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Résuḿe :
L’objectif final de cettéetude est d’utiliser un modèle ŕeduit construit par POD pour contrôler unécoulement de cavité
ouverte en ŕegime compressible. Dans cette communication, nous utiliserons des ḿethodes de calibration pour aḿeliorer
la précision du mod̀ele ŕeduit et nous nous intéresserons̀a une strat́egie de construction d’une base POD adaptée au
contrôle.

Abstract :
The final objective of this work is to utilise a Reduced Order Model based on POD to control the compressible flow over an
open cavity. In this communication we will employ some methods of calibration to improve the accuracy of the Reduced
Order Model and will also present a strategy to extend the PODbasis to include the effect of actuation.
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1 Introduction
As far as solving an optimal control problem is concerned, the traditional approaches like Direct Numerical
Simulation (DNS) and Large Eddy Simulation (LES) pose difficulties in terms of computational resources.
Therefore, in these circumstances, Reduced Order Modelling (ROM) based on Proper Orthogonal Decompo-
sition (POD) has been widely used as a predictive tool to model the flow dynamics. In the past, ROM has
been successfully applied for various flow control problemslike wake behind cylinder [1] and high lift config-
urations [2] to name a few. Flow past an open cavity has already been studied using ROM by [3] and [4] but
without any application to flow control. More recently, ROM for controlled configurations has been proposed
by [5] and [6]. In this work we propose a calibrated ROM for laminar cavity flow and give extensions to model
actuated flow which will be used in the future for control purposes.

2 Reduced Order Modelling of Cavity Flows

2.1 Dynamical system
The basic idea of a POD ROM is to decompose the flow field into energy ranked coherent structures represented
by mathematical modes and then use these modes within a Galerkin approach for reducing the order of the
system. Letq(x, t) be any flow variable wherex andt ∈ [0, T ] denote respectively the spatial variables and
the time of the numerical simulation then we seek an expansion for q of the form

q(x, t) = q(x) +

NP OD
∑

i=1

ai(t)φi(x) (1)

whereq denotes the average of the flow snapshots. The spatial modesφi(x) and the temporal coefficientsai(t)
are determined by solving an eigenvalue problem that minimizes the average projection error. The Reduced
Order Model is then obtained by performing a Galerkin projection of the governing dynamics (for instance
the Navier-Stokes equations) onto the spatial modes. Two models for the ROM has been proposed in [4], one
using the full compressible equations and the other with an isentropic approximation. In this work we use the
isentropic equations for compressible flows as in [3]. Scaling the velocitiesu, v by the freestream velocity
U∞, the local sound speedc by the ambient sound speedc∞, the lengths by the cavity depthD (see figure 1),
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and time byD/U∞, the equations are given by

ut + uux + vuy +
1

M2

2

γ − 1
ccx =

1

Re
(uxx + uyy)

vt + uvx + vvy +
1

M2

2

γ − 1
ccy =

1

Re
(vxx + vyy)

ct + ucx + vcy +
γ − 1

2
c(ux + vy) = 0

whereM = U∞/a∞ is the Mach number andRe = U∞D/ν is the Reynolds number. If we denoteq =
(u, v, c) the vector of flow variables, the above equations can be recasted as

q̇ =
1

Re
L(q) +

1

M2
Q1(q,q) +Q2(q,q) with (2)

L(q) =

[

uxx + uyy

vxx + vyy

0

]

, Q1(q1,q2) = − 2
γ−1





c1c2
x

c1c2
y

0



 , Q2(q1,q2) = −





u1u2
x + v1u2

y

u1v2
x + v1v2

y

u1c2
x + v1c2

y + γ−1
2 c1(u2

x + v2
y)





To obtain the reduced order model by means of a Galerkin projection we define an inner product on the state
space as

(q1,q2)Ω =

∫

Ω
(u1u2 + v1v2 +

2α

γ − 1
c1c2) dΩ

whereα is a constant andγ is the ratio of specific heats. In this work we choose the valueof α = 1, which gives
the definition of stagnation enthalpy while calculating thenorm. The above definition ensures the stability of
the origin of the attractor. We use the expansion (1) and the definition of the inner product given above to
perform the Galerkin projection of the isentropic equations onto the firstn ≪ NPOD spatial eigenfunctions.
After some manipulation, we obtain the Reduced Order Model

ȧR
i (t) =

1

Re
C1

i +
1

M2
C2

i + C3
i +

n
∑

j=1

(

1

Re
L1

ij +
1

M2
L2

ij + L3
ij

)

aR
j (t) +

n
∑

j,k=1

(

1

M2
Q1

ijk + Q2
ijk

)

aR
j (t)aR

k (t)

= Ci +

n
∑

j=1

Lija
R
j (t) +

n
∑

j,k=1

Qijka
R
j (t)aR

k (t) = fi(Ci,Li,Qi,a
R(t))

(3)

wherefi is a polynomial of degree 2 inaR and where the coefficients are given by

C1
i = (φi,L(q))Ω

C2
i = (φi,Q1(q,q))Ω

C3
i = (φi,Q2(q,q))Ω

L1
ij = (φi,L(φj))Ω

L2
ij = (φi,Q1(q,φj) +Q1(φj,q))Ω

L3
ij = (φi,Q2(q,φj) +Q2(φj,q))Ω

Q1
ijk = (φi,Q1(φj,φk))Ω

Q2
ijk = (φi,Q2(φj,φk))Ω

2.2 Calibration of ROM
The reduced order model has an intrinsic problem of converging to the wrong attractor when used to simulate
the flow for long time periods and hence there is a need to identify the coefficients of the dynamical system
so as to minimize the error between the actual time coefficientsaP

i (t) and that obtained from the ROMaR
i (t)

using a suitable norm for the error. Three definitions of error have been defined in [7]. The natural choice is
in defininge(1)(f , t) = aP (t) − aR(t) but this leads to a nonlinear constrained problem (see section 2.2.1).
The other two choices being state calibration (errore(1) without the dynamical constraint) and flow calibration
e(3)(f , t) = ȧP (t) − f(aP (t)) (see section 2.2.2) wheref is characterized by the coefficients of (3).

2.2.1 Nonlinear constrained problem

In this method we have to find the coefficients of the dynamicalsystem such that the errore(1) is minimized
under the constraints that the coefficientsCi,Li,Qi (i = 1, · · · , n) satisfy (3). We rather seek to minimize
I(1)(f) = 〈‖e(1)(f , t)‖2〉T where〈·〉T is any time averaging operator and‖ · ‖ is the norm defined as‖e‖2 =
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êx

êy
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Figure 1: Schematic diagram of cavity configuration
and computational domain.
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Figure 2: Eigenvalue spectrum and Relative Informa-
tion Content.

eTe. This leads us to a constrained optimisation problem as found in [1] in which we solve backward in time
with ξi(T ) = 0 an adjoint equation given by

ξ̇i(t) = −

n
∑

j=1

Ljiξj(t) −

n
∑

j,k=1

ξj(t)(Qjik + Qjki)a
R
i (t) − 2

(

aR
i (t) − aP

i (t)
)

(4)

whereξi is the adjoint variable. The gradients of the cost functional I(1) with respect to the coefficientsCi and
Li of the ROM are

∇I(1)
Ci

=

∫ T

0
ξi(t) dt, ∇I(1)

Li
=

∫ T

0
ξi(t)a

R
j (t) dt

and represent the sensitivity of the functional to the coefficients. The corresponding optimality system (state
equations, adjoint equations, optimality conditions) is solved by a gradient based method to obtain the coeffi-
cients of the reduced order model.

2.2.2 Flow calibration with Tikhonov regularization

As demonstrated in [8] minimization ofI(3)(f) = 〈‖e(3)(f , t)‖2〉T leads to solve a linear system for the
coefficientsy definingf (see [7] for the details). Unfortunately, this linear system is not well conditioned what
may lead to numerical divergence when the calibrated coefficients are used to integrate in time (3). For that
purpose, [8] introduced a new cost functional defined as a weighted sum of a term measuring the normalized
error between the behavior of the model (3) withf and with the coefficients determined directly by Galerkin
projectionfGP and another term linked to the distance betweenf andfGP . The value of the weighting factor
which represents the cost of calibration was chosen rather arbitrarily and hence was user dependent. In [7], a
Tikhonov regularization method was suggested to improve the conditioning of the linear system. The idea of
this method is to seek the regularized solutionyρ as the minimizer of the following weighted functional

Φρ(y) = ‖Ay − b‖2
2 + ρ‖L (y − y0) ‖2

2,

where the first term corresponds to the residual norm, and thesecond to a side constraint imposed on the
solution.L represents the discrete approximation matrix of a differential operator of orderd andy0 a reference
solution. The valueρ is chosen so as to compromise between the minimization of thenorm of the residual for
the linear system and the semi-norm of the solution. Here, the regularization parameterρ is determined by the
classical L-curve method, see [7].

3 Cavity Flow Configuration
The cavity is of anLe/D ratio of2. The flow is initialized by a laminar boundary layer so as to have a thickness
of δ/D = 0.28 at the leading edge of the cavity. The Reynolds number of the flow based on the cavity depth
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Figure 3: Representation of theu component of velocity for the first 4 spatial POD modes.

is 1500 and the flow Mach number is0.6. The equations of Navier-Stokes are discretised using a4th order
scheme in time and space (DNS code is provided by P. Comte, LEAPoitiers). Snapshots are taken once the
flow has stabilized and112 snapshots are uniformly sampled which corresponds to about2 periods of the flow
oscillation (5.6 in non dimensional time) corresponding to the first Rossitermode [9]. Figure 2 demonstrates
a degenerate eigen spectrum showing eigenvalues which occur in pairs. Also the first 4 eigenmodes capture
around98.5% of the total fluctuation energy as shown by the Relative Information Content (RIC) defined
asRIC(i) =

∑i
j=1 λj/

∑M
j=1 λj . The representation of the first 4 spatial POD modes is shown in Fig. 3.

Although the modes occur in pairs and their values are distinct the representation is topologically equivalent.
Figure 4 presents forn = 4 the temporal modes before calibration and after calibration with the Tikhonov
approach. The results of the iterative optimisation procedure are not plotted but are similar to the results
obtained from Tikhonov approach. We observe that the un-calibrated ROM behaves well initially as compared
to the DNS simulation and later starts diverging.
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Figure 4: Comparison of the temporal modes before and after calibration (n = 4).

We also plot in Fig. 5 the error per mode for each method and we find that calibration by the iterative optimisa-
tion yields a better result. Also the error of calibration increases for the higher mode as, inter-modal transfers
are not taken into account while truncating the terms in the ROM.

4 Actuated Flow ROM
The advantage of the reduced order models can be fully exploited when they are capable of being used in
control studies, also we would like to have a dynamical system where the actuation effect is naturally embed-
ded. The usual control input separation methods [1] have thedisadvantage that one must be able to identify
the control regions, while taking care to reproduce the un-actuated dynamics when the actuation value tends
to zero. The method described in [6] solves an optimal problem to determine a suitable actuation mode to
be included in the modal expansion. To start with, let the actuated snapshot sets be denoted as{qac

k , γk}
m
k=1,

whereγk = γ(tk) is the value of the actuation,qac
k = qac(x, tk) andm is the number of actuated snapshots.

We subtract the meanq0 of the un-actuated base flow from the snapshot set. We define a new set of realizations
by an innovation operator given as

q̃k = qac
k − PSq

ac
k = qac

k −
n

∑

i=1

(qac
k ,φi)Ω φi
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Figure 5: Comparison of the errors per mode for the two methods of calibrations. For the flow calibration, we
haved = 2 andy0 = 0.

to care of the part of the actuated mode which can be captured well by the un-actuated subspace. We then wish
to construct an orthogonal subspace to the un-actuated space to capture the effect of actuation. This is done by
solving anL2 minimization problem for the functional given by

J (ψ) = E
[

‖q̃k − γkψ‖
2
]

whereE is any averaging operator. The solution of the above minimization problem is given by

ψ =
E(γkq̃k)

E(γ2
k)

The expansion for the flow field can now be written for the actuated case as

qac(x, t) = qac(x) +

n
∑

i=1

aac
i (t)φi(x) + γ(t)ψ(x) (5)

With this expansion the Galerkin projection for equation (2) gives

ȧac
i (t) = Ci +

n
∑

j=1

Lija
ac
j (t) +

n
∑

j,k=1

Qijka
ac
j (t)aac

k (t) + h1iγ(t) +
n

∑

j=1

h2ija
ac
j (t)γ(t) + h3iγ

2(t)

where

h1i =
1

Re
(φi,L(ψ))Ω + (φi,Q(q,ψ))Ω + (φi,Q(ψ,q))Ω ,

h2ij = (φi,Q(φj,ψ))Ω + (φi,Q(ψ),φj))Ω , h3i = (φi,Q(ψ,ψ))Ω

withQ(·, ·) = 1
M2Q1(·, ·) +Q2(·, ·).

The actuated temporal modes are obtained from (5) as

aac
i (t) = (φi,q

ac − qac − γ(t)ψ)Ω

Here we make the assumption that the average of the mean flow inunactuated and actuated cases are equal
(qac = q). It can induce some numerical error, so calibration is alsorequired for the forced dynamical
system. For calibration of the above system we use a two fold approach first by calibrating the coefficients of
the un-actuated flow to represent the temporal modes of the un-actuated systemaR

i (t) and then to calibrate the
additional coefficients of the actuated system above to match the temporal behavior for the actuated caseaac

i (t).
The actuated spatial mode are presented in Fig. 6. The snapshots are obtained from the DNS by introducing
an actuation of the form|A sin(ωt)| just before the leading edge of the cavity (x ∈ [−0.15;−0.05] andy = 0)
where the flow is more sensitive to actuation. The spatial modes exhibit a local behavior capturing the effect
of actuation.
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Figure 6: u and v velocity components of the actuation modeψ corresponding to an actuation defined by
vwall = |0.2 sin(0.4t)|.

5 Conclusion
In this work we have presented an approach for the reduced order modelling of isentropic compressible flows.
The various methods for the calibration of the ROM has also been discussed. Results for the cavity flow
configuration has been presented. Also the extension to include actuation effect, and its calibration, which
distinguishes two steps of calibration one for the un-actuated coefficients and the second for the actuated
coefficients has been outlined. The current work lies in applying the method to perform optimal control of
cavity flows.

6 Acknowledgment
This research project has been supported by a Marie Curie Early Stage Research Training Fellowship of the
European Community’s Sixth Framework Programme under contract number MEST CT 2005 020301. This
work is also supported by l’Agence Nationale de la Rechercheunder the CORMORED project ANR-08-
BLAN-0115. The Authors would also like to thank Pierre Comtefrom LEA Poitiers for making available his
DNS code.

References
[1] Bergmann M. and Cordier L. Optimal rotary control of the cylinder wake using Proper Orthogonal De-

composition reduced-order model. Phys. Fluids, 17(9), 097101, 2005.

[2] Luchtenburg D. M., Günther B., Noack B. R., King R., and Tadmor G. A generalized mean-field model of
the natural and high frequency actuated flow around a high lift configuration. J. Fluid Mech, 623, 283–316,
2009.

[3] Rowley C. W., Colonius T., and Murray R. M. Model reduction for compressible flows using POD and
Galerkin projection. Physica D. Nonlinear Phenomena, 189(12), 115–129, 2004.

[4] Gloerfelt X. Compressible Proper Orthogonal Decomposition/Galerkin reduced order model of self sus-
tained oscillations in a cavity. Phys. Fluids, 20, 115105, 2008.

[5] Weller J., Lombardi E., and Iollo A. Robust model identification of actuated vortex wakes. Physica D,
238(4), 416–427, 2009.

[6] Kasnakoglu C. Reduced Order Modeling, Nonlinear Analysis and Control Methods for Flow Control
Problems. PhD thesis, The Ohio State University, 2007.

[7] Cordier L., Abou-El-Majd B., and Favier J. Calibration of POD Reduced-Order models by Tikhonov
regularization. Int. J. Numer. Meth. Fluids, In press, 2009.

[8] Couplet M., Basdevant C., and Sagaut P. Calibrated reduced-order POD-Galerkin system for fluid flow
modelling. J. Comp. Phys, 207, 192–220, 2005.

[9] Delprat N. Rossiter’s formula: A simple spectral model for a complex amplitude modulation process?
Phys. Fluids, 18, 071703, 2006.

6


