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Résumé :
Dans la communication intitulée “Boundary Conditions in Porous Media : A Variational Approach” nous avons présenté
un cadre cinématique adapté à la description d’un milieu continu présentant une surface de singularité. Ce cadre était
appliqué au cas particulier d’un milieu poreux presentant une discontinuité matérielle dans la configuration du solide.
Nous traitons içi des problèmes plus généraux dans lesquels la surface de singularité n’est attachée ni au squelette solide
ni au fluide saturant. Cest en particulier le cas lors de la propagation d’ondes de choc dans un milieu poreux saturé.

Abstract :
In the paper “ Boundary Conditions in Porous Media : A Variational Approach” we present a kinematical framework
suitable for describing the motion of a continuum with a moving surface discontinuity. We also apply the obtained results
to the particular case of a porous medium with a solid-material surface discontinuity. Nevertheless, more general pro-
blems such as the propagation of shock waves in porous media have not been treated in the quoted paper, and are then
approached in the present work.

Mots clefs : Ondes de Choc dans le Milieux Poreux, Principe Variationel de Hamilton dans l’espace-
temps, Conditions de Saut.

1 Introduction
In a recent paper (see [2]) we presented a four dimensional kinematical framework which is able to describe the
motion of a continuum with a moving surface discontinuity. A four dimensional kinematical approach for fluid
mixtures is presented in [3] . We applied the obtained results to the particular case of a fluid-filled porous solid
with a solid-material surface discontinuity. In other words, we focused our attention on that class of problems
in which the solid porous matrix has a fixed surface discontinuity which represents, for instance, a jump in the
mechanical properties of the solid itself (elasticity, porosity, etc.). This is indeed the proper framework when
one wants to study the motion of physical systems like two porous media which are in contact and which are
filled by a fluid or like a fluid-filled porous medium surrounded by a pure fluid.
In this paper we use this four dimensional framework to study propagation of shock waves in porous media
neglecting all dissipation effects. We derive governing equations and natural jump conditions by means of a
four dimensional extended Hamilton principle.
The problem of propagation of shocks in fluid-filled porous materials is an open challenge in Mechanics and
Engineering. Many authors studied practical problems associated to shock wave propagation in porous media
(see e.g. [5]) such as wave propagation due to detonation of explosives. The model to which many of these
authors refer is the Baer-Nunziato model (see [1]). The jump conditions usually used for shock waves are
obtained from the conservation of mass, momentum, and energy for any single phase of the medium and do
not stem from a variational principle.

2 Lagrangian Functions
In this section we introduce the Lagrangian functions which are needed to study the motion of a p-constituent
porous medium with a moving surface discontinuity.

Notation 1. We note by M the set of all 4× 4 matrices on R (i.e. second order tensors defined on R4).
Moreover, we label by p the number of constituents of the considered porous medium.
Finally, we use three indexes a, b and c which runs in the following ranges :

a = 0, 1, ..., p− 1; b = 0, 1, ..., p ; c = 1, 2, ..., p.
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Let us introduce two scalar functions L∗ and L0 defined as

L∗ : R4(p+1) ×Mp+1 → R L0 : R4(p+1) ×Mp → R (1)

(
b

V,
b

M ) 7→ L∗(
b

V,
b

M ) (
b

V,
c

P ) 7→ L0(
b

V,
c

P)

Clearly, the map L∗ associates to any set of p + 1 vectors (or first order tensors on R4)
bV and of p + 1

matrices
bM the real number L∗(

bV, bM) and analogously, the map L0 associates to any set of p+1 vectors
bV

and of p matrices
cP the real number L0(

bV, cP).
We call these functions Lagrangian functions, and we assume in the sequel that these two Lagrangians are not
independent. Indeed, we assume that the following relationship holds

L∗(
b

V,
b

M ) = det(
0
M ) L0(

b

V,
c

M ·0M−1 ), ∀ (
b

V,
b

M ) ∈ R4(p+1) ×Mp+1 (2)

We also assume that the variables
bV and

bM are all independent, if not differently specified.

Proposition 2. (i) Given a Lagrangian L0 as defined in Eq. (1), if we introduce a Lagrangian L∗ by means of
Eq. (2), then the following identity holds

L∗I−
b

MT · ∂L∗
∂ bM

= 0, (3)

where I denotes the identity tensor on R4.
(ii) Conversely, if a function L∗ verifies Eq. (3) for any set of p+ 1 second order tensors

bM, then there exists
a function L0 for which Eq. (2) is verified.

3 Kinematics
We introduce here a 4D kinematical framework to describe the motion of a p-constituents porous medium with
a moving surface discontinuity. We underline that [2] is generalized both by considering a multi-constituents
porous medium and by introducing a moving surface discontinuity (shock wave) in the porous medium itself.
Let us introduce a fictive 3D configuration B∗ with a fixed surface discontinuity S∗ ; we denote by B∗ :=
B∗ × [0, T ] the corresponding 4D fictive configuration and by S∗ := S∗ × [0, T ] its 4D discontinuity surface.
Analogously, let us introduce the 3D reference (Lagrangian) configurations Ba, a = 0, 1, ..., p − 1, of the p
constituents and let us denote by Ba := Ba × [0, T ] the corresponding 4D Lagrangian configurations 1.
Finally, if for any time t the 3D domain Bp (t) represents the current (Eulerian) configuration of the porous
medium we introduce the corresponding 4D Eulerian domain as Bp :=

⋃
t∈[0,T ]Bp (t)× {t}.

According to the definitions given in [2], we introduce p+1 piecewiseC1 diffeomorphisms
bXX∗, b = 0, 1, ..., p,

as 2,

bXX∗ : B∗ → Bb,
X∗ 7→

bXX∗ (X∗) ;

these diffeomorphisms clearly have S∗ := S∗ × [0, T ] as singularity surface.
Consequently, the image surfaces Sb :=

bXX∗ (S∗) are singularity surfaces for the inverse maps
bXX−1
∗ .

We notice that, by composition of the p + 1 maps
bXX∗, it is possible to recover p (p+ 1) other maps the

domain and range of which can be chosen arbitrarely among the sets Bb. These maps are also piecewise C1

diffeomorphisms and include, for instance, the usual 4D placement maps
pXXa :=

pXX∗ ◦
aXX−1
∗ . (4)

It is then clear that, since the introduced maps
bXX∗ allow for deriving both the current placement of all the

constituents of the porous medium and the current position of the singularity surface, they are suitable for the
description of the motion of a p-constituents porous medium with a surface discontinuity.
From now on we assume that the maps

bXX∗ are such that
bXX∗ (B∗) = Bb.

It is common practice in poromechanics to assume that one of the reference configurations Ba of the p consti-
tuents plays a predominant role with respect to the others (usually the reference configuration of a solid consti-
tuent).

1. From now on the index a runs from 0 to p− 1 if not differently specified. Hence, a labels the Lagrangian configuration of each
constituent.

2. From now on the index b runs from 0 to p if not differently specified. Thus, b includes the a reference configurations and also the
current configuration of the porous medium.
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Since we will also use this approach later on, it is worth to assume here that the configuration B0 represents the
configuration of a solid constituent and we introduce the p− 1 maps

cXX0 : B0 → Bc, with c = 1, 2, ..., p, as 3

cXX0 :=
cXX∗ ◦

0XX−1
∗ . (5)

Notation 3. Following notations introduced in [2], we denote

b

F∗ := ∇∇bXX∗,
c

F0 := ∇∇cXX0;
b

J∗ := det
(

b

F∗
)
,

c

J0 := det
( c

F0

)
(6)

where ∇∇ is the 4D gradient operator.
Moreover, if tt∗ and ttb are tensor fields defined on B∗ and Bb respectively, we denote

tt©b∗ := tt∗ ◦
bXX−1
∗ tt©∗b := ttb ◦

bXX∗. (7)

Owing to Eq. (5) it is clear that 4
c

F©∗0 =
c

F∗ ·
0
F−1
∗ · (8)

We also remark that, given any differentiable tensor fields tt∗ and ttb defined on B∗ and Bb respectively, the
following purely kinematical identities hold (see [2]) for any b = 0, 1, ..., p :

DIV
(

b

J∗ tt©∗b ·
b

F−T∗
)

=
b

J∗ (DIV ttb )©∗ and DIV
(

b

J−1
∗ tt∗ ·

b

FT∗
)©b

=
(

b

J−1
∗ DIV tt∗

)©b
. (9)

Let nn∗ and nnb be any normal vectors to S∗ and Sb respectively and let N∗ and Nb be the corresponding unit
normal vectors, then (see [2])[∣∣∣ b

J−1
∗

b

FT∗
∣∣∣] · nn©∗b = 0 on S∗,

[∣∣∣∣( b

J∗
b

F−T∗
)©b∣∣∣∣] · nn©b∗ = 0 on Sb (10)

and

N∗ =
bJ−1
∗

bFT∗ · nn
©∗
b∥∥∥ bJ−1

∗
bFT∗ · nn

©∗
b

∥∥∥ , Nb =

(
bJ∗

bF−T∗ · nn∗
)©b∥∥∥∥( bJ∗ bF−T∗ · nn∗
)©b∥∥∥∥ . (11)

Here and in the sequel he symbol [| · |] indicates the jump of a quantity through a discontinuity surface.
Finally we remark that, since all the maps introduced here are assumed to be piecewise C1 diffeomorphisms,
then the Hadamard property holds for all of them. In particular, let T∗ be any vector tangent to S∗, then the

vectors Tb :=
(

bF∗ · T∗
)©b

are tangent to Sb and the Hadamard properties read[∣∣∣ b

F∗ · T∗
∣∣∣] = 0 on S∗ =⇒

[∣∣ c

F0 · T0

∣∣] = 0 on S0. (12)

4 Action Functional
4.1 Hamilton Principle for p-constituents media
It is now possible to introduce a functional A∗ as

A∗ :
(
C1
(
R4,R4

))p+1 → R,
f 7→ A∗ (f) ;

and such that
A∗
(

bXX∗ (·)
)

=
∫

B∗
L∗
(

bXX∗ (X∗) ,
b

F∗ (X∗)
)
, (13)

where L∗ is the Lagrangian function introduced in Eq. (1).

3. From now on the index c runs from 1 to p if not differently specified. Consequently, the index c labels those maps which have
B0 as domain of definition and which go indifferently onto the Lagrangian configurations or the Eulerian one.

4. Given two tensors T and S of order k and h the components of which are Ti1...ik and Sj1...jh the tensor T ·S is the (k+h)− 2

order tensor with components (T · S)i1...ik−1j2...jh =
∑
m

Ti1...ik−1mSm j2...,jh .
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Henceforth, we can deduce the Hamilton Principle for this functional by noting that 5, 6

δA∗ =
∫

B∗

(
∂L∗
∂ bXX∗

| δ bXX∗ +
∂L∗
∂ bF∗

| ∇∇
(
δ

bXX∗
))

= 0 (14)

where the symbol δ indicates the variation operator. Assuming that the maps δ
bXX∗ have compact support K∗

included in B∗, integrating by parts and using Gauss Theorem, Eq. (14) gives∫
K∗

(
∂L∗
∂ bXX∗

− DIV
(
∂L∗
∂ bF∗

))
· δ bXX∗ +

∫
K∗∩S∗

[∣∣∣∣ ∂L∗∂ bF∗
· N∗

∣∣∣∣] · δ bXX∗ = 0,

where N∗ is the unit normal vector to the surface S∗ and DIV is the usual divergence operator on R4.
Owing to the arbitrariness of the set K∗ and of the test functions δ

bXX∗ one finally gets for any b = 0, 1, ..., p

∂L∗
∂ bXX∗

− DIV
(
∂L∗
∂ bF∗

)
= 0 in B∗, (15)[∣∣∣∣ ∂L∗∂ bF∗

· N∗
∣∣∣∣] = 0 on S∗.

We note that the use of Hamilton Principle on the configuration B∗ leads to a set of p+ 1 equations of motion
and of p+ 1 Rankine-Hugoniot conditions (4 (p+ 1) scalar conditions). We will show in the next section that,
for a given choice of the function L∗, only p of these equations of motion are independent ; moreover it will be
shown that the 4 (p+ 1) Rankine-Hugoniot scalar conditions reduces to 4p+ 1 independent scalar equations.

4.2 Restrictions on the Action Functional A∗
In the previous subsection we have shown how to obtain equations of motions and Rankine-Hugoniot condi-
tions for a p-constituent porous medium by means of Hamilton Priciple applied to the action functional A∗
given in Eq. (13). Nevertheless, equations of motions and jump conditions written on the domain B∗ should
not be all independent. In fact, this domain is just a fictive configuration which has been introduced for reasons
connected to the study of the motion of the shock wave.
It is clear that proper equations of motion and jump conditions must be written on a physical domain : one of
the Lagrangian configurations Ba or the Eulerian configuration Bp.
Henceforth, we assume that the domain B0 represents the reference configuration of a solid constituent and
that it plays a special role : following classical poromechanics we want to write all the equations and jump
conditions on this configuration.
In order to do so, we introduce a functional A0 as

A0 :
(
C1
(
R4,R4

))p+1 → R,
f 7→ A0 (f) ;

and such that
A0

(
I (·) , cXX0 (·)

)
=
∫

B0

L0

(
X0,

cXX0 (X0) ,
c

F0 (X0)
)
,

where X0 ∈ B0, I is the identity function in R4 and L0 is the Lagrangian function introduced in Eq. (1).
The functionalA0, when evaluated in the physical maps

cXX0, is called the action functional of the p-constituents
porous system.
Changing the variables and then recalling Eqs. (4) and (8), it is easy to get

A0

(
bXX∗ (·)

)
=
∫

B∗
L0

(
0XX∗,

cXX0 ◦
0XX∗,

c

F©∗0
)

0
J∗ =

∫
B∗

0
J∗L0

(
bXX∗,

c

F∗ ·
0
F−1
∗

)
. (16)

Comparing now expression (13) for A∗ and expression (16) for A0, we can conclude that the restriction (2)
assumed on the two functions L∗ and L0 implies A∗(

bXX∗ (·)) = A0(
bXX∗ (·)). This means that the assumption

(2) which relates L∗ and L0 implies the equivalence of the two functionals A∗ and A0 when evaluated on the
same argument.

5. We introduce here a slight abuse of notation. Let L (V) be any function of the variable V. If we evaluate the function L in
V = XX (X) it is well know that δL = (∂L/∂V)|XX (X) · δXX (X). In order to lighten notation we write δL = ∂L/∂XX · δXX .

6. Here, and from now on, the symbol | indicates the scalar product between two tensors.
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Remark 4. Let, for any b = 0, 1, ..., p,

∂L∗
∂ bXX∗

− DIV
(
∂L∗
∂ bF∗

)
= 0 (17)

be the p + 1 equations of motion, holding in B∗, as obtained in Eq. (15). Assuming that the Lagrangians L∗
and L0 are related by means of Eq. (2), then
i) Only p of the equations (17) are independent.
ii) The p independent equations

∂L∗
∂ cXX∗

− DIV
(
∂L∗
∂ cF∗

)
= 0, (18)

imply the following system to hold in B0

∂L0

∂ cXX0
− DIV

(
∂L0

∂ cF0

)
= 0. (19)

We remark that the system of p equations (19) is that one which would be obtained by applying the Hamilton
principle to the Action density L0

(
X0,

cXX0 (X0) ,
cF0 (X0)

)
.

Remark 5. Let, for any b = 0, 1, ..., p, [∣∣∣∣ ∂L∗∂ bF∗
· N∗

∣∣∣∣] = 0

be the p + 1 jump conditions, holding on S∗, as obtained in Eq. (15). Assuming that the Lagrangians L∗ and
L0 are related by means of Eq. (2), then
(i) The p equations [∣∣∣∣ ∂L∗∂ cF∗

· N∗
∣∣∣∣] = 0 (20)

are independent and imply the following system of equations holding on S0[∣∣∣∣ ∂L0

∂ cF0
· N0

∣∣∣∣] = 0. (21)

(ii) The remaining vectorial condition [∣∣∣∣ ∂L∗∂ 0F∗
· N∗

∣∣∣∣] = 0 (22)

when transported on S0 reduces to the simple scalar condition[∣∣∣∣N0 ·
(
L0I +

c

FT0 ·
∂L0

∂ cF0

)
· N0

∣∣∣∣] = 0. (23)

As a consequence of Remark 4 we can conclude that the p vector equations of motion for a p constituents
porous medium written on the Lagrangian configuration B0 of a solid constituents are given by (19).
Remark 5 states that there are p vector jump conditions valid on S0 given by (21) ; an additional scalar condition
in the form of Eq. (23) also holds on S0.

5 Equations of Motion and Jump Conditions in the Space-Time
In this section, we separate the space and time components of the equations of motion (19) and of the jump
conditions (21)-(23), by specifying the structure of the 4D placement maps

cXX0.
In order to do so we start by assuming that, for any instant t, there exist p+ 1 piecewise C1 diffeomorphosms
bχ∗ with singularity surface S∗

bχ∗ : B∗ → Bb,

X∗ := (x∗, t) 7→ bχ∗ (X∗) ;

such that
bXX∗ =

(
bχ∗ , t

)
Let d be a new index running in 1, 2, ..., p − 1. Owing to Eqs. (4) and (5), we introduce the maps cχ0 and pχd
as (recall that the indices 0 and p are fixed, while the remaining run in a given range)

pχ
a

= pχ∗ ◦ aχ−1
∗

cχ0 = cχ∗ ◦ 0χ−1
∗
.
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We underline that the maps pχd together with the map pχ0 are the usual 3D placements maps wich determine,
at any given instant t, the current placement of any constituent of the porous medium.
The maps pχ

d
and cχ0 are, for any t, piecewise C1 diffeomorphisms with singularities Sa (t) := dχ∗ (S∗, t) and

S0 (t) := 0χ∗ (S∗, t) respectively. It is easy to recover that
pXXd = (pχ

d
, t) and

cXX0 = (cχ0 , t).
It is then possible to introduce the following second order tensors on R3

b

F∗ := ∇ bχ∗ ,
p

Fd := ∇ pχ
d
,

c

F0 := ∇ cχ0 ,

where the symbol ∇ represents the 3D space gradient operator.
We notice that, once restricted to the surface S∗, the maps bχ∗ represent, for any instant t, a parametric repre-
sentation of the moving surfaces Sb (t). Henceforth, if we denote by x̄b the points of Sb, the velocities of the
moving surfaces Sb (t) can be then introduced as wb (x̄b, t) := (∂ bχ∗/∂t)

∣∣
bχ−1
∗ (x̄b,t)

. Consequently, if Nb is
the unit normal vector to Sb, the celerities of these moving surfaces can be introduced as cb := wb ·Nb. As it
is well known (see e.g. [4]), these quantities does not depend on the choice of the parametrization.
As we showed in detail in [2], 4D normal vectors Mb to Sb take the form Mb = (Nb,−cb).
We also introduce the velocities

va (xa, t) :=
∂ pχ

a

∂t
, cu0 (x0, t) :=

∂ cχ 0

∂t

Notice that since a runs in 0, 1, ..., p− 1 and c runs in 1, 2, ..., p, we have v0 = pu0.
According to the introduced definitions, it is straightforward to recognize that

c

F0 =
(

c

F0 (cu0)T
0 1

)
=⇒ c

FT0 =
(

c

FT
0 0

cu0 1

)
. (24)

At this point we can notice that the equations of motion (19) have the following space-time components : for
any c = 1, 2, ..., p

∂L0

cχ0

− div
(
∂L0

∂ cF0

)
− ∂L0

∂ cu0
= 0,

∂L0

∂t
= 0.

The last equation states that the Lagrangian L0 does not explicitely depend on time which is in agreement with
the fact that the system we consider is conservative. The first p equations give the evolution of the p-constituent
porous medium.
As for the jump conditions (21)-(23), they particularize into

[∣∣∣∣ ∂L0

∂ cF0
·N0 − c0

∂L0

∂ cu0

∣∣∣∣] = 0,
[∣∣∣∣L0 + N0 ·

c

FT
0 ·

∂L0

∂ cF0
·N0 − c0N0 ·

c

FT
0 ·

∂L0

∂ cu0

∣∣∣∣] = 0 (25)[∣∣∣∣cu0 ·
∂L0

∂ cF0
·N0 − c0L0 − c0cu0 ·

∂L0

∂ cu0

∣∣∣∣] = 0 (26)

6 Conclusions
We deduced bulk equations and Rankine-Hugoniot conditions governing the motion of shock waves in multi-
constituents, deformable, fluid-filled porous media by using a four-dimensional variational principle on a fictive
configuration. We transport these equations on the reference configuration of one solid constituent and we show
that they are not all independent. Finally, we particularize this set of independent equations to the space-time,
thus recovering bulk Euler-Lagrange equations and Rankine-Hugoniot jump conditions.
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