19©MeCongres Francais de Mécanique Marseille, 24-28 ao(it 2009

Coupling of boundary integral and finite element methods to
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Résune :
On propose une nouvelle méthode pour étudier l'intemcfiuide-structure entre une microcapsule et un écoulémen
externe. Une méthode par éléments finis (pour la mempesteouplée avec une méthode d’intégrales de fram{igour

les écoulements interne et externe) afin de modéliserpgawda en grande déformation. On montre que la méthode est
numériquement stableffieace et fournit des résultat en tres bon accord avec destraprécédents.

Abstract :

We introduce a novel method to study the fluid-structuredctéon between a microcapsule and an external flow. A finite
element method (for the membrane) is coupled with a bounidéegral method (for the internal and external flows)
to model the large deformation of the capsule. The methoolisd to be numerically stableffieient and in very good
agreement with previous studies.

Mots clefs : capsule, boundary integral method, finite element method, t8kes flow, 2D elastic mem-
brane model

1 Introduction

Synthetic capsules are liquid drops or gels protected binsetastic membrane. Such artificial microcapsules
have a very wide range of applications in cosmetic, food amarpaceutical industries. They are used to
protect fragile, volatile or active substances and to abthie release rate as desired. Other instances are found
in biomedical engineering, where microcapsules are usege®rs for targeted drug delivery or artificial
blood manufacturing. In most applications, what is at stakine characterization of the complex behavior
of a deformable capsule in an external liquid flow. Numeritaldels of the fluid structure interactions are
necessary to predict the capsule deformation in microflonditimns.

In many respects, the fluid structure interaction of micpstées suspended in an external flow is uncon-
ventional. () The capsules are closed surfaces suspended in a fluid. Tédlgeaefore not subjected to any
boundary condition on the displacement apart from spagabdicity. (i) At the small scale of the capsule,
the inertial forces of the internal and external flows areligdgle compared to the viscous forces. The fluid
flows can therefore be modeled using the Stokes equatiola@f@between viscous and pressure forcég). (
The inertial force of the capsule wall can be equally neglécConsequently the problem does not contain
any dynamics and can be seen as a succession of equilibrates.sThe drawback is that the stability of the
equilibrium is not necessarily satisfied:)(The capsules are subjected to not only large displacerbahtdso
large deformations, which must be taken into account in timaarical model used to simulate the membrane
mechanics.

This problem has been studied for the past three decadesfar@dt strategies have been considered to derive
numerical solutions. Many studies have used a fluid solveethan the boundary integral method to solve for
the Stokes flow equations. The velocity field at any positigdthiwthe fluid domain is given by surface integrals
calculated on the geometric boundaries. This method therdfas the advantage of reducing the geometric
dimension of the problem by one, which largely decreasestaénumber of nodes.

The model the most used for the capsule wall is that of a 2D teygstic membrane : the wall is considered to
be infinitely thin and to have a negligible bendingtsiess. Two approaches may be considered to model the
capsule membrane mechanics : the equations of the forckbeigumn on the capsule wall may either be written
locally at each point (strong form) or globally integratedpthe capsule surface (weak form). Most capsule
studies have used the strong form of the equations. Capsusgsiple shear flows have been considered by
Pozrikidis (1995), Ramanujan & Pozrikidis (1998) [1, 2] amndre recently by Li & Sarkar (2008) [3], who
computed the membrane load as a piecewise constant funttoret al. (2004) and Lac & Barthés-Biesel
(2005) [4, 5] used instead bi-cubic B-splines as interpatafunctions in order to compute the loads with high
accuracy. An alternative option is to write the balance &quoa in their weak form and to use a Finite Element
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(FE) method. The local equilibrium equations are conveirigdtheir variational equivalent. Only two groups
[6, 7, 8] have implemented a FE method, that was each timeledwpith an immersed boundary method
to compute the motion of a capsule in shear flows. However #ieimethod is based on the use of linear
interpolation functions and lacks generality in the impértation.

Previous studies have shown that, for certain ranges ofdlerging parameters, the capsule wall undergoes
compression and tends to buckle. Thus, bendiferes must be taken into account in order to properly model
the wall mechanics. However no satisfying model for the lremdtifness of a capsule has been implemented
yet. The FE method has the advantagefédéiing a framework suitable for the modelling of thin shells.

In this paper we propose a novel coupling technique betwearita element method to simulate the large
deformation of the capsule wall and a boundary integral tdation of the Stokes flow equations. It is validated
on a membrane model for which the bendindfséss is neglected. We show that the method is numerically
stable and, as a test case, we study the deformation of aleapsusimple shear flow and compare the results
with previous studies.

2 Problem statement

We consider an initially-spherical capsule (rada)sconsisting of a liquid droplet enclosed by an infinitely
thin membrane characterized by a surface shear mo@yushe capsule is suspended in a viscous liquid
undergoing an unbounded shear flow. The velocity of the unpg®d flow is denoted™ and the shear rate -
Both fluids are assumed to be Newtonian and to have the sanwsitisy and density. Dimensional analysis
then shows that an important non-dimensional parametkeisdpillary number

wya
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which compares the viscous stresses exerted by the fluitie ldstic sftness of the membrane.

2.1 Internal and external flows

The Reynolds numbeRe = pa?y/u is small compared to unity, so that both the internal andraatelows
follow the Stokes equations. The velocity of the points eftApsule can then be related to the viscous stresses
on the membrane through an integral equation over the defbsurfaces :
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where [r] = (™ - ¢ - nis the viscous stress jump across the interfads the unit normal vector pointing
outwards is the stress tensor in the fluids) and
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is Green'’s single layer kernel, with= xo — x andr = [|r||.

2.2 Membrane mechanics

Following Skalaket al.[9], we treat the membrane as a purely bidimensional shdstdrelastic material. In
particular, we neglect strain variations across the treskrand therefore the bendindgistess of the material.
We introduce the displacemebt(X,t) = x(X,t) — X, whereX and x are the positions of a given material
point in the reference and deformed state. It is relateddovétiocity of the membrane through the kinematic
condition :

SUKY =0x D). (4)

Dimensional analysis shows that the inertia of the membcandbe neglected compared to the viscous stress
exerted by the flow. The motion of the membrane thereforevialthe local equilibrium equation :

Vs T-q=0, 5)

whereT are the bidimensional Cauchy tensions in the membr@gés the surface divergence operator on the
deformed configuration and the load on the membrgiseequal to the viscous stress jumg] [

We now have to turn (5) into a variational problem, with thada as the unknown. Note that most finite
element procedures look instead for the displacement fiedting the forces as known. That is not possible
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when dealing with a capsule, as the lack of kinematic boundanditions means that there is no unique
displacement solution.
LetV be the Sobolev spac¢ét, andl € V a virtual displacement field. The variational problem csp@nding
to (5) is thus:
Findq € V such that/l € V,

f@-qu: &(0): TU)dS, (6)
S - S— —

wherez(@) = § (Vs + V).
To close the problem, we need the (non-linear) relation betvthe displacemebt and the tensions. This is

done trough the choice of a 2D strain energy function charising the mechanics of the material. The strain
energyws can be written as a function of the invariants

lh=2+2-2, l,=22432-1, @)

wherel,, A, are the principal stretch ratios. Several laws have begmogex to model the behaviour of hyper-
elastic membranes [10]. In this paper, we consider the neakean law (NH)

G 1
NH _ s _
wiH = z(ll 1+|2+1)’ (8)
and Skalalet al’s law (Sk) [9]
wgk:%(|f+2ll—2|2+c:|§), C>-1/2. )

3 Numerical method

For a given deformed state of the capsule, we first solve thie gmblem (6).V is discretized as a finite
element space using an unstructured mesh, with quadradic(rved triangular elements.
The discretized problem leads to the following matrix sgste

[M]{gM} = (R}, (10)

where{q"} corresponds to the degrees of freedom of the discretizedt] [d] has the structure of a mass
matrix and{R} corresponds to the right-hand side of (6) and depends neas#y onU. The tensiong are

computed directly using the strain energy function. Sgwuime solid problem consists in assembliiRy and
[M] on the deformed state. Surface integration is performathudammer points on the elements. Eq. (10) is
then solved using the sparse solver Pardiso [11, 12].

Once the loady is known, the velocity field is obtained explicitly from the@undary integral equation (2),

which is discretized on theame meslas for the solid problem, once again using Hammer pointsHer t
integration. Finally, the new position is obtained by cartirgy the nodes after integrating (4) numerically with
a second-order Runge-Kutta method.

Tests performed usingftierent mesh sizes and time steps show that the coupling betiveboundary integral
and the inverse finite element methods is humerically staléeconverges in time and space. The numerical
stability is conditional due to the explicit nature of theé integration scheme. That limits the time step as a
function of Caand the mesh size [13, 4].

4 Validation : capsule in a simple shear flow

We study the behavior of an initially-spherical capsule siraple shear flow with the new coupling method.

In order to validate the method and the non-classical irvase of finite elements, the results are compared

with three previous studies :

— the work of Lacet al.[4], who used the same method for the fluid problem (boundi@ments), but a local
approach for the solid problem, which is based on a dis@biz of the interface by bi-cubic B-splines;;

— the work of Li & Sarkar [3], who used the immersed boundaryhud for the flow and a local approach
with a piecewise-constant load for the solid problem;

— the work of Doddi & Bagchi [7], who also used the immersedrmary method for the fluid but finite
elements to model the membrane, albeit with a method somalifferent from ours.

For the external fluid flow, we consider the undisturbed vigJdeId given by

VU =X €. (11)
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The capsule behavior is simulated using the NH law and the®KC = 1). TheP, triangular elements have
2562 nodes and the time stepyist'= 5x 1073,

The capsule elongates under the influence of the shear fldve @apillary number is increased. Depending on
the value of the capillary numbé&ra, three regimes are found, as first described bydtad.[4]. ForCa< Ca,
folding occurs in the plane orthogonal to the main extensliogction (hereafter callethe equatoy. It is due

to the presence of compression tensions in the membranédJigrhe folds disappear for larger values of the
capillary number (fig. ). Indeed, as the capsule becomes more elongated by theflvedahe value of the
isotropic part of the tensions (related to the area dilatmmuulus) increases, which leads to positive tensions
at the equator. Fd€a > Cay, the elongated capsule behaves like a slender body subrtdteetorque (due to
the flow vorticity) and buckling occurs at the tips (figc)1The critical value€a_ andCay separating those
regimes are defined as the values between which the capketeaateady ellipsoidal shape, free of negative

tensions.
— G
gzi
A8

Fic. 1 — Deformed shape of a capsule, following the NH law, fdfedent values o€a: Ca= 0.3 (a), 0.6 (),
1.2 (©). Light-grey zones are undergoing traction, while darkemes show areas where compression occurs.
The mesh used for the computation is shown on figjye

(b) (©

The critical values found with our coupling method are
Ca =045, Cay=0.63, (12)

for the NH law and
Ca =04, Cay=24, (23)

for the Sk law C = 1). Note that we find exactly the same values for the critiegliltary numbers as Laet

al. [4]. Doddi & Bagchi [7] also found negative tensions for I@e, but did not quantify the limiting capillary
numberCa, . They did not consider large values@é and did therefore not comment on the existencé &f.

The three regimes were observed by Li & Sarkar [3]. They whosyever, unable to characteri@s,_ and
Cay, as they found negative tensions for all value€af a phenomenon they ascribe to the lack of precision
of their numerical method. Hence, our work is the only onedeeg!] that determine€a_. andCay.

Another parameter to consider for the validation of the rétis the Taylor parametdd;;. It is an adequate
parameter to characterize the deformation of capsulese ghmey typically assume an ellipsoidal shape at
equilibrium. It is defined as

D = ILi — Ll
v Li + Lj

where thel; are the lengths of the principal axes of the ellipsoid. Intipalar, DT, represents the Taylor
parameter in the shear plane at steady state.

We compare values @7, with the previous studies for the NH law (fig. 2) and the Sk l&g. 3). We find a
good agreement for all values of the capillary number. Inigaar, our results are always well within 1% of
those of Lacet al. [4] for both the NH and Sk laws. A 5% fierence is, however, found with Li & Sarkar [3]
for both laws. It is probably related to the crude descriptid the load used by these authors. The results of
Doddi & Bagchi [7] are close to our results at low values of tapillary number but seem to diverge@a
increases. This is somewhat surprising, as they also use éileiments to model the membrane.

(,]=1,23), (24)

5 Discussion and conclusion

We have developed a new numerical method to simulate theanewi behavior of a capsule in an unbounded
Stokes flow. This method couples a boundary integral methoadadel the internal and external flows with a
non-classical inverse finite element model of the capsulalonane. Coupling those two techniques had never
been attempted before and we have shown here that this nguplieasible and numerically stable.

We have compared the results of our method with three prestudies and have found a good agreement.
It may be noted, in particular, that our results are remdykalose to those of Laet al. [4] (within 1%).
Both studies find the same critical capillary numb@gs andCay, although two diferent methods are used
to model the behavior of the membrane. This seems to indicatehe values of the critical capillary numbers
have a physical relevance and are not a consequence of trexinahmethod used.
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Fic. 2 — Values ofDf;, as a function ofCa for a capsule following the NH law. The computation uges
elements, 2562 nodegAt = 5 x 1073. Results are compared with [4, 3, 7]. Vertical lines indictite critical
capillary number£a_ andCay.
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Fic. 3 — Values ofD;, as a function ofCafor a capsule following the SKX = 1) law. The computation uses
P, elements, 2562 nodegAt = 5 x 1073 Results are compared with [4, 3] ; this case was not studi¢d]i
Vertical lines indicate the critical capillary numbeZs, andCay.

A major difference between our results and those of étaal. is the behavior of the numerical method when
negative tensions appear. Whereas the technique used tst Bhfails when negative tensions appe@a(<
Ca_ or Ca > Cay), our numerical method remains stable and a steady equitibstate is achieved. This
is probably due to the larger numericalftess of the finite elements as compared to the bi-cubic Bespli
functions used by Laet al. Neither Doddi & Bagchi [7] nor Li & Sarkar [3], who also usedater order
discretization than Laet al,, reported stability problems at lo@a, which would confirm the hypothesis. The
stiffness introduced by the numerical method contributes to tdtglisy of the problem because it enriches
the membrane model with some bending rigidity. But being prbguct of the numerical method, this small
bending rigidity cannot be controlled. Consequently tHdddhat are observed f@a < Ca_ (fig. 1a) depend
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on the mesh, with a wave length equal to the element sizeeSuechave not modelled a proper shell with
bending stithess, the folds are not physical, even though the occur@rmeckling and its location are.

The existence of folds for certain values of the capillaryniver shows the limit of a membrane model when
simulating a capsule and the necessity to introduce sondirmprigidity. In the rangeCa,, Cay], a membrane
model is stficient to obtain the mechanics of the deforming capsule gsimcnegative tensions are present
at steady state. But beyond these limiting values, the ¢apgail needs to be treated as a thin shell with a
physical bending dfiness in order to properly model the buckling process. Thadwaork of finite elements
seems quite appropriate to implement such a shell model.
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