operations plan than the decomposition algorithm.
Moreover, the decomposition solutions often
include larger shortages and inventories, and result
in the profit decreasing dramatically. In contrast,
the integrated heuristic algorithm limits the short-
age to be less than 5%.
6. Sensitivity analysis

We investigate the robustness of solutions on
different capacity levels. Additionally, the price
affects revenue significantly, thereby affecting the
capacity allocation. Thus, a sensitivity analysis
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Profit increase rate fluctuations on Capacity
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Fig. 3. A comparison of the decomposition and integrated

heuristics for different capacity levels.
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considering capacity factors and price factors is
carried out.

6.1. The sensitivity analysis on capacity

Firstly, with respect to the individual capacities,
we solve the problems using CPLEX and the other
two heuristic algorithms considering different capa-
city levels. Each capacity varies from 80% of the
original value to infinite/excess capacity. Then, the
gaps between the integrated heuristic solutions and
the CPLEX optimal solutions are calculated for
small sized problems. Furthermore, the average gap
for each kind of capacity is described below as the
‘‘average error rate’’. The results indicate that the
integrated heuristic algorithm always provides good
solutions with very low average error rate under the
different capacity levels (see Fig. 2).

Secondly, the gaps between the decomposition
heuristic and integrated heuristic solutions are
calculated, and the average gap for all test problems
on each type of capacity is denoted below as
‘‘average profit increase rate’’. The variation is
presented in Fig. 3. The analysis showed that the
integrated heuristic algorithm always provides
better solutions than decomposition algorithm does
under each capacity level on each individual
capacity.

The analysis also indicates that the different
algorithms have their special advantages. For
example, (1) for the CPLEX solution, the tighter
the capacity constraints are, the longer the compu-
tation time is; (2) the decomposition algorithm
usually allows slightly tighter capacity constraints
than the integrated heuristics does by sacrificing
some demand fill rate; and (3) the integrated
Sensitivity analysis diagram of average error rate on 
individual capacity
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the variation of capacities.
heuristic algorithm is more time consuming than
decomposition heuristics, especially to the very large
problem.

6.2. The sensitivity analysis on price

Since the price always impacts the profit sig-
nificantly, it is necessary to discuss the influence of
price on the solutions of the model for the
decomposition heuristic algorithm and the inte-
grated heuristic algorithm. Here, we solved the test
problems in Table 1 with six different price intervals
from the lowest price level interval [1000, 1500] to
the highest price level interval of [1500, 2000], and
calculate the average profit increase rates, where the
profit increase rate is the ratio of the difference
between the decomposed profit and the integrated
profit and the integrated profit for each instance.
The average profit increase rates are the average
values of the profit increase rate of the all instances
at each price level.

The results indicate that all solutions from
different algorithms still satisfy the relationship
found in the Section 5, that is, the integrated
algorithm gave better solutions than the decom-
position algorithm. In addition, the profit increase
rate between the integrated heuristics and the
decomposition heuristics will decrease with the
increase of the price (see Fig. 4). In such a
complicated model, many reasons could cause this
result. At this stage, we only present the numerical
results, and did not address the reasons in detail.
Potentially, this might be caused by different
shortage levels in the decomposition solutions and
the integrated solutions at the same price. For
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example, at a lower price, the decomposition
algorithm solution is more likely to include a
shortage than the integrated algorithm since the
price level only impacts the production stage
decision. With the increase of the price, both
algorithms opt to satisfy demands completely due
to the higher profit margin.

Although the average profit increase rate in-
creases with the reduction of the price, it continues
to be between 1% and 5%. With such a large and
complicated mathematical model, it is likely that an
even larger gap of 5% would be acceptable in
practice. Therefore, it is concluded that both
algorithms give good solutions although the inte-
grated heuristic always performs better.

7. Comparison with adapted version of Park’s model

Park studied an integrated production and
distribution planning problem without the consid-
eration of raw material procurement activities. He
tested the approach using a number of hypothetical
The sensitivity analysis on price
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heuristics for different price levels.

Table 3

The structure of the test problems

Problem Integrated capacity allocation for complex supply chain

Production–distribution planning

Product item No. of plants No. of DCs

S1 2 2 5

S2 3 2 5

S3 2 2 8

S4 2 2 10

S5 3 2 8

S6 2 2 12

S7 3 2 10
test problems. We adapted those test problems,
supplemented with two suppliers and two types of
raw material, to give seven new small sized
instances, S1–S7 (see Table 3 for the instance
features).

The purpose of the comparison study is to verify
that the integrated solutions considering the whole
supply chain from raw material supply to final
product distribution are always better than the
solutions from solving the production–distribution
problem and raw material procurement separately.
The two stage decoupled model is reformulated by
taking the relevant supply activities out of the model
P to fit Park’s problem network, called production
distribution submodel and raw material procure-
ment submodel.

For the test problems, both the integrated
solution and the decoupled solutions are found
using Cplex. For two instances, S5 and S7, the
decoupled solutions are not feasible. It turns out
that for these instances, the production–distribution
part of the solution determined cannot be achieved
by the raw material procurement submodel because
of material shortages. To be able to judge the
quality of the decoupled solution aside from this
material shortage, we solved the raw material
procurement submodel with sufficient material
available. The profits for the integrated solution
and the decoupled solutions are compared in
Table 4.

The results in Table 4 show that the optimal
integrated solution is always better than the optimal
decoupled solution, even when we allow additional
capacity in the decoupled approach to obtain a
feasible solution.
Supply planning

No. of periods No. of suppliers Raw material item

5 2 2

5 2 2

5 2 2

5 2 2

5 2 2

5 2 2

5 2 2
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Table 4

Comparison of exact solutions for the integrated and decoupled approach for small size problems

Problems Integrated profit Decoupled Gap (D�A)/A (%)

Prod-Dis profit Sup cost Total profit

A B C D ¼ B�C

S1 1671 860 1685 090 49274 1635 816 2.16

S2 2415 610 2458 750 73868 2384 882 1.27

S3 2668 710 2661 200 90358 2570 842 3.67

S4 3443 740 3364 510 71207 3293 303 4.37

S5 3851 780 3868 060 Infeasible N/A N/A

S5# 3853 720 3868 060 152236 3715 824 3.58

S6 3995 360 3879 830 103987 3775 843 5.49

S7 4851 850 4867 760 Infeasible N/A N/A

S7# 4956 550 4867 760 130260 4737 500 4.42
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We also tested a number of medium and large
sized instances, using a similar method to that used
for the small sized problems. The results indicated
that Cplex is no longer effective, even for the
production–distribution planning submodel of the
decoupled approach. Instead, we determine an
integrated solution using the integrated heuristic
(see Section 4.3) algorithm. However, using this
method, the decoupled solution is infeasible for
most problems. Hence, no comparison could be
made and the results are omitted.
8. Conclusions

Strategic supply chain planning research for real
world problems continues to be an active research
area. This study solves a complicated integrated
capacity allocation problem for a complicated
supply chain. Multiple capacity constraint factors
and fixed costs are taken into account in the model.
The correspondent heuristic algorithms are efficient
and give very good solutions within an acceptable
computation time and with an acceptable error rate.
A comparison research between this study and an
adapted version of Park’s model is carried out. It
indicates that the integrated planning approach for
a complete supply chain always presents better
solution than the decoupled planning method.
Future research also could extend the model and
algorithms to consider the multi-production line in
all plants. Furthermore, capacity expansion deci-
sions could be considered. In addition, demand
uncertainty is an interesting topic which warrants
further study in this context.
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