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Résumé :
Nous utilisons une extension du principe d’Hamilton-Rayleigh pour établir un système général de conditions d’interface
entre deux différents milieux poreux saturés par un même fluide. Ces conditions prennent en compte les effets d’inertie et de
frottement. Leur version linéarisée permet de retrouver les conditions aux limites pour les équations de Darcy-Brinkman
ainsi que de traiter les effets de dissipation de surface de Saffman-Beavers-Joseph.

Abstract :
A general set of boundary conditions at fluid-permeable interfaces between dissimilar fluid-filled porous matrices is
established starting from an extended Hamilton-Rayleigh principle. These conditions do include friction and inertial
effects. Once linearized, they encompass boundary conditions relative to volume Darcy-Brinkman and to surface Saffman-
Beavers-Joseph dissipation effects.

Mots clefs : Milieux Poreux, Surface de Discontinuité, Principe Variationel de Hamilton-Rayleigh,
Conditions au Limite pour une Surface Permeable

1 Introduction
In this work we study the mechanics of fluid-filled porous media by using a variational approach. We first
introduce a kinematical scheme suitable for describing the motion of a fluid-filled porous medium with a solid-
material discontinuity (see also [11], [22]). As a second step, in order to take into account some dissipative
phenomena, we postulate a Hamilton-Rayleigh variational principle, extended to continuous systems. In parti-
cular, we model volume dissipation due to Darcy-Brinkman viscous fluid flow inside the matrix pores and due
to Stokes-Navier viscosity of the fluid together with surface Saffman-Beavers-Joseph dissipation effects. We
obtain governing bulk equations for the porous medium and jump conditions on the considered discontinuity.
We particularize these equations and jump conditions to the limit case of a porous medium surrounded by a
pure fluid.
The proposed theoretical scheme may be useful to model all those physical systems composed by two dissimilar
porous media in contact, or by a porous medium surrounded by a pure fluid. Many authors proposed different
jump conditions to be imposed at the interface between a porous medium and a pure fluid, mainly basing
themselves on the empirical jump conditions originally considered by Beavers, Joseph and Saffman ([2], [23]).
Deresiewicz ([12]) also proposed some jump conditions holding at the interface between two dissimilar porous
systems. Nevertheless, they only describe phenomena related to the viscosity of the outflowing fluid with no
consideration of inertial effects and Darcy-Brinkman dissipation.
The spirit of the approach adopted here for modeling porous systems is very similar to the one used to develop
models for two fluid mixtures by [15], [16], [17], [20], [18], [19]. It also has some similarities with the treatment
used to describe fluid saturated porous media by [14], [13] and [9].

2 Kinematics and Balances of Masses
In this section we set up a kinematical framework suitable for describing the motion of a porous medium with
a solid-material surface discontinuity. Let Bs and Bf be two open subsets of R3 (usually referred to as the
Lagrangian configurations of the two constituents), (0, T ) be a time interval and let

χs : Bs × (0, T )→ R3, χf : Bf × (0, T )→ R3 (1)
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be the maps which represent the placement of the solid and fluid constituents respectively. Moreover, we
introduce the map φs : Bs × (0, T ) → Bf which locates, for any instant t ∈ (0, T ), the fluid material
particle Xf which is in contact with the solid material particle Xs. The three introduced maps are related by
φs = χ−1

f ◦ χs. We also assume that χs and φs are continuous in Bs, while their space gradients ∇χs and
∇φs are continuous a.e. in Bs except on a surface Ss which is assumed to be fixed in the solid-Lagrangian
configuration. This means that the fields ∇χs and ∇φs suffer a jump at the surface Ss. From now on we also
assume that χs(Bs, t) = χf (Bf , t) and we denote Be(t) this time-varying sub-domain of R3 usually referred
to as Eulerian configuration of the porous system. This means that we are adopting a macroscopic kinematical
model since each point x of the physical space is assumed to be simultaneously occupied both by a solid and
a fluid material particle.

Notation 1 Given two fields a(x, t) and b(Xf , t) defined onBe(t) andBf respectively, we denote by a©s (Xs, t)
and b©s (Xs, t) the corresponding fields transported on Bs as : a©s = a ◦ χs and b©s := b ◦ φs.

Let vs := ∂χs/∂t and vf := ∂χf/∂t be the velocity fields of the solid and fluid constituent respectively and
let us := φ̇s. These three fields are related by

v©sf = vs − Fs ·G−1
s · us (2)

where Fs := ∇χs, Gs := ∇φs and the central dot indicates the single contraction between tensors.
Let now ηs and ηf be the solid and fluid Lagrangian apparent mass densities, defined onBs andBf respectively.
We introduce the solid-Lagrangian fluid density as mf := det(∇φs) η©sf and, without loss of generality, we
can assume that ηf is constant in space. We also assume that no creation (or dissolution) of mass occurs during
the motion of the porous system so that ∂ηs/∂t = 0 and ∂ηf/∂t = 0.
As done in classical poromechanics (see e.g. [10], [11], [22]) the fluid conservation equation is pulled-back on
the solid-Lagrangian configuration Bs and reads

ṁf + divD = 0 on Bs, (3)

[|D|] ·Ns = 0 on Ss, (4)

where the superposed dot indicates partial time derivative, D := −mfG−1
s · us and the symbol [| |] indicates

the jump of the given quantity through the surface Ss. The vector D is interpreted as the mass fluid flux through
the porous medium in the Lagrangian configuration of the skeleton. If Ns is the unit normal vector to Ss, the
quantity D ·Ns is the flux (per unit area of Ss) of fluid flowing through the interface. Considering the Eulerian
moving surface Se(t) := χs(Ss, t), we can introduce the flux d(x, t)(per unit area of Se) of fluid flowing
through Se, which is defined in terms of D as

d©s :=
D ·Ns

As
, (5)

As := ‖JsF−Ts ·Ns‖ (Js := det Fs) being the Eulerian-Solid Lagrangian changement of area.

3 Evolution Equations and Jump Conditions in Presence of Dissipation
3.1 Action and Rayleigh Functionals
We now introduce the solid-Lagrangian kinetic energy density

Λ
(
ηs,mf ,vs,v

©s
f

)
=

1
2

(
ηs (vs )2 +mf (v©sf )2

)
(6)

We also assume that the potential energy of the porous medium is characterized by a local density Ψ on
Bs which depends on the kinematic descriptors χs and φs through the placement χs, the deformation tensor
ε := 1/2(FTs · Fs − I) and the quantity of fluid contained in the porous medium mf = det∇φs η©sf . As we
do not intend to model surface tension phenomena, we do not consider any concentration of energy on the
singularity surface Ss. Neither do we consider any dependence of Ψ on higher gradients of the kinematical
fields as done for instance in [22].
Setting Bs := Bs × (0, T ), we define the action functional A for the porous system as

A :=
∫

Bs

(Λ−Ψ) . (7)
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It is well known that, in absence of dissipation, imposing the stationarity of the action implies that the kinematic
descriptors satisfy the virtual power principle i.e. a weak form of the balance of momentum. As we want to
account for dissipation phenomena, we introduce a generalized Rayleigh dissipation pseudo-potentialR in the
Solid-Lagrangian configuration as

2R =
∫
Bs

Js

[
(vs − v©sf ) · κ+∇

(
(vs − v©sf ) · F−1

s

)
: Π +

(
∇v©sf · F

−1
s

)
: Πf

]
+
∫
Ss

As

[∣∣∣v©sf ∣∣∣] · σ. (8)

In this formula κ := K · (vs − v©sf ) is the Darcy friction force, Π := B : ∇((vs − v©sf ) ·F−1
s ) is the Brinkman

stress tensor, Πf := M : (∇v©sf · F
−1
s ) is the Stokes-Navier stress tensors and σ := S · [| v©sf |] is a friction

surface force due to the viscosity of the fluid. Moreover, K and S are second order symmetric positive tensors,
M and B are symmetric positive fourth order tensors and the symbol “ : ” stands for the double contraction
product.

3.2 Equations of Motion
Let us denote by q := (χs, φs) the kinematic descriptor of the medium (a field defined on Bs). Hence the
action A is a functional of q. Moreover, let us denote by qt, q̇t the fields defined at any instant t on Bs by
qt(Xs) := q(Xs, t) and q̇t(Xs) := ∂q/∂t(Xs, t). The Rayleigh potential R is, at each instant t, a functional
of (qt, q̇t) .
The physical principle which determines the motion of a system can be alternatively stated in the framework
of second Newton’s law (balance of momentum), of D’Alembert principle (weak formulation of momentum
balance) or of Rayleigh-Hamilton principle. We adopt this last approach which reads

∂A
∂q
| δq =

∫ T

0

(
∂R
∂q̇t
| δqt

)
dt. (9)

Here, the symbol “ | ” is the scalar product between tensors, ∂A/∂q and ∂R/∂q̇t must be understood in the
sense of functional differentiation.
Performing various integration by parts in space and time and assuming that the test functions δχs and δφs
are suitably smooth (cfr [11] for extended calculations), we get the following system of equations valid in the
regular points of Bs

−
(
ηsγs +mfγ

©s
f

)
+ div

(
Fs ·

∂Ψ
∂ε

)
− ∂Ψ
∂χs

= −div
(
Js(Π

©s
f )T · F−Ts

)
, (10)

mf

(
FTs · γ

©s
f +∇

(
∂Ψ
∂mf

))
= FTs ·

(
Jsκ
©s − div

(
Js(Π©s −Π©sf )T · F−Ts

))
, (11)

where γs := v̇s and γf := v̇f are the acceleration fields of the solid and fluid contituent respectively.
Moreover, assuming the arbitrariness of the test function δχs and the fact that vs is continuous through the
discontinuity surface Ss we get the following jump condition valid on Ss := Ss × (0, T ) :[∣∣∣∣Fs · ∂Ψ

∂ε
− (v©sf − vs)⊗D + Js(Π

©s
f )T · F−Ts

∣∣∣∣] ·Ns = 0. (12)

Finally, other jump conditions valid on Ss can be established using suitable regularity assumptions on the test
function δφs (see [11] for details). In particular, we distinguish the case when Ss is permeable to fluid flow
(d 6= 0) and when Ss is impermeable (d = 0).
If d 6= 0 the following scalar jump conditions hold on Ss :

τ©se ·
[∣∣∣v©sf − vs

∣∣∣] d©s + τ©se ·
[∣∣∣(Π©s −Π©sf )T

∣∣∣] ·N©se −As τ©se · S · [∣∣∣v©sf − vs
∣∣∣] = 0, (13)[∣∣∣∣(1

2

(
v©sf − vs

)2
+

∂Ψ
∂mf

)∣∣∣∣] d©s +
[∣∣∣(v©sf − vs) ·

((
(Π©s −Π©sf )T

)
·N©se − σ©s

) ∣∣∣] = 0, (14)

where τe is any vector tangent to the Eulerian surface Se and Ne is the unit normal vector to Se. Ne is related
to Ns by N©se = (JsF−Ts ·Ns)/As.
The situation is completely different when d = 0. In this case the jump conditions (13) and (14) valid on Ss
have to be replaced by the three scalar conditions(

τ©se · (Π©s −Π©sf )T ·N©se
)−

= 0,
(
τ©se · (Π©s −Π©sf )T ·N©se

)+
= 0, (15)
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and [∣∣∣∣( ∂Ψ
∂mf

+
Js
mf

Ns · FTs · (Π©s −Π©sf )T · F−Ts ·Ns

) ∣∣∣∣] = 0. (16)

In equation (15) the “ +” and “ −” superscripts label the traces of the given quantities on each side of Ss.
In conclusion, the motion of the porous medium is ruled by the equations (10) (11) valid far from Ss and, if
d 6= 0, by the jump conditions (12), (13) and (14) valid on Ss. If d = 0, the last two conditions have to be
replaced by the three conditions stated in (15) and (16).

We remark that this system of equations respects Galilean invariance. Indeed, all equations (as well as the
criterion d = 0 or d 6= 0) involve only Galilean invariant physical quantities.
Equations (10) and (12) encompass the well known Lagrangian balance equation for the total stress and the
corresponding jump condition : these equations only involve physical quantities. Equations (11), (13), (14),
(15) and (16) are not available in the literature.

4 The Case of a Deformable Porous Medium Surrounded by a Pure Fluid
We now consider the case of a surface discontinuity Ss separating a porous medium (which occupies the
volume B+

s ) from a pure fluid (which occupies the volume B−s ). When the fluid is pure (and when external
body forces are neglected), its Eulerian energy density, its chemical potential and its pressure are functions of
its mass density only. These three real functions are denoted respectively by Ψf , µf and pf and are related by

µf (y) = Ψ′f (y) and pf (y) = −Ψf (y) + yΨ′f (y), (17)

Let ρf be the Eulerian fluid mass density related to ηf by ρ©sf = 1/(det∇χf )©s η©sf . In the sequel, as no
ambiguity can arise, we simply denote µf , pf and Ψf the fields µf (ρf ), pf (ρf ) and Ψf (ρf ) defined on Be.
The restriction Ψ− of the potential Ψ in B−s is that of a pure fluid : transporting the Eulerian density Ψf (ρf )
on Bs, we get

Ψ− (ε,mf ) = JsΨf

(
ρ©sf

)
= JsΨf

(
J−1
s mf

)
, (18)

Note that Js is a function of ε only, as we have Js = det Fs =
√

det (2ε+ I) and that ∂Js/∂ε = JsF−1
s ·F−Ts .

Thus we have
∂Ψ−

∂ε
= (Ψ©sf − µ

©s
f ρ
©s
f )
∂Js
∂ε

= −p©sf JsF
−1
s · F−Ts , and

∂Ψ−

∂mf
= µ©sf .

As for the porous region, we simply denote Ψ+ the potential density function in B+
s .

In the pure fluid region B−s we clearly have ηs = 0 and Π = 0. Moreover, K = 0, M = 0.
Under these assumptions, using equations (17), we obtain the following expression for the equation of motion
(10) in B−s :

mfγ
©s
f = div

(
Fs ·

∂Ψ−

∂ε

)
+ div

(
Js(Π

©s
f )T · F−Ts

)
= div

(
Js

(
−p©sf I + (Π©sf )T

)
· F−Ts

)
. (19)

The existence of a supplementary equation (11) may seem astonishing. Under the hypotheses we formulated,
recalling (18) and (17), Eq. (11) can be rewritten

mfFTs · γ
©s
f +mf∇µ©sf = FTs · div

(
Js(Π

©s
f )T · F−Ts

)
,

which, multiplied on the left by F−Ts , gives

mfγ
©s
f +mfF−Ts · ∇µ©sf = div

(
Js(Π

©s
f )T · F−Ts

)
(20)

This equation is clearly equivalent to Eq. (19) owing to the identities ∇p©sf = ρ©sf ∇µ
©s
f and div(JsF−Ts ) = 0.

Hence, as expected, the fluid is governed only by the usual Navier-Stokes equation.

Let us consider the Eulerian form of jump condition (12) on the surface Ss which divides the porous medium
region B+

s from the pure fluid region B−s :(
J−1
s Fs ·

∂Ψ
∂ε
· FTs + (Π©sf )T

)+

·N©se = (p©sf )− N©se +
[∣∣∣v©sf − vs

∣∣∣] d+ ((Π©sf )T )− ·N©se . (21)
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The reader can recognize in the left hand side of this equation the total Cauchy stress tensor of the porous
medium. It appears clearly that, as predictable, the action of the fluid on the surface do not depend on the
extension of χs.
As for the jump conditions (13) or (15), they remain unchanged, as they do not involve Ψ−. Since they are
written in Eulerian form, they also do not depend on the extension of χs.
Considering the jump conditions (14) or (16), we remark that in this special case one just has to replace
∂Ψ−/∂mf by the chemical potential of the fluid µ©sf . They are both written in Eulerian form if one recognizes

that the term [|(1/mf Ns ·FTs ·Js(Π©s−Π©sf )T ·F−Ts ·Ns) |] can be rewritten as [|(1/ρ©sf N©se ·(Π©s−Π©sf )T ·N©se ) |].
In conclusion, the motion of the porous medium is driven by two independent equations of the type (10)-(11),
while the motion of the pure fluid is driven by a simple equation in the form (19). The differential system is
completed by the jump conditions (13) and (14) in the case d 6= 0 and by the jump conditions (15) and (16) if
d = 0.

5 Conclusions
All the jump conditions available in the literature can be deduced from our jump condition (21), once assuming
that inertial effects are negligible, that the solid matrix is suffering small deformation and that Stokes fluid-flow
condition is verified.
In this paper the configuration of a fluid-filled porous medium is characterized by means of the placement
fields χs and φs. Moreover, suitable action and dissipation functionals are postulated in order to account
for the mechanical properties of a deformable solid matrix permeable to fluid flow. Therefore, the obtained
Euler-Lagrange-Rayleigh equations naturally determine the time evolution of the fields χs, mf and us which
represent the solid placement, the solid-Lagrangian density of the fluid and the solid-fluid relative velocity,
respectively.
In the presented model the “solid volume fraction” ν does not appear explicitly as a kinematical field : ne-
vertheless, solid volume fraction plays a crucial role, for instance, in the determination of the macroscopic
deformation energy of the fluid-filled solid matrix. Indeed, when the macroscopic constitutive equations for
such a system need to be postulated, the most natural choice actually is to deduce them starting from the mi-
croscopic constitutive equations of the pure fluid and solid constituents. This is exactly what is done in the
literature stemming from the papers of Fillunger, Terzaghi and Biot (see e.g. [3], [4], [5], [6], [7], [8], [2], [9],
[23]). One suggestive reasoning to explain such an approach and its logical limits can be the following. Let
us assume that a macroscopic solid material particle is in a state described by the macroscopic deformation
gradient Fs and that the macroscopic fluid saturating particle has a (solid referential) density mf . Then, the
microscopic deformation energy ψtot of the fluid-filled porous matrix can be expressed, in terms of the fluid
and solid volume fractions νf and ν, as follows :

ψtot (Fs,mf , νf , ν) = ψs (Fs, ν) + ψf

(
J−1
s mf

νf

)
(22)

where ψs is the microscopic deformation energy of a solid matrix when it experiences the macroscopic defor-
mation Fs and its solid volume fraction is given by ν, while ψf is the microscopic deformation energy of the
permeating fluid. In order to obtain from (22) a macroscopic energy density, one needs to assume a kind of
“instantaneous local equilibrium hypothesis”. In other words, it must be assumed that, for fixed Fs and mf ,
with characteristic times much shorter than those characterizing macro-phenomena, the fluid and solid volume
fractions adjust to a local equilibrium value. These equilibrium values are obtained by solving the following
local minimization problem : find the functions νf (Fs,mf ) and ν(Fs,mf ) such that

ψtot (Fs,mf , νf (Fs,mf ), ν(Fs,mf )) = min
νf ,ν

ψtot (Fs,mf , νf , ν) . (23)

The minimization problem (23) is crucial and has been solved in very clever ways under physically acceptable
assumptions. The resulting macro deformation energy density is thus obtained as follows

Ψ(Fs,mf ) = ψtot (Fs,mf , νf (Fs,mf ), ν(Fs,mf )) . (24)

In the present paper we refrain from any attempt of deducing any particular form for Ψ. Our aim is to find a
logically consistent set of evolution equations and boundary conditions for models in which the independent
kinematical descriptors are χs and φs.
To our knowledge, the inertia terms appearing in the jump conditions (13) and (14) are not found in the li-
terature. Moreover, all presented boundary conditions are valid also when the solid matrix is suffering large
deformations and when the Stokes fluid-flow condition is not applicable.
A deduction of a jump condition similar to (14) and valid in the particular case of absence of inertia, of Darcy-
Brinkman and Beavers-Joseph dissipation is presented in ([1]).
As for our jump conditions (12), (13) and (14), they also allow for describing phenomena in which inertial
effects are relevant. The inertia terms, which are here newly introduced, are at least quadratic in the relative
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velocity fields at the interface : when Stokes fluid-flow conditions hold (and when the solid matrix is subjected
to “small deformations”) they may be negligible. Indeed, when the equations are linearized in the neighborhood
of a state of rest (i.e. when all velocity fields and their gradients are vanishing) the aforementioned inertia terms
do not produce, in the resulting boundary conditions, any term additional to those appearing in Beavers-Joseph-
Saffman conditions. However, when the linearization procedure is performed in the neighborhood of a state in
which some velocity fields are not vanishing, then inertia terms cannot be neglected.
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