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Résune :

Dans cette communication, on propose un algorithmeélsas la techniquéeast Angle Regressidh AR) pour construire
une repésentation pachaos polynomial creude la reponse d’'un madle nécanique dont les paragtres d’entée sont
aléatoires. Le plan d'exgriences est automatiquement enrichi de saréviter les probdmes se surapprentissage. On
obtient au final une re@sentation ne comportant qu’un faible nombre de termes é8) qui peuvenétre estings au

moyen d’'un nombreéduit dévaluations du magle. L'algorithme est applicgiau calcul des moments statistiques du
tassement d’une fondation sur un sol dont le module d'Yoshmedlise par un champ &atoire.

Abstract :

A method is proposed to build up a sparse polynomial chaog @X@ansion of a mechanical model whose input pa-
rameters are random. In this respect, an adaptive algorithased on_Least Angle RegressioflLAR) is described for
automatically detecting the significant coefficients of Bt expansion. The experimental design is automaticalli+ enr
ched in order to avoid overfitting problems. Eventually tbeficients of the resulting sparse PC approximation may be
computed by means of a relatively small number of possildtlyconodel evaluations, using a non intrusive regression
scheme. The method is illustrated by the moment analydie aiettlement of a foundation on a soil layer whose Young’s
modulus is a random field.

Mots clefs : Sparsity-of-effects principle, sparse polynomial chaos expansipadaptive Least Angle
Regression

1 Introduction

Polynomial chaos (PC) expansions allow one to representoitkpline random response of a mechanical
system whose input parameters are modelled by random iesiabhe PC coefficients may be efficiently
computed using non intrusive techniques such as projefdjan regression [2]. However, the required number
of model evaluationd.g.the computational cost) increases with the PC size, whielf dsamatically increases
with the number of input variables when the common truncesicheme of the PC expansion is applied. (
retain all the multivariate polynomials of total degree gotater than a prescribed. To circumvent this
problem, a truncation strategy based on the useg-wérms with0 < ¢ < 1 is proposed. It is motivated
by the so-calledsparsity-of-effects principlg3], which states that most models are principally goverbgd
main effects and low-order interactions. The related trtect®C expansions contain a low number of likely
important terms compared to the full representation.

Using these truncation strategies, an adaptive algoritsedborneast Angle Regressi¢hAR) [4] is proposed

in order to retain progressively a small number of signifidd@tcoefficients, leading tosparsePC represen-
tation. Beside the adaptivity in terms of PC basis, the erpemtal design is systematically complemented
such that the overfitting phenomenon is avoided.

2 Polynomial chaos expansion of the model response

2.1 Mathematical framework

Consider a mechanical system described by a numerical madehich can be analytical or more generally
algorithmic €.g.a finite element model). Suppose that this model h&asincertain input parameters which
are represented bgdependentandom variable$Xy, ..., X)) gathered in a random vectdf of prescribed
joint probability density functioryx (). Hence the model response denotedby- M(X) is also random.
For the sake of simplicity}y” is assumed to be scalar throughout the paper (in case of @ vespons&”, the
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following derivations hold componentwise). Provided theg tandom variabl&” has a finite variance, it may
be recast as follows [5] :

Y = M(X) = Z aawa(X) 1)
ac NM
This expansion is referred to as thelynomial chaogPC)representatiorof Y. Thea,’s are unknown deter-
ministic coefficients and the,’'s are multivariate polynomials which are orthonormal witspect to the joint

PDF fx of the input random vectaX, i.e. E [¢o (X )Yg(X)] = 1if a = B and 0 otherwise. For instance, if
X is a standard normal random vector, thg are normalized multivariate Hermite polynomials.

2.2 Estimation of the polynomial chaos coefficients

The PC coefficients can be estimated using a non intrusive segnescheme [2, 6]. This method requires the

choice of a truncation of the P@&b initio, i.e. a non empty finite sel = {ay,...,ap_1} C NM which
contains the multi-indices of the retained basis polyndsnig, , .. ., ¥q,_,. Ais referred to as theuncation

setin the sequel. The corresponding PC approximation is dengtédso= MA(X) = > c 4 tatVal(X)
which rewritesY 4 = a"+(X), by introducing the vector notation :

a={aay, - 0ap_,} (2)
P(X) = {¥a,(X), - Ve, (X} (3)
Let us consider a set of realizations &f denoted byt = {z(),... (™} and referred to as thexperi-

mental designLet us denote by the associated set of model response quantitiesysay{/\/l(m(l)), e
M(z™)}. The unknown coefficients may be computed by performing a least-square minimizatiery
minimizing the mean-square truncation ertgrV Zf\il (M(z) — MA(m(i)))Z. Using the above notation
the solution reads :

a= (o) teTy (4)
where® is aN x P matrix such tha¥;; = ¢, (?),i=1,...,N, j =0, ... ,P — 1. The sizeN of the
ED must be greater thah to make this problem well posed.

2.3 Moment analysis by post-processing the polynomial cha@xpansion

The second moments of the PC approximation of the model respoayg be derive@nalytically from the
coefficients. In particular, the mean and the standard dewmiare respectively given by :

W o=a o, o) = Y d (5)

0<]a|<p

where P denotes the number of terms in the PC truncation. The skewmnestha kurtosis coefficients may
be also computed by algebraic combinations of the coeffieigit However the corresponding computational
cost blows up in case of a large numBérof input variables. To circumvent this problem, one may gateea
large random sample and evaluate the PC approximation &eadidmple points. Thus the higher-order statis-
tics of the PC approximation may be obtained by an elementatigtical analysis of the PC-based sample. It
is also possible to compute the so-caligabal sensitivity indicedirectly from the PC coefficients, see [8].

2.4 The issue of truncating the polynomial chaos expansion

For computational purpose it is necessary to truncate thapmial chaos expansion in Eq.(1) as mentioned
in Section 2.2. In most papers in the literature the trunoasiets.A? correspond to those multivariate basis
polynomialsy, whose total degree is not greater thahat is :

AMP = AP~ (o e NV s < p) ©

where|| - ||; denotes the 1-norm dRY defined by :

M
Izl = > 1zl Vz={z,...,2u}" €RY (7)
=1
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Note that the subscript 1 iyﬁi”’p corresponds to the choice of the 1-norm. One limitation & ttuncation
strategy lies in the strong increase of unknown PC coefficigitts A/ andp. Indeed the number of multi-

indices in.A? is given by :
card (Ajlw’p ) = (M; p) (8)

As a consequence, the minimal si2e of the experimental design.€. the number of model evaluations)
that ensures the well-posedness of the regression problemmaises itself considerably witf andp. The
above truncation strategy may thus lead to intractableuttions in high dimensions for a computationally
demanding modeM.

3 Sparse polynomial chaos approximation
3.1 PC expansions based on the sparsity-of-effects prindg

An alternative strategy is proposed in the present papéridfocating the PC expansion of the model response.
It is motivated by the so-callesbarsity-of-effects principlE8], which states that most models are principally
governed by main effects and low order interactions. On@gses the use of the following truncation sets
based or-norms,0 < g < 1:

M 1/q
AP = aeNY : al, = (Za?) <p 9)

=1

Such norms penalize the higher order interaction termsealirtbre since is low. Note that setting equal to 1
corresponds to the usual truncation scheme mentioned i8&ctThe proposed truncation strategy thus leads
to PC expansions with a reduced number of unknown coefficiemish may be computed using a moderate
numberN of model evaluations.

The computational cost may be further reduced by taking intmant the fact that the PC expansion of the
model response contains only a small number of significantgdgparsePC expansion). This is the scope of
the next section.

3.2 Sparse PC approximation using an adaptive LAR algorithm
3.2.1 Estimation of the PC coefficients using LAR

Regularizationis a technique that allows one to perform a least-squaressgm when the number of model
evaluationsV is less than the numbét of basis functions. It relies upon a penalization of somemgar more
generally functional) of the regression coefficients. Irtipatar, £!-regularized regression consists in fitting a
metamodelM .. by solving :

2
N

Minimize Z y@ — Z aaw(az(i)) subject to Z laa| < s (20)

i=1 ac AP ac AP

wheres > 0 is a tuning parameter. The'-type constraint of this optimization problem yieldsarsesolution
(i.e. with many components equal to zero). In other words, a setecf a small number of significant terms

in the basisA,’” is performed. The solution is all the sparser since the valuglow.

Least Angle RegressidhAR) [4] is an efficient algorithm for solving the problem in E&0). It provides in
one shot the entire paths of solution coefficients &sincreased from 0 up to a maximum value. The LAR
procedure is described below :

1. Standardize the vectof@,,,7 = 1,..., P — 1} to have empirical mean zero and empirical variance
one, where® . = {t)q, (M), ..., 1, (™)}7. Initialize the approximated response vecibe= 0,
which corresponds to the initial coefficients, , .. ., aq,_, = 0. Define the residuakR = ) — ).

2. Find the vecto®¥,, which is most correlated witli.

3. Movea, from 0 towards the valu&], R, until some other vectop,,, has as much correlation with
the current residual as dogs, .

4. Move jointly{aq, , aq, }Tin the direction defined by their least-square coefficiente@turrent residual
on{tq,, Pq,} = @, until some other vectap,,, has as much correlation with the current residual. This

direction is defined explicitly by the vect§fiq, , G, }' = (2T®) 1@ R.

3
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5. Continue this way until alP predictors have been entered. Afféisteps, one gets the full least-square
solution.

6. Compute accuracy estimates of the metamodels assowitedll the solution coefficients, and select
the truncation setl?* that corresponds to the largest accuracy estimate.

LAR may be thus regarded as a way of selecting an optimal sp&dmasis. One chooses to eventually apply
ordinary least-square regression to recompute the camespy coefficients, as it is considered to provide
more accurate estimates. The accuracy estimates that ataruSeep 6 are based deave-one-out cross

validation[9] and are denoted b§?.

3.2.2 Sparse PC expansion using an adaptive LAR scheme

A limitation of LAR lies on the requirement of aa priori truncation set4}’”. To circumvent this difficulty,
one proposes a procedure for progressively enriching time#tion set of the PC approximatior. the set of
active basis functions. One first selects the typéthe norm that is used to truncate the PC expansions as well

as a target accura@fgt. The proposed adaptive procedure is outlined below :

1. Select an EDY and collect the corresponding model evaluation¥ innce and for all.
Initialize the PC degreg = 0 and the accuracy estimatg*" = 0.
SetA? = AQJ P Apply the LAR algorithm to fit the metamodgH .. Store the accuracy estimafg?.
If p > 2:if Q2P < Q*P~1 < Q%P2 (overfitting), then enrich the ED and go back to Step 3.
Setp* = pif Q2P > Q2P".

If Q27" > Qfgt : stop and return the optimal truncation st . Otherwise sep = p + 1 and go back to
Step 3.

The condition in Step 4 is a heuristic criterion to avoid ovenfiit One eventually applies ordinary least-square
regression to recompute the coefficients correspondintf'to

I

4 Statistical moment analysis of a foundation
4.1 Problem statement

Let us study the problem of the settlement of a foundatioeaaly adressed in [10]. An elastic soil layer of
thicknesg and lying on a rigid substratum is considered. A structuleetiounded on this soil mass is idealized
as a uniform pressur® applied over a lengtBB of the free surface (see Figure 1). The soil is modelled as an
elastic linear isotropic material. A plane strain analysisarried out.

YIY

t B,

v

FiG. 1 — Settlement of a foundation - problem definition

Due to the symmetry, half of the structure is modelled by fieiemments. Strictly speaking, there is no sym-
metry in the system when random fields of material propertiesreroduced. However, it is believed that this
simplification does not significantly influence the results. TownBation (resp. mesh) width is equalli® m
(resp.60 m). The soil layer thickness is equal 80 m and its Poisson’s ratio is equal €03. The applied
pressure is equal @2 MPa. The finite element mesh displayed in Figure 2-a was chosen.

It contains 768 elements and 825 nodes. The maximal dispkmaimder the foundation (point A in Figure 1)
computed with this mesh is equal to 5.49 cm.
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a - mesh b — deformed shape

FiG. 2 — Settlement of a foundation - finite element mesh and deformed shapedomalaes of the parameters
by a deterministic analysis

4.2 Probabilistic model

The Young’s modulus of the soil is considered to vary both mvhrtical and the horizontal directions. It is
modelled by a two-dimensional homogeneous lognormal nanfield. Its mean value is set equal g, =

50 MPa and its coefficient of variation i5; = o /up = 0.3. The autocorrelation coefficient function of the
underlying Gaussian fiel/ (z, w) is :

2
pN(:c,:c/) = exp [—Hw;”] (11)

where/ = 10 m. N(x,w) is discretized using th€arhunen-L&ve expansiofiL1] :
M
N(z,w) ~ > VAiki(w)ei(z) (12)
i=1

where they/\;’s (resp. thep;(x)’s) are the eigenvalues (resp. eigenfunctions) of the nanfileld covariance
kernel, and the&;(w)’s form a set ofindependenstandard Gaussian random variables. A relative accuracy in
the variance less thals is obtained when using/ = 40 terms in the discretization a¥ (x, w).

4.3 Moment analysis

Of interest are the four first statistical moments of the maximvertical displacement. Reference results are
obtained by direct Monte Carlo simulation (50,000 model@ations are performed) and bootstrap resampling
(1,000 resamples are used). On the other hand, estimateg afiaments are provided using the proposed
adaptive LAR methodology. In this purpose, one considersriterPC approximations of the model response
that are truncated usingga= 0.6-norm. The target accuraaiy?gt is successively set equal 65 and0.995.
The various moments estimates are gathered in Table 1.

TAB. 1 — Estimates of the four first statistical moments of the maximum vertical displateme

Moments  Reference  Sparse PC approximations
Q7 =0.95 Q7 =0.995

Mean (cm) 5.91 5.90 5.91
StD (cm) 1.13 1.07 1.13
Skewness 0.6 0.2 0.6
Kurtosis 3.7 3.1 3.4
# FE runs 50,000 250 1,000

Final degree - 4 4
IS (%)t - 52 53

1 1S = Number of non zero termidotal number of terms= (ZaeAfIw,p 1{aa0y) / (JA"P))
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It appears that the sparse PC approximation correspondi@i;o: 0.95 yields good estimates of the mean
and the standard deviation, with respective relative srodr0.1% and 5.3% (with respect to the reference
values). Note that the associated computational ¢@st{ = 250 model evaluations) would only allow one
to compute an usual.é. with ¢ = 1) full PC metamodel of degree = 1 (with a number of terms given by
P = 41). In contrast, a full PC representation of deggee- 2 would require more tha®® = 861 model
evaluations. More accurate estimates of the moments avdprbwhen settinggfgt equal to 0.995. Indeed,

a two-digit accuracy is obtained on the mean and the stardianidtion as well as a one-digit accuracy on
the skewness coefficient. One also gets a relative err8r16f on the kurtosis coefficient. Lastly, both PC
approximations reveal relatively sparse, witindex of sparsityl.S close to 50%. Other applications show a
significant gain in sparse chaos representation, with arxiofleparsityl S = close t05%, seee.g. [12].

5 Conclusion

An adaptive LAR procedure is proposed to build up a sparse P@septation of the random response of a
model with random input parameters. In order to reduce tmelaun of unknown PC coefficients to identify
and hence the required number of computer experimeatshe computational cost), an adaptive algorithm is
proposed for automatically detecting the significant PC t€aparse PC representation). The experimental de-
sign is automatically enriched such that the overfitting pineenon is avoided. The example of the foundation
shows that the algorithm may be used to efficiently estimagesthtistical moments of the model response,
leading to to a considerable reduction of the number of medeluations compared to crude Monte Carlo
simulation.
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