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Résumé :

Dans cette communication, nous allons construire un magigilerédit la rupture d’une structure contenant une source
de concentration de contrainte. Ce modele établi sur la bdisee méthode d’homogénéisation prend en compte le
gradient de la déformation. Nous allons décrire la méthothechogénéisation pour établir des relations constitusidel
second gradient pour des matériaux hétérogénes. Dans @gdwoe d’homogénéisation, nous avons contruit une retatio
du gradient de la déformation & deux dimensions avec degfisisures. Nous prenons comme base physique de notre
description de la propagation des fissures dans la structure énergie potentielle capable de décrire la fracture du
matériau fragile. A partir de cette énergie, nous constatgue non seulement la déformation mais aussi son gradiént on
une forte influence sur I'évolution de 'endommagement diérau fragile et quasi-fragile.

Abstract :

In this paper, we have established a fracture model to ptedéefailure of a structure initiated from a stress concatitn
source. This model is established on the basis of the horradiem on a microcracked brittle material by taking the
strain gradient into account. We first describe a homogéditnamethod with the aim of establishing the strain gradient
constitutive relations for heterogeneous materials. la filame of this homogenization procedure, we have constuct
a strain gradient constitutive relation for a bidimentidredastic material with many microcracks by adopting thef-sel
consistent scheme. By assuming a physically realististaste curve for microcrack growth, we extend this corstiu
law to a strain gradient potential that is capable to deserthe fracture of brittle materials. From the expressionhi$ t
energy potential, we can clearly observe that apart fromdtnain, the strain gradient has also a strong influence on the
damage evolution of brittle or quasi-brittle materials.

Mots clefs : Strain gradient theory ; homogenization, damage, microcraks, brittle materials

1 Introduction

The strain gradient constitutive laws in solids mechaniesanwntroduced by the necessity to describe the size
effect observed in micro or macro scales. It is a common bitla the size effect is essentially due to hete-
rogeneities and flaws in materials. The size effect becormtisaable when the size of these heterogeneities
and flaws are of comparable size with that of the structusahehts. The size effect is not readily included in
classical continuum mechanics frameworks, and researdfien see enriched continuum theories like non-
local elasticity (Pijaudier-Cabot and Bazant, 1987) aspgament for more complicated microscopic and
discrete simulations. Under certain conditions, theselooal models can be approximated by the so-called
strain gradient elasticity where strain gradient is adaethé classical elastic constitutive equations. These
gradient approaches are often based on the introductiength scale effects in elasticity, plasticity or dislo-
cation dynamics by incorporating higher order gradientstin into the constitutive or evolution equations
governing the material description.

In this work, we attempt to demonstrate that the strain graddlays an important role in fracture behavior of
brittle materials. The main objective of this paper is twdfathe establishment of a strain gradient constitutive
law for brittle materials with many microcracks by means ofrtogenization ; the construction of a damage
evolution law on the basis of the microcrack growth and itpliaption to the failure prediction of brittle
materials under non-singular stress concentration.

We essentially follow the homogenization principle, bugiidition, we develop a special procedure with the
purpose of transforming the constitutive laws for indivadlRVES to those for the continuum. This approach
ensures that the obtained gradient constitutive laws atep@ndent of the size of the RVE. After that, we
introduce the strains gradient into the damage evolutiarola the basis of the microcrack growth. This strain
gradient damage model is then implemented into a finite edc@e. The numerical results on the fracture
prediction are compared with experimental data. The coispaclearly demonstrates that the present damage
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model can efficiently capture the size effect and fits thedatt with a satisfactory accuracy.

2 Creation of strain gradient constitutive relations by homogenization
2.1 Principal hypotheses

1. A RVE is no longer considered an infinitesimal volume. A moacopic solid is constituted by a finite
numberM of RVEsQ(™) . Therefore we assume that :

o=[Jom Mo =g,m=1.M (1)

2. The higher-order gradients of the macroscopic fields havefluence on the constitutive laws if the material
is perfectly homogeneous. In the microscopic scale andlénfie RVE, the conventional elasticity theory

holds : »
gij.i(y = 0 o)
{ Uz'j'(Jy) = Cijpg(¥)upq(y) yen 2)

whereo, u are respectively the Cauchy stress tensor, the displaderaetor at a point irf(™), andCjjp, is
the stiffness tensor of the material.

3. We assume that a RVEE™) is small but not too small, such that the macroscopic fieldsivthe RVE can
be represented by a Taylor s expansion, namely,

m —(m 1_ m m
UE )(y) = uz(,j)yj + §U§J;zyjyk + O(y?) y € 90 (3)
Whereui j ),_( ,2 are the values of the displacement derivatives at the geimalatentre of2(™),

2.2 Homogenization on a RVE

Consider a RVEY(™ loaded with a known tractlotf ™ = o;;n; On its exterior boundarg(m Letéu( )(y)
be a virtual kinematically admissible displacement fieddafined in (3) but truncated after the third'term. The

virtual work of tractlontgm) on the virtual displacements is :
SWIm = / £ oul™ = oul" / ™ y;dS + 5u§’7,3 / ™y ydS 4)
800 890 890
Let us define

—m) _ _1 (m), —m _ 1 (m),
Tij T Ym) /ti y;dS Tijk = Sy m) /ti YjyrdS (5)
agim) 80
7™ 7™ can respectively be considered as the stress, the doudss &2(™ ; V(™) is the volume of2(™),

ij zgk
We can remark tha‘fgj ™) is also the average stress tensor of the RVE. It is independéine size of the RVE.

Howeverz! k) vary with the volume of2("™). Thus (4) becomes :

1

1/ (m)
a(m)

{6l = sao 4 suTe ) 6)
The right side of (6) can be regarded as the variation of tleeame strain energy density of the RVE defined

as follows :
m —(m) —(m —(m)
Um = /al.j dag,ju/ ao du") @)
Qm) Q(m)
Therefore one can just read (6) as the virtual work princgplied onQ(™)
swim) jym) — 5yrm) (8)

The equation (8) is the energy-averaging theorem, knowménliterature as the Hill-Mandel condition or
macrohomogeneity condition (Hill, 1963 ; Suquet, 1985 ckland Hutchinson, 1997). It is important to point
out that equation (8) is obtained from the homogenizatioa sfngle RVE. Therefore, it is only valid for

individual RVEs. In the following, we will rewrite it for atiearly elastic continuum.

2
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2.3 Transformation to a macroscopic continuum

According to Mindlin (1965), the second degree strain epérgction for a homogeneous and isotropic conti-
nuum can be written, using the notation of the present pagédagllows :

1
U=3 (Cijpqi jtp,g + > Cijhpgriti, jktp.qr) 9)

wherel is a material length-scale which is assumed to be srog qkr are the stiffness tensors for
different degrees of strains. This form of strain energycfion can also be fZ)und by using the above-mentioned
homogenization technique. In fact, for each RVE, we canevhie average strain energy density as follows :

m) _ L (A=) _(m)—(m) | AM)  —(m)—(m
U = 92 (CZJpquz,J z(>q) +CUkpqr mkuzg q)r) (10)

whereCZ(jpzl, Cz(jki)qr are the average stiffness tensors ofhe- th RVE issued from a homogenization pro-
cedure. The length-scale paramédtés incorporated in these tensors for expression simplitifigh Eg.”) =

Eﬁg)qug“;), EE;,? = Cgﬁi,qrﬂﬁ,";)r the total strain energy in a macroscopic volufd@ is, according to the

hypothesis (1) :

M
/ vdv =y vimym Z v (@s i aa ) (11)

Q m=1

whereU is the strain energy density i. It is clear that/ # U™, as the later depends on the volume and
the shape of the RVE. Our objective is to transcribe the sumoman (11) into an integral expression in order
to extract a true strain energy density. For that purposdirateconsider the integral

M
/ Ui, CiipgipgdV = > / u™ e i ay (12)
Q m=1gim)
where 1™ represents the homogenized RVE, i.e., wiER” is a mono-connected domain without cavi-

ties.C is the continuously varying macroscopic stiffness tenswived from homogenizatior@(x) = U(m)

for z € QU™ With TE;”) = ﬁ / y;y;dV, by substituting (2) into (12), after input in (11) we obtain
)

straightforwardly :

1 —(m) F(m) F(m)\ —(m
/UdV: §/UZ,JCUP(]UP gdV + 3 Z vim Z]/g (kapqr CZJqukr ) Jg?q?“
Q Q

1 Yol oz (m) ( A~(m) (m) §(m)

B /ui7jCiquup7qu + Z / Ui ik (Cz‘jkpqr o prq > UZ%)TdV

Q m= 1Q(m)
1 _ _ L
=3 /ui,jciquup,qdv + /Uzgk (Cijhpar — Cijpalir) tpgrdV
Q Q
1
= 5/(Umciqu“p,q+“i7jkcijk‘pqr“p,qr) dav (13)
Q

with  Cijpg = Cijpgs Cijipgr = Cijkpgr — Cijpelir- The strain energy density in the macroscopic continuum
is :

1

U= ) (i, Cijpgup,g + Wi jkCijkpgrip,qr) (14)
Then the constitutive relations in the homogenized contimare :
ou ou

= (. = = (.. 15

Oij dus ijpqUp,q Oijk Ous i ijkpqrUp,qr (15)
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This transformation procedure can be repeated if high#erogradients are included in the constitutive law.
Equations (14) and (15) are similar to many constitutiveslanesented in the literature. However, the relation-
ships in (14) and (15) are issued from the homogenizatiosideration, therefore benefit from the physical
clarity of the method. It is useful to remark that the straiadjent constitutive laws thus obtained are inde-
pendent of the size and the shape of the RVE.

3 Strain gradient constitutive laws for brittle materials with many micro-cracks

In this part, we will establish a strain gradient constitetlaw by using above-described homogenization
technigue. The idea is, we assume that the constitutiveHatwte attempt to obtain will have the following
form :

1
U= By (Cijpecijepq + Cijkpgr€ij kEpq,r) (16)

Consider now a 2-D RVE)™ containingN' cracks. Then-th crack is centered af™, (™ e Q™) with
length2a, normal vectom(™ and orientation vectas™. The remote loading is applied on the boundary of
Q) by :

o __ o __

05 = Tij + Tij kYk or e5; = Eij + Eij kYk 17)
wheres;; anda;; ;, are respectively the average macroscopic stress and gtadisnt tensors; argl; and
g;5,1 are the corresponding average macroscopic strain and gradient tensors. The strain energy density
(16) can be deduced from homogenization under the remotke(l68. We choose the self-consistent scheme
(Budiansky and O Connell, 1976) to estimate the tedsgy,. Under bi-dimensional loading and with random
crack orientations, the self-consistent method leadsa@ftfective stiffness tensor :

Cijpg = (1 = mp)Cijpg (18)
Let us now estimate the stiffness tensofs,,,,, associated with the strain gradient. We can write the aeerag
strain energy density in a RVE with many microcracks as :

N
W (n)
(m) _ 0 _
v =u Zl V70 (19)
whereW (™ is the work of the traction acting on the lips of theth crack.U? is the average strain energy
density of the matrix

o 1 = = (o] — — 1 — o — — o —
U == —2V(m) /Q(m) (EZ_] + Eij7k‘xk;)cl'qu(€pq + 6pq,rl‘7‘)dv == 5 (QjCiqu&pq ‘|‘ Eijvkcijkpqrgpqw) (20)
o _ 7meo e ) _ 1
We haveC?, .. = Ii, Cf,, With I},7 = 7 /Q(m) zrz,dV. Under the remote load (17), we have the

following expression for the traction and the displacenjemip between the two crack lips (we don’t present
here the calculation in details for briefness) :

tz(n) (n) = <5z‘j + 5z‘j,k9€;(€n)) ng-n) + nﬁij7ks,(€n)n§.") (21)
" 4 2 T re3 n n — n) (n
[ug )(77)] 5 an)? — g2 [(Uij + Uij,kxl(c )) ng ) + gaij,kng' )sé )] (22)

E for plane stress
wheren is the local coordinate attached to the cragk;, [—a(™, o] andE’ =

. 5 for plane strain
—
By substituting (21) and (22) into the second term in thetrgitie of (19), we write the work of the tractions
on crack lips o} :

N N 2

W) 1 20"’ o (n
Z Vim) — oy (m) Z I <Uz'j0pq + Uz‘jvkapq,ru"?ﬁ )551(? ))
n=1 n=1

a(")47r_

+Waij7k5pws,(€n)s§")] ng-n)ng")éipds (23)
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We adopt the conventional hypotheses such that the distiisuof the length, orientation and position of
the microcracks are uniform and independent; thus we canateaall of the quantities in the equation (23).
Finaly, the strain energy density with strain gradient camkpressed by the following simple form :

1 a2
U= 3 (1- wp)ijpqel-jqu + Hijpqékrsijvkepw (24)

We can observe that this strain energy density is similanése proposed in earlier literature (Mindlin, 1965
for example). However, (24) benefits from its physical foatnah through homogenization of a micro-cracked
material.

4 A damage model for elastic micro-cracked materials

In this work, we choos@ as the inner variable describing the damage state of theriadatEhe generalized
thermodynamic force associated witls, according to Lemaitre and Chaboche (1990) :

oU 1 1 _
G = av—a <%Ci0qusijqu - chqufskreij,kqu,r) Ta (25)

G represents the dissipative energy ratio due a to unit isereéz in a unit volume. It can be considered as

the energy release rate in a more general sense. Accordthg @riffith criterion, crack propagation occurs
whend attains a critic valué:.(a) or the critical energy release rate, namely :

G < G.(a) = Gya (26)
whereG, and\ are real constants that we will determine later. From (28)(@6), we have :

1
A—1

- T 1 1 _
9(@,€ij,€ij k) = {—G <_V0 Clipg€ij€pq — T ijpq5m€@-j,kapq7r>] —a<o0 (27)
o

Equation (27) represents a crack evolution surface. Wherp, there is no crack growth. By identification of
the coefficient , we obtain the following constitutive eqaas for general loading :

1 nal
5 |:(1 — ﬂp)CZ-ijqe’fij&“pq + ﬁijpq@Tgij,kapw] when g < 0
U= At 28
200 e 1E062 A =1 (Clpiepg _ a2 CpgOkr€ijkepgr\ > when ¢ — 0 (28)
ijpq=tIcPq max 2 0.2 9=
2 WP 2 A1\ Eyeé i 12p, Eocz,

In the case wherg, = 0, this potential is degenerated to a conventional potesitigilar to the Lennard-Jones
potential (1924). The originality of the present modeldesiin the fact that, on one hand, it is obtained from
a homogenization procedure of a cracked material and threrdfis physically reasonable, and on the other
hand, the strain gradient is included into this potentiak the numerical modelling, the calculation of the
variation of the strain energy density for loading regimgiien by :

ou

U o o
U = 851']' 551’]’ + agij k(sgij’k = (1 — d)Ciqugij(Szqu ~ (1 — d)CZ‘qugij(Sgpq (29)
with the damage parametér
Ciipg€ige @ Cfkrcijhepqr \ 77 a>
d — ijpg=1I=Pq o LIrq J,K=Pq, ith o= % 30
( EOg?nax 12p0 Eoggnaar " V Po ( )

4.1 Comparison of the strain gradient model with experimen&l data

Li and Zhang (2006) carried out uniaxial tension tests onldoge shaped PMMA plates with a central hole.
The mechanical characteristics of the material they used wtbe elastic modulus E = 3000 Mpa, the Poisson
ratio = 0.36 and the ultimate tensile stress = 72M Pa. The section of the specimens Wesx 30mm?2.
Central holes were drilled with different diameters, namék= 0.6, 1.2, 2 and3 mm. Specimens without holes
were also prepared for comparison. These specimens wegeetto an uniaxial tension with a loading rate
v = bmm/minute until failure.
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The only unknown parameter in this model is the average spd@tween nucleated microcracks represented
2

by Ve = o, Figure 1 illustrates the critical fracture loads predichy the present model for different hole

Po

sizes and different values of the paramétér The experimental results are also plotted for comparisost,

we can observe that the present model can describe the fzé @bserved in the experimentation whatever
the value of’? , i.e., the critical fracture load increases as the holedgneeases. However, we can also notice
the very important influence of nucleated microcracks sgpon the prediction accuracy. Roughly speaking,
neglecting the strain gradient effddt®) will lead to a too conservative fracture prediction. On tbetcary, a
too largeV° will overestimate the critical fracture loads. For the PMMamples used in the present study, a
value of V° ~ 0.2mm? gives a suitable fit to the experimental data.

* Test data
—o—V/°=0.025mm?>
——V°=0.1mm?
——\/°=0.2mm?
——\°=1mm?
—+— No strain gradient|

0.8

lo
max cC

0.6

0.4

0.2 4

1
0 0.5 1 15 2 25 3

Hole diameter (mm)

FiG. 1 — Comparison of the predicted fracture loads with the ewpmntal data

5 Discussions and concluding remarks

In this work, we first developed a homogenization proceduoder to establish the strain gradient constitutive
relations for a heterogeneous material. When the macrasstigss or strain gradient cannot be neglected
compared to the size of a RVE, the homogenization procedaegsto the gradient constitutive laws in a
natural manner. An important feature of the present methdd self-consistency with respect to the selection
of the RVE. Once the microstructure of the material is cdtygepresented in a RVE, the constitutive equations
obtained by using the present method are independent ét@ssd shape.

In the frame of this homogenization procedure, we have coct&d a strain gradient constitutive relation for a
bidimentional elastic material with many microcracks bypitihg the self-consistent scheme. The constitutive
equation we obtained shows clearly that the material beladepends not only on the crack density, but also
on the average crack length associated with the straingradi

In order to extend the obtained constitutive equation toraalge evolution law, we propose a resistance curve
for the microcrack growth on the basis of experimental oleéns in brittle materials. This approach leads to
an energy potential that is capable to describe the britdpgrty of fracture. When we incorporate the strain
gradient in this potential, we obtain a damage model in wthehstrain gradient plays a very important role in
damage evolution.
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