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Résumé :
Dans cette communication, nous allons construire un modèlequi prédit la rupture d’une structure contenant une source
de concentration de contrainte. Ce modèle établi sur la based’une méthode d’homogénéisation prend en compte le
gradient de la déformation. Nous allons décrire la méthode d’homogénéisation pour établir des relations constitutives du
second gradient pour des matériaux hétérogènes. Dans la procédure d’homogénéisation, nous avons contruit une relation
du gradient de la déformation á deux dimensions avec des microfissures. Nous prenons comme base physique de notre
description de la propagation des fissures dans la structureune énergie potentielle capable de décrire la fracture du
matériau fragile. À partir de cette énergie, nous constatons que non seulement la déformation mais aussi son gradient ont
une forte influence sur l’évolution de l’endommagement du matériau fragile et quasi-fragile.

Abstract :
In this paper, we have established a fracture model to predict the failure of a structure initiated from a stress concentration
source. This model is established on the basis of the homogenization on a microcracked brittle material by taking the
strain gradient into account. We first describe a homogenization method with the aim of establishing the strain gradient
constitutive relations for heterogeneous materials. In the frame of this homogenization procedure, we have constructed
a strain gradient constitutive relation for a bidimentional elastic material with many microcracks by adopting the self-
consistent scheme. By assuming a physically realistic resistance curve for microcrack growth, we extend this constitutive
law to a strain gradient potential that is capable to describe the fracture of brittle materials. From the expression of this
energy potential, we can clearly observe that apart from thestrain, the strain gradient has also a strong influence on the
damage evolution of brittle or quasi-brittle materials.

Mots clefs : Strain gradient theory ; homogenization, damage, microcracks, brittle materials

1 Introduction
The strain gradient constitutive laws in solids mechanics were introduced by the necessity to describe the size
effect observed in micro or macro scales. It is a common belief that the size effect is essentially due to hete-
rogeneities and flaws in materials. The size effect becomes noticeable when the size of these heterogeneities
and flaws are of comparable size with that of the structural elements. The size effect is not readily included in
classical continuum mechanics frameworks, and researchers often see enriched continuum theories like non-
local elasticity (Pijaudier-Cabot and Bazant, 1987) as a replacement for more complicated microscopic and
discrete simulations. Under certain conditions, these non-local models can be approximated by the so-called
strain gradient elasticity where strain gradient is added to the classical elastic constitutive equations. These
gradient approaches are often based on the introduction of length scale effects in elasticity, plasticity or dislo-
cation dynamics by incorporating higher order gradients ofstrain into the constitutive or evolution equations
governing the material description.
In this work, we attempt to demonstrate that the strain gradient plays an important role in fracture behavior of
brittle materials. The main objective of this paper is twofold : the establishment of a strain gradient constitutive
law for brittle materials with many microcracks by means of homogenization ; the construction of a damage
evolution law on the basis of the microcrack growth and its application to the failure prediction of brittle
materials under non-singular stress concentration.
We essentially follow the homogenization principle, but inaddition, we develop a special procedure with the
purpose of transforming the constitutive laws for individual RVEs to those for the continuum. This approach
ensures that the obtained gradient constitutive laws are independent of the size of the RVE. After that, we
introduce the strains gradient into the damage evolution law on the basis of the microcrack growth. This strain
gradient damage model is then implemented into a finite element code. The numerical results on the fracture
prediction are compared with experimental data. The comparison clearly demonstrates that the present damage
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model can efficiently capture the size effect and fits the testdata with a satisfactory accuracy.

2 Creation of strain gradient constitutive relations by homogenization

2.1 Principal hypotheses
1. A RVE is no longer considered an infinitesimal volume. A macroscopic solidΩ is constituted by a finite
numberM of RVEsΩ(m). Therefore we assume that :

Ω =
⋃

Ω(m),
⋂

Ω(m) = ∅,m = 1...M. (1)

2. The higher-order gradients of the macroscopic fields haveno influence on the constitutive laws if the material
is perfectly homogeneous. In the microscopic scale and inside the RVE, the conventional elasticity theory
holds :

{

σij,j(y) = 0
σij(y) = Cijpq(y)up,q(y)

y ∈ Ω(m) (2)

whereσ, u are respectively the Cauchy stress tensor, the displacement vector at a point inΩ(m), andCijpq is
the stiffness tensor of the material.
3. We assume that a RVEΩ(m) is small but not too small, such that the macroscopic fields within the RVE can
be represented by a Taylor s expansion, namely,

u
(m)
i (y) = u

(m)
i,j yj +

1

2
u

(m)
i,jkyjyk + O(y3) y ∈ ∂Ω(m) (3)

whereu
(m)
i,j , u

(m)
i,jk are the values of the displacement derivatives at the geometrical centre ofΩ(m).

2.2 Homogenization on a RVE

Consider a RVEΩ(m) loaded with a known tractiont(m)
i = σijnj on its exterior boundary∂Ω(m). Letδu(m)

i (y)
be a virtual kinematically admissible displacement field, as defined in (3) but truncated after the third term. The
virtual work of tractiont(m)

i on the virtual displacements is :

δW (m)
u =

∫

∂Ω(m)

t
(m)
i δu

(m)
i = δu

(m)
i,j

∫

∂Ω(m)

t
(m)
i yjdS +

1

2
δu

(m)
i,jk

∫

∂Ω(m)

t
(m)
i yjykdS (4)

Let us define

σ
(m)
ij =

1

V (m)

∫

∂Ω(m)

t
(m)
i yjdS σ

(m)
ijk =

1

2V (m)

∫

∂Ω(m)

t
(m)
i yjykdS (5)

σ
(m)
ij , σ

(m)
ijk can respectively be considered as the stress, the double stress inΩ(m) ; V (m) is the volume ofΩ(m).

We can remark thatσ(m)
ij is also the average stress tensor of the RVE. It is independent of the size of the RVE.

However,σ(m)
ijk vary with the volume ofΩ(m). Thus (4) becomes :

1

V (m)

∫

∂Ω(m)

t
(m)
i δu

(m)
i = δu

(m)
i,j σ

(m)
ij + δu

(m)
i,jkσ

(m)
ijk (6)

The right side of (6) can be regarded as the variation of the average strain energy density of the RVE defined
as follows :

U (m) =

∫

Ω(m)

σ
(m)
ij du

(m)
i,j +

∫

Ω(m)

σ
(m)
ijk du

(m)
i,jk (7)

Therefore one can just read (6) as the virtual work principleapplied onΩ(m)

δW (m)
u /V (m) = δU (m) (8)

The equation (8) is the energy-averaging theorem, known in the literature as the Hill-Mandel condition or
macrohomogeneity condition (Hill, 1963 ; Suquet, 1985 ; Fleck and Hutchinson, 1997). It is important to point
out that equation (8) is obtained from the homogenization ofa single RVE. Therefore, it is only valid for
individual RVEs. In the following, we will rewrite it for a linearly elastic continuum.
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2.3 Transformation to a macroscopic continuum
According to Mindlin (1965), the second degree strain energy function for a homogeneous and isotropic conti-
nuum can be written, using the notation of the present paper,as follows :

U =
1

2

(

Cijpqui,jup,q + l2Cijkpqrui,jkup,qr

)

(9)

wherel is a material length-scale which is assumed to be small.Cijpq, Cijpqkr are the stiffness tensors for
different degrees of strains. This form of strain energy function can also be found by using the above-mentioned
homogenization technique. In fact, for each RVE, we can write the average strain energy density as follows :

U (m) =
1

2

(

C
(m)
ijpqu

(m)
i,j u(m)

p,q + C
(m)
ijkpqru

(m)
i,jku(m)

p,qr

)

(10)

whereC
(m)
ijpq, C

(m)
ijkpqr are the average stiffness tensors of them − th RVE issued from a homogenization pro-

cedure. The length-scale parameterl is incorporated in these tensors for expression simplicity. With σ
(m)
ij =

C
(m)
ijpqu

(m)
p,q , σ

(m)
ijk = C

(m)
ijkpqru

(m)
p,qr the total strain energy in a macroscopic volumeΩ(m) is, according to the

hypothesis (1) :

∫

Ω

UdV =

M
∑

m=1

V (m)U (m) =
1

2

M
∑

m=1

V (m)
(

u
(m)
i,j σ

(m)
ij + u

(m)
i,jkσ

(m)
ijk

)

(11)

whereU is the strain energy density inΩ. It is clear thatU 6= U (m), as the later depends on the volume and
the shape of the RVE. Our objective is to transcribe the summation in (11) into an integral expression in order
to extract a true strain energy density. For that purpose, wefirst consider the integral

∫

Ω

ui,jCijpqup,qdV =

M
∑

m=1

∫

Ω
(m)

u
(m)
i,j C̄

(m)
ijpqu

(m)
p,q dV (12)

whereΩ
(m)

represents the homogenized RVE, i.e., whenΩ
(m)

is a mono-connected domain without cavi-

ties.C is the continuously varying macroscopic stiffness tensor derived from homogenization,C(x) = C
(m)

for x ∈ Ω(m). With I
(m)
ij =

1

V (m)

∫

Ω
(m)

yiyjdV , by substituting (2) into (12), after input in (11) we obtain

straightforwardly :

∫

Ω

UdV =
1

2

∫

Ω

ui,jCijpqup,qdV +
1

2

M
∑

m=1

V (m)u
(m)
i,jk

(

C
(m)
ijkpqr − C

(m)
ijpqI

(m)
kr

)

u(m)
p,qr

=
1

2

∫

Ω

ui,jCijpqup,qdV +
M
∑

m=1

∫

Ω̄(m)

u
(m)
i,jk

(

C̄
(m)
ijkpqr − C̄

(m)
ijpqĪ

(m)
kr

)

u(m)
p,qrdV

=
1

2

∫

Ω

ui,jCijpqup,qdV +

∫

Ω

ui,jk

(

C̄ijkpqr − C̄ijpqĪkr

)

up,qrdV

=
1

2

∫

Ω

(ui,jCijpqup,q + ui,jkCijkpqrup,qr) dV (13)

with Cijpq = C̄ijpq, Cijkpqr = C̄ijkpqr − C̄ijpqĪkr. The strain energy density in the macroscopic continuum
is :

U =
1

2
(ui,jCijpqup,q + ui,jkCijkpqrup,qr) (14)

Then the constitutive relations in the homogenized continuum are :

σij =
∂U

∂ui,j
= Cijpqup,q σijk =

∂U

∂ui,jk

= Cijkpqrup,qr (15)
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This transformation procedure can be repeated if higher-order gradients are included in the constitutive law.
Equations (14) and (15) are similar to many constitutive laws presented in the literature. However, the relation-
ships in (14) and (15) are issued from the homogenization consideration, therefore benefit from the physical
clarity of the method. It is useful to remark that the strain gradient constitutive laws thus obtained are inde-
pendent of the size and the shape of the RVE.

3 Strain gradient constitutive laws for brittle materials with many micro-cracks
In this part, we will establish a strain gradient constitutive law by using above-described homogenization
technique. The idea is, we assume that the constitutive law that we attempt to obtain will have the following
form :

U =
1

2
(Cijpqεijεpq + Cijkpqrεij,kεpq,r) (16)

Consider now a 2-D RVEΩ(m) containingN cracks. Then-th crack is centered aty(n), y(n) ∈ Ω(m), with
length2a, normal vectorn(n) and orientation vectors(n). The remote loading is applied on the boundary of
Ω(m) by :

σo
ij = σij + σij,kyk or εo

ij = εij + εij,kyk (17)

whereσij andσij,k are respectively the average macroscopic stress and stressgradient tensors ; andεij and
εij,k are the corresponding average macroscopic strain and strain gradient tensors. The strain energy density
(16) can be deduced from homogenization under the remote load (17). We choose the self-consistent scheme
(Budiansky and O Connell, 1976) to estimate the tensorCijpq. Under bi-dimensional loading and with random
crack orientations, the self-consistent method leads to the effective stiffness tensor :

Cijpq = (1 − πρ)Co
ijpq (18)

Let us now estimate the stiffness tensorsCijkpqr associated with the strain gradient. We can write the average
strain energy density in a RVE with many microcracks as :

U (m) = U0 −

N
∑

n=1

W (n)

V (m)
(19)

whereW (n) is the work of the traction acting on the lips of then-th crack.Uo is the average strain energy
density of the matrix

Uo =
1

2V (m)

∫

Ω(m)

(εij + εij,kxk)C
o
ijpq(εpq + εpq,rxr)dV =

1

2

(

εijC
o
ijpqεpq + εij,kC

o
ijkpqrεpq,r

)

(20)

We haveCo
ijkpqr = I

(m)
kr Co

ijpq with I
(m)
kr =

1

V (m)

∫

Ω(m)

xkxrdV . Under the remote load (17), we have the

following expression for the traction and the displacementjump between the two crack lips (we don’t present
here the calculation in details for briefness) :

t
(n)
i (η) =

(

σij + σij,kx
(n)
k

)

n
(n)
j + ησij,ks

(n)
k n

(n)
j (21)

[

u
(n)
i (η)

]

=
4

E′

√

a(n)2 − η2
[(

σij + σij,kx
(n)
k

)

n
(n)
j +

η

2
σij,kn

(n)
j s

(n)
k

]

(22)

whereη is the local coordinate attached to the crack,η ∈ [−a(n), a(n)] andE′ =

{

E for plane stress
E

1 − µ2
for plane strain

By substituting (21) and (22) into the second term in the right side of (19), we write the work of the tractions
on crack lips onΩ :

N
∑

n=1

W (n)

V (m)
=

1

2V (m)

N
∑

n=1

[

2a(n)2π

E′

(

σijσpq + σij,kσpq,rx
(n)
r x

(n)
k

)

+
a(n)4π

4E′
σij,kσpq,rs

(n)
k s(n)

r

]

n
(n)
j n(n)

q δipds (23)
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We adopt the conventional hypotheses such that the distributions of the length, orientation and position of
the microcracks are uniform and independent ; thus we can evaluate all of the quantities in the equation (23).
Finaly, the strain energy density with strain gradient can be expressed by the following simple form :

U =
1

2

[

(1 − πρ)Co
ijpqεijεpq +

πa2

12
Co

ijpqδkrεij,kεpq,r

]

(24)

We can observe that this strain energy density is similar to those proposed in earlier literature (Mindlin, 1965
for example). However, (24) benefits from its physical foundation through homogenization of a micro-cracked
material.

4 A damage model for elastic micro-cracked materials
In this work, we choosea as the inner variable describing the damage state of the material. The generalized
thermodynamic force associated witha is, according to Lemaitre and Chaboche (1990) :

G = −
∂U

∂a
=

(

1

V o
Co

ijpqεijεpq −
1

12
Co

ijpqδkrεij,kεpq,r

)

πa (25)

G represents the dissipative energy ratio due a to unit increase ofa in a unit volume. It can be considered as
the energy release rate in a more general sense. According tothe Griffith criterion, crack propagation occurs
whenG attains a critic valueGc(a) or the critical energy release rate, namely :

G ≤ Gc(a) = Goa
λ (26)

whereGo andλ are real constants that we will determine later. From (25) and (26), we have :

g(a, εij , εij,k) ≡

[

π

Go

(

1

V o
Co

ijpqεijεpq −
1

12
Co

ijpqδkrεij,kεpq,r

)]
1

λ−1

− a ≤ 0 (27)

Equation (27) represents a crack evolution surface. Wheng < 0, there is no crack growth. By identification of
the coefficient , we obtain the following constitutive equations for general loading :

U =



















1

2

[

(1 − πρ)Co
ijpqεijεpq +

πa2

12
Co

ijpqδkrεij,kεpq,r

]

when g < 0

1

2
Co

ijpqεijεpq −
1

2
Eoε2

max

λ − 1

λ + 1

(

Co
ijpqεijεpq

Eoε2
max

−
a2

o

12ρo

Co
ijpqδkrεij,kεpq,r

Eoε2
max

)

λ+1

λ−1

when g = 0

(28)

In the case whereao = 0, this potential is degenerated to a conventional potentialsimilar to the Lennard-Jones
potential (1924). The originality of the present model resides in the fact that, on one hand, it is obtained from
a homogenization procedure of a cracked material and therefore it is physically reasonable, and on the other
hand, the strain gradient is included into this potential. For the numerical modelling, the calculation of the
variation of the strain energy density for loading regime isgiven by :

δU =
∂U

∂εij

δεij +
∂U

∂εij,k

δεij,k = (1 − d)Co
ijpqεijδεpq ≃ (1 − d)Co

ijpqεijδεpq (29)

with the damage parameterd

d =

(

Co
ijpqεijεpq

Eoε2
max

−
a2

o

12ρo

Co
ijpqδkrεij,kεpq,r

Eoε2
max

)

2

λ−1

with V o ≡
a2

o

ρo

(30)

4.1 Comparison of the strain gradient model with experimental data
Li and Zhang (2006) carried out uniaxial tension tests on dog-bone shaped PMMA plates with a central hole.
The mechanical characteristics of the material they used were : the elastic modulus E = 3000 Mpa, the Poisson
ratio ν = 0.36 and the ultimate tensile stressσc = 72MPa. The section of the specimens was10 × 30mm2.
Central holes were drilled with different diameters, namely, d = 0.6, 1.2, 2 and3 mm. Specimens without holes
were also prepared for comparison. These specimens were subjected to an uniaxial tension with a loading rate
v = 5mm/minute until failure.
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The only unknown parameter in this model is the average spacing between nucleated microcracks represented

by V o =
a2

o

ρo

. Figure 1 illustrates the critical fracture loads predicted by the present model for different hole

sizes and different values of the parameterV o. The experimental results are also plotted for comparison.First,
we can observe that the present model can describe the size effect observed in the experimentation whatever
the value ofV o , i.e., the critical fracture load increases as the hole sizedecreases. However, we can also notice
the very important influence of nucleated microcracks spacing on the prediction accuracy. Roughly speaking,
neglecting the strain gradient effect(V o) will lead to a too conservative fracture prediction. On the contrary, a
too largeV o will overestimate the critical fracture loads. For the PMMAsamples used in the present study, a
value ofV o ∼ 0.2mm2 gives a suitable fit to the experimental data.
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FIG. 1 – Comparison of the predicted fracture loads with the experimental data

5 Discussions and concluding remarks
In this work, we first developed a homogenization procedure in order to establish the strain gradient constitutive
relations for a heterogeneous material. When the macroscopic stress or strain gradient cannot be neglected
compared to the size of a RVE, the homogenization procedureslead to the gradient constitutive laws in a
natural manner. An important feature of the present method is its self-consistency with respect to the selection
of the RVE. Once the microstructure of the material is correctly represented in a RVE, the constitutive equations
obtained by using the present method are independent of its size and shape.
In the frame of this homogenization procedure, we have constructed a strain gradient constitutive relation for a
bidimentional elastic material with many microcracks by adopting the self-consistent scheme. The constitutive
equation we obtained shows clearly that the material behaviour depends not only on the crack density, but also
on the average crack length associated with the strain gradient.
In order to extend the obtained constitutive equation to a damage evolution law, we propose a resistance curve
for the microcrack growth on the basis of experimental observations in brittle materials. This approach leads to
an energy potential that is capable to describe the brittle property of fracture. When we incorporate the strain
gradient in this potential, we obtain a damage model in whichthe strain gradient plays a very important role in
damage evolution.
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