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Résuḿe :
Dans cette communication, on propose un algorithme basé sur la techniqueLeast Angle Regression(LAR) pour construire
une repŕesentation parchaos polynomial creuxde la ŕeponse d’un mod̀ele ḿecanique dont les param̀etres d’entŕee sont
aléatoires. Le plan d’exṕeriences est automatiquement enrichi de sorteà éviter les probl̀emes se surapprentissage. On
obtient au final une représentation ne comportant qu’un faible nombre de termes non nuls, qui peuvent̂etre estiḿes au
moyen d’un nombre réduit d’́evaluations du mod̀ele. L’algorithme est appliqúe au calcul des moments statistiques du
tassement d’une fondation sur un sol dont le module d’Young est mod́elisé par un champ aléatoire.

Abstract :
A method is proposed to build up a sparse polynomial chaos (PC) expansion of a mechanical model whose input pa-
rameters are random. In this respect, an adaptive algorithmbased onLeast Angle Regression(LAR) is described for
automatically detecting the significant coefficients of thePC expansion. The experimental design is automatically enri-
ched in order to avoid overfitting problems. Eventually the coefficients of the resulting sparse PC approximation may be
computed by means of a relatively small number of possibly costly model evaluations, using a non intrusive regression
scheme. The method is illustrated by the moment analysis of the settlement of a foundation on a soil layer whose Young’s
modulus is a random field.

Mots clefs : Sparsity-of-effects principle, sparse polynomial chaos expansion, adaptive Least Angle
Regression

1 Introduction
Polynomial chaos (PC) expansions allow one to represent explicitly the random response of a mechanical
system whose input parameters are modelled by random variables. The PC coefficients may be efficiently
computed using non intrusive techniques such as projection[1] or regression [2]. However, the required number
of model evaluations (i.e.the computational cost) increases with the PC size, which itself dramatically increases
with the number of input variables when the common truncation scheme of the PC expansion is applied (i.e.
retain all the multivariate polynomials of total degree notgreater than a prescribedp). To circumvent this
problem, a truncation strategy based on the use ofq-norms with0 < q < 1 is proposed. It is motivated
by the so-calledsparsity-of-effects principle[3], which states that most models are principally governedby
main effects and low-order interactions. The related truncated PC expansions contain a low number of likely
important terms compared to the full representation.
Using these truncation strategies, an adaptive algorithm based onLeast Angle Regression(LAR) [4] is proposed
in order to retain progressively a small number of significantPC coefficients, leading to asparsePC represen-
tation. Beside the adaptivity in terms of PC basis, the experimental design is systematically complemented
such that the overfitting phenomenon is avoided.

2 Polynomial chaos expansion of the model response

2.1 Mathematical framework
Consider a mechanical system described by a numerical modelM which can be analytical or more generally
algorithmic (e.g.a finite element model). Suppose that this model hasM uncertain input parameters which
are represented byindependentrandom variables(X1, . . . , XM ) gathered in a random vectorX of prescribed
joint probability density functionfX(x). Hence the model response denoted byY = M(X) is also random.
For the sake of simplicity,Y is assumed to be scalar throughout the paper (in case of a vector responseY , the
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following derivations hold componentwise). Provided that the random variableY has a finite variance, it may
be recast as follows [5] :

Y = M(X) =
∑

α∈NM

aαψα(X) (1)

This expansion is referred to as thepolynomial chaos(PC) representationof Y . Theaα’s are unknown deter-
ministic coefficients and theψα’s are multivariate polynomials which are orthonormal withrespect to the joint
PDFfX of the input random vectorX, i.e.E [ψα(X)ψβ(X)] = 1 if α = β and 0 otherwise. For instance, if
X is a standard normal random vector, theψα are normalized multivariate Hermite polynomials.

2.2 Estimation of the polynomial chaos coefficients
The PC coefficients can be estimated using a non intrusive regression scheme [2, 6]. This method requires the
choice of a truncation of the PCab initio, i.e. a non empty finite setA = {α0, . . . ,αP−1} ⊂ N

M which
contains the multi-indices of the retained basis polynomialsψα0

, . . . , ψαP−1
. A is referred to as thetruncation

set in the sequel. The corresponding PC approximation is denoted by YA ≡ MA(X) =
∑

α∈A aαψα(X)

which rewritesYA = aTψ(X), by introducing the vector notation :

a = {aα0
, . . . , aαP−1

}T (2)

ψ(X) = {ψα0
(X), . . . , ψαP−1

(X)}T (3)

Let us consider a set of realizations ofX denoted byX = {x(1), . . . ,x(N)} and referred to as theexperi-
mental design. Let us denote byY the associated set of model response quantities, sayY = {M(x(1)), . . . ,

M(x(N))}. The unknown coefficientsa may be computed by performing a least-square minimization,i.e. by

minimizing the mean-square truncation error1/N
∑N

i=1

(

M(x(i)) −MA(x(i))
)2

. Using the above notation
the solution reads :

â = (ΨT
Ψ)−1

Ψ
TY (4)

whereΨ is aN × P matrix such thatΨij = ψαj
(x(i)), i = 1, . . . , N, j = 0, . . . , P − 1. The sizeN of the

ED must be greater thanP to make this problem well posed.

2.3 Moment analysis by post-processing the polynomial chaosexpansion
The second moments of the PC approximation of the model response may be derivedanalytically from the
coefficients. In particular, the mean and the standard deviation are respectively given by :

µ
(P )
Y = a0 , σ

(P )
Y =

∑

0<|α|≤p

a2
α (5)

whereP denotes the number of terms in the PC truncation. The skewness and the kurtosis coefficients may
be also computed by algebraic combinations of the coefficients [7]. However the corresponding computational
cost blows up in case of a large numberM of input variables. To circumvent this problem, one may generate a
large random sample and evaluate the PC approximation at all the sample points. Thus the higher-order statis-
tics of the PC approximation may be obtained by an elementary statistical analysis of the PC-based sample. It
is also possible to compute the so-calledglobal sensitivity indicesdirectly from the PC coefficients, see [8].

2.4 The issue of truncating the polynomial chaos expansion
For computational purpose it is necessary to truncate the polynomial chaos expansion in Eq.(1) as mentioned
in Section 2.2. In most papers in the literature the truncation setsAp correspond to those multivariate basis
polynomialsψα whose total degree is not greater thanp, that is :

AM,p ≡ AM,p
1 =

{

α ∈ N
M : ‖α‖1 ≤ p

}

(6)

where‖ · ‖1 denotes the 1-norm onRM defined by :

‖z‖1 =

M
∑

i=1

|zi| ∀ z = {z1, . . . , zM}T ∈ R
M (7)
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Note that the subscript 1 inAM,p
1 corresponds to the choice of the 1-norm. One limitation of this truncation

strategy lies in the strong increase of unknown PC coefficientswith M andp. Indeed the number of multi-
indices inAM,p

1 is given by :

card
(

AM,p
1

)

=

(

M + p

p

)

(8)

As a consequence, the minimal sizeN of the experimental design (i.e. the number of model evaluations)
that ensures the well-posedness of the regression problem increases itself considerably withM andp. The
above truncation strategy may thus lead to intractable calculations in high dimensions for a computationally
demanding modelM.

3 Sparse polynomial chaos approximation

3.1 PC expansions based on the sparsity-of-effects principle
An alternative strategy is proposed in the present paper fortruncating the PC expansion of the model response.
It is motivated by the so-calledsparsity-of-effects principle[3], which states that most models are principally
governed by main effects and low order interactions. One proposes the use of the following truncation sets
based onq-norms,0 < q < 1 :

AM,p
q =







α ∈ N
M : ‖α‖q ≡

(

M
∑

i=1

αq
i

)1/q

≤ p







(9)

Such norms penalize the higher order interaction terms all the more sinceq is low. Note that settingq equal to 1
corresponds to the usual truncation scheme mentioned in Section 2. The proposed truncation strategy thus leads
to PC expansions with a reduced number of unknown coefficients,which may be computed using a moderate
numberN of model evaluations.
The computational cost may be further reduced by taking into account the fact that the PC expansion of the
model response contains only a small number of significant terms (sparsePC expansion). This is the scope of
the next section.

3.2 Sparse PC approximation using an adaptive LAR algorithm

3.2.1 Estimation of the PC coefficients using LAR
Regularizationis a technique that allows one to perform a least-square regression when the number of model
evaluationsN is less than the numberP of basis functions. It relies upon a penalization of some norm (or more
generally functional) of the regression coefficients. In particular,L1-regularized regression consists in fitting a
metamodelMAM,p

q
by solving :

Minimize
N
∑

i=1



y(i) −
∑

α∈AM,p
q

aαψ(x(i))





2

subject to
∑

α∈AM,p
q

|aα| ≤ s (10)

wheres ≥ 0 is a tuning parameter. TheL1-type constraint of this optimization problem yields asparsesolution
(i.e. with many components equal to zero). In other words, a selection of a small number of significant terms
in the basisAM,p

q is performed. The solution is all the sparser since the value of s is low.
Least Angle Regression(LAR) [4] is an efficient algorithm for solving the problem in Eq.(10). It provides in
one shot the entire paths of solution coefficients ass is increased from 0 up to a maximum value. The LAR
procedure is described below :

1. Standardize the vectors{Ψαi
, i = 1, . . . , P − 1} to have empirical mean zero and empirical variance

one, whereΨαi
≡ {ψαi

(x(1)), . . . , ψαi
(x(N))}T. Initialize the approximated response vectorŶ = 0,

which corresponds to the initial coefficientsaα0
, . . . , aαP−1

= 0. Define the residualR = Y − Ŷ.
2. Find the vectorΨαj

which is most correlated withR.

3. Moveaαj
from 0 towards the valueΨT

αj
R, until some other vectorψαk

has as much correlation with
the current residual as doesψαj

.

4. Move jointly{aαj
, aαk

}T in the direction defined by their least-square coefficients of the current residual
on{ψαj

,ψαk
} ≡ Φ, until some other vectorψαl

has as much correlation with the current residual. This

direction is defined explicitly by the vector{âαj
, âαk

}T = (ΦT
Φ)−1

Φ
TR.
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5. Continue this way until allP predictors have been entered. AfterP steps, one gets the full least-square
solution.

6. Compute accuracy estimates of the metamodels associatedwith all the solution coefficients, and select
the truncation setAp,∗ that corresponds to the largest accuracy estimate.

LAR may be thus regarded as a way of selecting an optimal sparsePC basis. One chooses to eventually apply
ordinary least-square regression to recompute the corresponding coefficients, as it is considered to provide
more accurate estimates. The accuracy estimates that are used in Step 6 are based onleave-one-out cross
validation[9] and are denoted bŷQ2.

3.2.2 Sparse PC expansion using an adaptive LAR scheme

A limitation of LAR lies on the requirement of ana priori truncation setAM,p
q . To circumvent this difficulty,

one proposes a procedure for progressively enriching the truncation set of the PC approximation,i.e. the set of
active basis functions. One first selects the typeq of the norm that is used to truncate the PC expansions as well
as a target accuracyQ2

tgt. The proposed adaptive procedure is outlined below :

1. Select an EDX and collect the corresponding model evaluations inY once and for all.

2. Initialize the PC degreep = 0 and the accuracy estimatêQ2,p∗

= 0.

3. SetAp = AM,p
q . Apply the LAR algorithm to fit the metamodelMAp . Store the accuracy estimatêQ2,p.

4. If p ≥ 2 : if Q̂2,p ≤ Q̂2,p−1 ≤ Q̂2,p−2 (overfitting), then enrich the ED and go back to Step 3.

5. Setp∗ = p if Q̂2,p ≥ Q̂2,p∗

.

6. If Q̂2,p∗ ≥ Q2
tgt : stop and return the optimal truncation setAp∗

. Otherwise setp = p+ 1 and go back to
Step 3.

The condition in Step 4 is a heuristic criterion to avoid overfitting. One eventually applies ordinary least-square
regression to recompute the coefficients corresponding toAp∗

.

4 Statistical moment analysis of a foundation

4.1 Problem statement
Let us study the problem of the settlement of a foundation, already adressed in [10]. An elastic soil layer of
thicknesst and lying on a rigid substratum is considered. A structure tobe founded on this soil mass is idealized
as a uniform pressureP applied over a length2B of the free surface (see Figure 1). The soil is modelled as an
elastic linear isotropic material. A plane strain analysisis carried out.

A

2B

t
E , ν

FIG. 1 – Settlement of a foundation - problem definition

Due to the symmetry, half of the structure is modelled by finiteelements. Strictly speaking, there is no sym-
metry in the system when random fields of material properties are introduced. However, it is believed that this
simplification does not significantly influence the results. The foundation (resp. mesh) width is equal to10 m
(resp.60 m). The soil layer thickness is equal to30 m and its Poisson’s ratio is equal to0.3. The applied
pressure is equal to0.2 MPa. The finite element mesh displayed in Figure 2-a was chosen.

It contains 768 elements and 825 nodes. The maximal displacement under the foundation (point A in Figure 1)
computed with this mesh is equal to 5.49 cm.
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FIG. 2 – Settlement of a foundation - finite element mesh and deformed shape for mean values of the parameters
by a deterministic analysis

4.2 Probabilistic model
The Young’s modulus of the soil is considered to vary both in the vertical and the horizontal directions. It is
modelled by a two-dimensional homogeneous lognormal random field. Its mean value is set equal toµE =
50 MPa and its coefficient of variation isδE = σE/µE = 0.3. The autocorrelation coefficient function of the
underlying Gaussian fieldN(x, ω) is :

ρN (x,x
′

) = exp

[

−‖x− x′‖2

ℓ2

]

(11)

whereℓ = 10 m.N(x, ω) is discretized using theKarhunen-Lòeve expansion[11] :

N(x, ω) ≃
M
∑

i=1

√

λiξi(ω)ϕi(x) (12)

where the
√
λi’s (resp. theϕi(x)’s) are the eigenvalues (resp. eigenfunctions) of the random field covariance

kernel, and theξi(ω)’s form a set ofindependentstandard Gaussian random variables. A relative accuracy in
the variance less than1% is obtained when usingM = 40 terms in the discretization ofN(x, ω).

4.3 Moment analysis
Of interest are the four first statistical moments of the maximum vertical displacement. Reference results are
obtained by direct Monte Carlo simulation (50,000 model evaluations are performed) and bootstrap resampling
(1,000 resamples are used). On the other hand, estimates of the moments are provided using the proposed
adaptive LAR methodology. In this purpose, one considers Hermite PC approximations of the model response
that are truncated using aq = 0.6-norm. The target accuracyQ2

tgt is successively set equal to0.95 and0.995.
The various moments estimates are gathered in Table 1.

TAB . 1 – Estimates of the four first statistical moments of the maximum vertical displacement

Moments Reference Sparse PC approximations
Q2

tgt = 0.95 Q2
tgt = 0.995

Mean (cm) 5.91 5.90 5.91
StD (cm) 1.13 1.07 1.13
Skewness 0.6 0.2 0.6
Kurtosis 3.7 3.1 3.4
# FE runs 50,000 250 1,000

Final degree - 4 4
IS (%) † - 52 53

† IS ≡ Number of non zero terms/Total number of terms= (
∑

α∈A
M,p
q

1{aα 6=0}) / (|AM,p
q |)
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It appears that the sparse PC approximation corresponding toQ2
tgt = 0.95 yields good estimates of the mean

and the standard deviation, with respective relative errors of 0.1% and 5.3% (with respect to the reference
values). Note that the associated computational cost (i.e.N = 250 model evaluations) would only allow one
to compute an usual (i.e. with q = 1) full PC metamodel of degreep = 1 (with a number of terms given by
P = 41). In contrast, a full PC representation of degreep = 2 would require more thanP = 861 model
evaluations. More accurate estimates of the moments are provided when settingQ2

tgt equal to 0.995. Indeed,
a two-digit accuracy is obtained on the mean and the standarddeviation as well as a one-digit accuracy on
the skewness coefficient. One also gets a relative error of8.1% on the kurtosis coefficient. Lastly, both PC
approximations reveal relatively sparse, with aindex of sparsityIS close to 50%. Other applications show a
significant gain in sparse chaos representation, with an index of sparsityIS = close to5%, seee.g. [12].

5 Conclusion
An adaptive LAR procedure is proposed to build up a sparse PC representation of the random response of a
model with random input parameters. In order to reduce the number of unknown PC coefficients to identify
and hence the required number of computer experiments (i.e. the computational cost), an adaptive algorithm is
proposed for automatically detecting the significant PC terms(sparse PC representation). The experimental de-
sign is automatically enriched such that the overfitting phenomenon is avoided. The example of the foundation
shows that the algorithm may be used to efficiently estimate the statistical moments of the model response,
leading to to a considerable reduction of the number of modelevaluations compared to crude Monte Carlo
simulation.
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