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Résune :
L'objectif final de cetteéétude est d’utiliser un made réduit construit par POD pour condter unécoulement de ca@t
ouverte en&gime compressible. Dans cette communication, nousartilis des @thodes de calibration pour atiorer

la précision du modle reduit et nous nous iatesserons une straggie de construction d’'une base POD adspau
controdle.

Abstract :

The final objective of this work is to utilise a Reduced Ordedkl based on POD to control the compressible flow over an
open cavity. In this communication we will employ some nukttod calibration to improve the accuracy of the Reduced
Order Model and will also present a strategy to extend the HfaBis to include the effect of actuation.
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1 Introduction

As far as solving an optimal control problem is concerned,tthditional approaches like Direct Numerical
Simulation (DNS) and Large Eddy Simulation (LES) pose dities in terms of computational resources.
Therefore, in these circumstances, Reduced Order ModdROM) based on Proper Orthogonal Decompo-
sition (POD) has been widely used as a predictive tool to mthdeflow dynamics. In the past, ROM has
been successfully applied for various flow control probléikeswake behind cylinder [1] and high lift config-
urations [2] to name a few. Flow past an open cavity has ayrbaén studied using ROM by [3] and [4] but
without any application to flow control. More recently, RObF fcontrolled configurations has been proposed
by [5] and [6]. In this work we propose a calibrated ROM for laar cavity flow and give extensions to model
actuated flow which will be used in the future for control pasps.

2 Reduced Order Modelling of Cavity Flows
2.1 Dynamical system

The basic idea of a POD ROM is to decompose the flow field intoggrranked coherent structures represented
by mathematical modes and then use these modes within ak@eadgproach for reducing the order of the
system. Lefg(x,t) be any flow variable where andt € [0, 7] denote respectively the spatial variables and
the time of the numerical simulation then we seek an exparisigg of the form

Npop

q(x,t) =q(@) + > ai(t)ps(x) (1)

1=1

whereg denotes the average of the flow snapshots. The spatial iggtesand the temporal coefficiends(t)

are determined by solving an eigenvalue problem that miz@mihe average projection error. The Reduced
Order Model is then obtained by performing a Galerkin priiggcof the governing dynamics (for instance
the Navier-Stokes equations) onto the spatial modes. Twaetador the ROM has been proposed in [4], one
using the full compressible equations and the other wittsantropic approximation. In this work we use the
isentropic equations for compressible flows as in [3]. ®cathe velocities:, v by the freestream velocity
U, the local sound speedby the ambient sound speed, the lengths by the cavity depfh (see figure 1),
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and time byD /U, the equations are given by

2 1
U + Uty + VUy + mﬁccm = E(um + ’LLyy)
1 2 1
V¢ + UV, + VUy + Wﬁccy = E(Uxx + vyy)
¢t + ucy + vey — c(ug +vy) =0
where M = Uy /a is the Mach number an®e = U,,D/v is the Reynolds number. If we denaje=
(u, v, c) the vector of flow variables, the above equations can be tetas
1 .
q= ReL( q) + 75Q1(a.9) + Q2(q.9) with )
Uy + Uyy cte? u! u + UluQ
L(q) = | Vaz +Uyy ) Ql(q1>q2) = _% Clcz ) QZ(qlqu) = - U ’U —|—’U vy
0 L2 +ote + el (u2 +02)

To obtain the reduced order model by means of a Galerkin giofewe define an inner product on the state
space as

2c

(q1,92)q = /(uluz +vive + ciez) d2
Q y—1

wherea is a constant angl is the ratio of specific heats. In this work we choose the vafue= 1, which gives
the definition of stagnation enthalpy while calculating tttem. The above definition ensures the stability of
the origin of the attractor. We use the expansion (1) and #imition of the inner product given above to
perform the Galerkin projection of the isentropic equationto the firsth < Npop spatial eigenfunctions.
After some manipulation, we obtain the Reduced Order Model

1 1 g

G k=1
=C; + ZL” j Z kaa ) fz(CuLzana ( ))
k=1
g 3)
wheref; is a polynomial of degree 2 ia’* and where the coefficients are given by

1 = (¢, L(q)) Li; = (¢4, L(#))q L (s .

Gl @@ )y L= 0nQi@0y) @i T)g oy O Er Ok
P = (04, Q2(7,7))q L;; = (¢, Q2(q, ¢5) + Q2(95,0))q k pERs TR

2.2 Calibration of ROM

The reduced order model has an intrinsic problem of conugrgi the wrong attractor when used to simulate
the flow for long time periods and hence there is a need toiigehe coefficients of the dynamical system

so as to minimize the error between the actual time coeftigieh(¢) and that obtained from the RON(¢)
using a suitable norm for the error. Three definitions of en@ve been defined in [7]. The natural choice is

in defininge (f,t) = aP(t) — a®¥(t) but this leads to a nonlinear constrained problem (seecse2tP.1).
The other two choices being state calibration (eef@? without the dynamical constraint) and flow calibration
e®)(f,t) = aP(t) — f(a(t)) (see section 2.2.2) wheykis characterized by the coefficients of (3).

2.2.1 Nonlinear constrained problem

In this method we have to find the coefficients of the dynamsgatem such that the erref) is minimized
under the constraints that the coefficiets L;, Q; (i = 1,--- ,n) satisfy (3). We rather seek to minimize

ZW(f) = (|leM(£,1)|?)r where(-)r is any time averaging operator afid|| is the norm defined dge||? =

2
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Figure 1: Schematic diagram of cavity configuration

and computational domain. Figure 2: Eigenvalue spectrum and Relative Informa-

tion Content.

e’'e. This leads us to a constrained optimisation problem asdfaufil] in which we solve backward in time
with &;(7") = 0 an adjoint equation given by

G(t) == L&) = > &M Qjin + Qira)ai (t) — 2 (af (t) — af (1)) 4
j=1

J,k=1

whereg; is the adjoint variable. The gradients of the cost functigi& with respect to the coefficienes; and
L; of the ROM are

T T
viWe = / &(t) dt, vit,, = / &(t)al(t) dt
0 0

and represent the sensitivity of the functional to the coieffits. The corresponding optimality system (state
equations, adjoint equations, optimality conditions)db/ed by a gradient based method to obtain the coeffi-
cients of the reduced order model.

2.2.2 Flow calibration with Tikhonov regularization

As demonstrated in [8] minimization &f®)(f) = (||e® (f£,t)||>)r leads to solve a linear system for the
coefficientsy defining f (see [7] for the details). Unfortunately, this linear syste not well conditioned what
may lead to numerical divergence when the calibrated cdaifie are used to integrate in time (3). For that
purpose, [8] introduced a new cost functional defined as ghted sum of a term measuring the normalized
error between the behavior of the model (3) wjttand with the coefficients determined directly by Galerkin
projectionf<” and another term linked to the distance betwgemd f¢7. The value of the weighting factor
which represents the cost of calibration was chosen rathéraxily and hence was user dependent. In [7], a
Tikhonov regularization method was suggested to improgectimditioning of the linear system. The idea of
this method is to seek the regularized solutigras the minimizer of the following weighted functional

®,(y) = [[Ay — bl5 + pl|£ (y — yo) |13,

where the first term corresponds to the residual norm, andélend to a side constraint imposed on the
solution. £ represents the discrete approximation matrix of a difféaéoperator of orded andy, a reference
solution. The value is chosen so as to compromise between the minimization afdhm of the residual for
the linear system and the semi-norm of the solution. Heeeregbularization parametgris determined by the
classical L-curve method, see [7].

3 Cavity Flow Configuration

The cavity is of anL. /D ratio of 2. The flow is initialized by a laminar boundary layer so as teehathickness
of §/D = 0.28 at the leading edge of the cavity. The Reynolds number of tve ltlased on the cavity depth

3
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Figure 3: Representation of tiecomponent of velocity for the first 4 spatial POD modes.

is 1500 and the flow Mach number 6.6. The equations of Navier-Stokes are discretised usit§f arder
scheme in time and space (DNS code is provided by P. Comte,Rditfers). Snapshots are taken once the
flow has stabilized antl12 snapshots are uniformly sampled which corresponds to &ypertiods of the flow
oscillation 6.6 in non dimensional time) corresponding to the first Rossitede [9]. Figure 2 demonstrates
a degenerate eigen spectrum showing eigenvalues whichi imcpairs. Also the first 4 eigenmodes capture
around98.5% of the total fluctuation energy as shown by the Relative mfation Content (RIC) defined
asRIC(i) = Y%, Aj/zjj‘il Aj. The representation of the first 4 spatial POD modes is shaviig. 3.
Although the modes occur in pairs and their values are distire representation is topologically equivalent.
Figure 4 presents for = 4 the temporal modes before calibration and after calibnatith the Tikhonov
approach. The results of the iterative optimisation procedare not plotted but are similar to the results

obtained from Tikhonov approach. We observe that the uieaed ROM behaves well initially as compared
to the DNS simulation and later starts diverging.
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Figure 4: Comparison of the temporal modes before and adtdaration (o = 4).

We also plot in Fig. 5 the error per mode for each method andnieffiat calibration by the iterative optimisa-
tion yields a better result. Also the error of calibrationrieases for the higher mode as, inter-modal transfers
are not taken into account while truncating the terms in t9&/R

4 Actuated Flow ROM

The advantage of the reduced order models can be fully dgdlovhen they are capable of being used in
control studies, also we would like to have a dynamical systdere the actuation effect is naturally embed-
ded. The usual control input separation methods [1] havelidedvantage that one must be able to identify
the control regions, while taking care to reproduce the ecmated dynamics when the actuation value tends
to zero. The method described in [6] solves an optimal prolie determine a suitable actuation mode to
be included in the modal expansion. To start with, let theateid snapshot sets be denoted &g, v1. },- ;.

wherey;, = 7(t;) is the value of the actuatiogg® = ¢®“(x, t;;) andm is the number of actuated snapshots.
We subtract the meagy, of the un-actuated base flow from the snapshot set. We defie aet of realizations
by an innovation operator given as

n

i = q5° — Psqp® = qi° — > (qh® ¢i)g &s
=1
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Figure 5: Comparison of the errors per mode for the two metludatalibrations. For the flow calibration, we
haved = 2 andyg = 0.

to care of the part of the actuated mode which can be captuethyvthe un-actuated subspace. We then wish
to construct an orthogonal subspace to the un-actuated gpaapture the effect of actuation. This is done by
solving anLs minimization problem for the functional given by

T (@) = E [Id — w9|”]
whereF is any averaging operator. The solution of the above miration problem is given by

~ E(wdqk)
V= E(v})

The expansion for the flow field can now be written for the aiefd@ase as

q*(z,1) = (@) + Y_ ai*(t)pi(x) +7(t)3(z) ®)
=1

With this expansion the Galerkin projection for equatiopd®es

C +ZLZJ J + Z Qijka;'w ag’ ( "‘hlz’Y +Zh2m J +h327 ( )
=1
where
i = = (65 L)) + (90, Q@ ¥))o + (61, Qb D)o
haij = (94, Q(@5,%)) o + (H4, Q(WY), Dj)) ey, hai = (P4, Q(Y, 7)) q
with Q(-,-) = 7= Q1(,-) + Q2(-, ).

The actuated temporal modes are obtained from (5) as

ai(t) = (¢:,4% = q* —1()Y)q

Here we make the assumption that the average of the mean flonaictuated and actuated cases are equal
(@*¢ = q). It can induce some numerical error, so calibration is atsquired for the forced dynamical
system. For calibration of the above system we use a two fgdaach first by calibrating the coefficients of
the un-actuated flow to represent the temporal modes of tzetwated system’ (¢) and then to calibrate the
additional coefficients of the actuated system above tomtagtemporal behavior for the actuated ca$ét ).

The actuated spatial mode are presented in Fig. 6. The snigpaie obtained from the DNS by introducing
an actuation of the formA sin(wt)| just before the leading edge of the cavity€ [—0.15; —0.05] andy = 0)
where the flow is more sensitive to actuation. The spatialenakhibit a local behavior capturing the effect
of actuation.
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Figure 6: v andwv velocity components of the actuation mogecorresponding to an actuation defined by
Vwair = [0.2 sin(0.4t)|.

5 Conclusion

In this work we have presented an approach for the reducest orddelling of isentropic compressible flows.
The various methods for the calibration of the ROM has alsenb#iscussed. Results for the cavity flow
configuration has been presented. Also the extension tadechctuation effect, and its calibration, which
distinguishes two steps of calibration one for the un-aetizoefficients and the second for the actuated
coefficients has been outlined. The current work lies in ypglthe method to perform optimal control of
cavity flows.
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