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Résuḿe :
On propose une nouvelle méthode pour étudier l’interaction fluide-structure entre une microcapsule et un écoulement
externe. Une méthode par éléments finis (pour la membrane) est couplée avec une méthode d’intégrales de frontière (pour
les écoulements interne et externe) afin de modéliser la capsule en grande déformation. On montre que la méthode est
numériquement stable, efficace et fournit des résultat en très bon accord avec des travaux précédents.

Abstract :
We introduce a novel method to study the fluid-structure interaction between a microcapsule and an external flow. A finite
element method (for the membrane) is coupled with a boundaryintegral method (for the internal and external flows)
to model the large deformation of the capsule. The method is found to be numerically stable, efficient and in very good
agreement with previous studies.

Mots clefs : capsule, boundary integral method, finite element method, Stokes flow, 2D elastic mem-
brane model

1 Introduction
Synthetic capsules are liquid drops or gels protected by a thin elastic membrane. Such artificial microcapsules
have a very wide range of applications in cosmetic, food and pharmaceutical industries. They are used to
protect fragile, volatile or active substances and to control the release rate as desired. Other instances are found
in biomedical engineering, where microcapsules are used asvectors for targeted drug delivery or artificial
blood manufacturing. In most applications, what is at stakeis the characterization of the complex behavior
of a deformable capsule in an external liquid flow. Numericalmodels of the fluid structure interactions are
necessary to predict the capsule deformation in microflow conditions.
In many respects, the fluid structure interaction of microcapsules suspended in an external flow is uncon-
ventional. (i) The capsules are closed surfaces suspended in a fluid. They are therefore not subjected to any
boundary condition on the displacement apart from spatial periodicity. (ii ) At the small scale of the capsule,
the inertial forces of the internal and external flows are negligible compared to the viscous forces. The fluid
flows can therefore be modeled using the Stokes equations (balance between viscous and pressure forces). (iii )
The inertial force of the capsule wall can be equally neglected. Consequently the problem does not contain
any dynamics and can be seen as a succession of equilibrium states. The drawback is that the stability of the
equilibrium is not necessarily satisfied. (iv) The capsules are subjected to not only large displacementsbut also
large deformations, which must be taken into account in the numerical model used to simulate the membrane
mechanics.
This problem has been studied for the past three decades and different strategies have been considered to derive
numerical solutions. Many studies have used a fluid solver based on the boundary integral method to solve for
the Stokes flow equations. The velocity field at any position within the fluid domain is given by surface integrals
calculated on the geometric boundaries. This method therefore has the advantage of reducing the geometric
dimension of the problem by one, which largely decreases thetotal number of nodes.
The model the most used for the capsule wall is that of a 2D hyperelastic membrane : the wall is considered to
be infinitely thin and to have a negligible bending stiffness. Two approaches may be considered to model the
capsule membrane mechanics : the equations of the force equilibrium on the capsule wall may either be written
locally at each point (strong form) or globally integrated over the capsule surface (weak form). Most capsule
studies have used the strong form of the equations. Capsulesin simple shear flows have been considered by
Pozrikidis (1995), Ramanujan & Pozrikidis (1998) [1, 2] andmore recently by Li & Sarkar (2008) [3], who
computed the membrane load as a piecewise constant function. Lac et al. (2004) and Lac & Barthès-Biesel
(2005) [4, 5] used instead bi-cubic B-splines as interpolation functions in order to compute the loads with high
accuracy. An alternative option is to write the balance equations in their weak form and to use a Finite Element
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(FE) method. The local equilibrium equations are convertedinto their variational equivalent. Only two groups
[6, 7, 8] have implemented a FE method, that was each time coupled with an immersed boundary method
to compute the motion of a capsule in shear flows. However their FE method is based on the use of linear
interpolation functions and lacks generality in the implementation.
Previous studies have shown that, for certain ranges of the governing parameters, the capsule wall undergoes
compression and tends to buckle. Thus, bending effects must be taken into account in order to properly model
the wall mechanics. However no satisfying model for the bending stiffness of a capsule has been implemented
yet. The FE method has the advantage of offering a framework suitable for the modelling of thin shells.
In this paper we propose a novel coupling technique between afinite element method to simulate the large
deformation of the capsule wall and a boundary integral formulation of the Stokes flow equations. It is validated
on a membrane model for which the bending stiffness is neglected. We show that the method is numerically
stable and, as a test case, we study the deformation of a capsule in a simple shear flow and compare the results
with previous studies.

2 Problem statement
We consider an initially-spherical capsule (radiusa) consisting of a liquid droplet enclosed by an infinitely
thin membrane characterized by a surface shear modulusGs. The capsule is suspended in a viscous liquid
undergoing an unbounded shear flow. The velocity of the unperturbed flow is denotedv∞ and the shear rate ˙γ.
Both fluids are assumed to be Newtonian and to have the same viscosityµ and densityρ. Dimensional analysis
then shows that an important non-dimensional parameter is the capillary number

Ca=
µγ̇a
Gs
, (1)

which compares the viscous stresses exerted by the fluids to the elastic stiffness of the membrane.

2.1 Internal and external flows
The Reynolds numberRe= ρa2γ̇/µ is small compared to unity, so that both the internal and external flows
follow the Stokes equations. The velocity of the points of the capsule can then be related to the viscous stresses
on the membrane through an integral equation over the deformed surfaceS :

∀x0 ∈ S, v(x0) = v
∞(x0) +

1
8πµ

∫

S
J(x0, x) · [σ](x) dSx , (2)

where [σ] = (σint −σext) · n is the viscous stress jump across the interface (n is the unit normal vector pointing
outwards,σ is the stress tensor in the fluids) and

J(x0, x) =
1
r
1 +

1
r3

r ⊗ r (3)

is Green’s single layer kernel, withr = x0 − x andr = ‖r‖.

2.2 Membrane mechanics
Following Skalaket al. [9], we treat the membrane as a purely bidimensional sheet ofhyperelastic material. In
particular, we neglect strain variations across the thickness and therefore the bending stiffness of the material.
We introduce the displacementU(X, t) = x(X, t) − X, whereX and x are the positions of a given material
point in the reference and deformed state. It is related to the velocity of the membrane through the kinematic
condition :

∂

∂t
U(X, t) = v(x, t) . (4)

Dimensional analysis shows that the inertia of the membranecan be neglected compared to the viscous stress
exerted by the flow. The motion of the membrane therefore follows the local equilibrium equation :

∇s · T − q = 0 , (5)

whereT are the bidimensional Cauchy tensions in the membrane,∇s· is the surface divergence operator on the
deformed configuration and the load on the membraneq is equal to the viscous stress jump [σ].
We now have to turn (5) into a variational problem, with the load q as the unknown. Note that most finite
element procedures look instead for the displacement field,treating the forces as known. That is not possible
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when dealing with a capsule, as the lack of kinematic boundary conditions means that there is no unique
displacement solution.
LetV be the Sobolev spaceH1, andû ∈ V a virtual displacement field. The variational problem corresponding
to (5) is thus :

Findq ∈ V such that∀û ∈ V,
∫

S
û · q dS=

∫

S
ε̂(û) : T(U) dS ,

(6)

whereε̂(û) = 1
2

(

∇sû+ ∇sûT
)

.

To close the problem, we need the (non-linear) relation between the displacementU and the tensionsT. This is
done trough the choice of a 2D strain energy function characterising the mechanics of the material. The strain
energyws can be written as a function of the invariants

I1 = λ
2
1 + λ

2
2 − 2 , I2 = λ

2
1λ

2
2 − 1 , (7)

whereλ1, λ2 are the principal stretch ratios. Several laws have been proposed to model the behaviour of hyper-
elastic membranes [10]. In this paper, we consider the neo-Hookean law (NH)

wNH
s =

Gs

2

(

I1 − 1+
1

I2 + 1

)

, (8)

and Skalaket al.’s law (Sk) [9]

wS k
s =

Gs

4

(

I2
1 + 2I1 − 2I2 +CI2

2

)

, C > −1/2 . (9)

3 Numerical method
For a given deformed state of the capsule, we first solve the solid problem (6).V is discretized as a finite
element space using an unstructured mesh, with quadratic (P2) curved triangular elements.
The discretized problem leads to the following matrix system :

[M]{qN} = {R} , (10)

where{qN} corresponds to the degrees of freedom of the discretized load, [M] has the structure of a mass
matrix and{R} corresponds to the right-hand side of (6) and depends non-linearly onU. The tensionsT are
computed directly using the strain energy function. Solving the solid problem consists in assembling{R} and
[M] on the deformed state. Surface integration is performed using Hammer points on the elements. Eq. (10) is
then solved using the sparse solver Pardiso [11, 12].
Once the loadq is known, the velocity field is obtained explicitly from the boundary integral equation (2),
which is discretized on thesame meshas for the solid problem, once again using Hammer points for the
integration. Finally, the new position is obtained by convecting the nodes after integrating (4) numerically with
a second-order Runge-Kutta method.
Tests performed using different mesh sizes and time steps show that the coupling between the boundary integral
and the inverse finite element methods is numerically stableand converges in time and space. The numerical
stability is conditional due to the explicit nature of the time integration scheme. That limits the time step as a
function ofCaand the mesh size [13, 4].

4 Validation : capsule in a simple shear flow
We study the behavior of an initially-spherical capsule in asimple shear flow with the new coupling method.
In order to validate the method and the non-classical inverse use of finite elements, the results are compared
with three previous studies :
– the work of Lacet al. [4], who used the same method for the fluid problem (boundary elements), but a local

approach for the solid problem, which is based on a discretization of the interface by bi-cubic B-splines ;
– the work of Li & Sarkar [3], who used the immersed boundary method for the flow and a local approach

with a piecewise-constant load for the solid problem ;
– the work of Doddi & Bagchi [7], who also used the immersed boundary method for the fluid but finite

elements to model the membrane, albeit with a method somewhat different from ours.
For the external fluid flow, we consider the undisturbed velocity field given by

v∞(x) = γ̇x2 e1 . (11)
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The capsule behavior is simulated using the NH law and the Sk law (C = 1). TheP2 triangular elements have
2562 nodes and the time step is ˙γ∆t = 5× 10−3.
The capsule elongates under the influence of the shear flow as the capillary number is increased. Depending on
the value of the capillary numberCa, three regimes are found, as first described by Lacet al.[4]. ForCa< CaL,
folding occurs in the plane orthogonal to the main extensiondirection (hereafter calledthe equator). It is due
to the presence of compression tensions in the membrane (fig.1a). The folds disappear for larger values of the
capillary number (fig. 1b). Indeed, as the capsule becomes more elongated by the shearflow, the value of the
isotropic part of the tensions (related to the area dilationmodulus) increases, which leads to positive tensions
at the equator. ForCa> CaH, the elongated capsule behaves like a slender body submitted to a torque (due to
the flow vorticity) and buckling occurs at the tips (fig. 1c). The critical valuesCaL andCaH separating those
regimes are defined as the values between which the capsule takes a steady ellipsoidal shape, free of negative
tensions.

(a) (b) (c)

e1

e2

F. 1 – Deformed shape of a capsule, following the NH law, for different values ofCa : Ca= 0.3 (a), 0.6 (b),
1.2 (c). Light-grey zones are undergoing traction, while darker zones show areas where compression occurs.
The mesh used for the computation is shown on figure(b).

The critical values found with our coupling method are

CaL = 0.45, CaH = 0.63, (12)

for the NH law and
CaL = 0.4 , CaH = 2.4 , (13)

for the Sk law (C = 1). Note that we find exactly the same values for the critical capillary numbers as Lacet
al. [4]. Doddi & Bagchi [7] also found negative tensions for lowCa, but did not quantify the limiting capillary
numberCaL. They did not consider large values ofCaand did therefore not comment on the existence ofCaH.
The three regimes were observed by Li & Sarkar [3]. They were,however, unable to characterizeCaL and
CaH, as they found negative tensions for all values ofCa, a phenomenon they ascribe to the lack of precision
of their numerical method. Hence, our work is the only one beside [4] that determinesCaL andCaH.
Another parameter to consider for the validation of the method is the Taylor parameterDi j . It is an adequate
parameter to characterize the deformation of capsules, since they typically assume an ellipsoidal shape at
equilibrium. It is defined as

Di j =
|Li − L j |

Li + L j
(i, j = 1,2,3) , (14)

where theLi are the lengths of the principal axes of the ellipsoid. In particular, D∞12 represents the Taylor
parameter in the shear plane at steady state.
We compare values ofD∞12 with the previous studies for the NH law (fig. 2) and the Sk law (fig. 3). We find a
good agreement for all values of the capillary number. In particular, our results are always well within 1% of
those of Lacet al. [4] for both the NH and Sk laws. A 5% difference is, however, found with Li & Sarkar [3]
for both laws. It is probably related to the crude description of the load used by these authors. The results of
Doddi & Bagchi [7] are close to our results at low values of thecapillary number but seem to diverge asCa
increases. This is somewhat surprising, as they also use finite elements to model the membrane.

5 Discussion and conclusion
We have developed a new numerical method to simulate the mechanical behavior of a capsule in an unbounded
Stokes flow. This method couples a boundary integral method to model the internal and external flows with a
non-classical inverse finite element model of the capsule membrane. Coupling those two techniques had never
been attempted before and we have shown here that this coupling is feasible and numerically stable.
We have compared the results of our method with three previous studies and have found a good agreement.
It may be noted, in particular, that our results are remarkably close to those of Lacet al. [4] (within 1%).
Both studies find the same critical capillary numbersCaL andCaH, although two different methods are used
to model the behavior of the membrane. This seems to indicatethat the values of the critical capillary numbers
have a physical relevance and are not a consequence of the numerical method used.
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F. 2 – Values ofD∞12 as a function ofCa for a capsule following the NH law. The computation usesP2

elements, 2562 nodes, ˙γ∆t = 5 × 10−3. Results are compared with [4, 3, 7]. Vertical lines indicate the critical
capillary numbersCaL andCaH.
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F. 3 – Values ofD∞12 as a function ofCa for a capsule following the Sk (C = 1) law. The computation uses
P2 elements, 2562 nodes, ˙γ∆t = 5 × 10−3. Results are compared with [4, 3] ; this case was not studied in [7].
Vertical lines indicate the critical capillary numbersCaL andCaH.

A major difference between our results and those of Lacet al. is the behavior of the numerical method when
negative tensions appear. Whereas the technique used by Lacet al. fails when negative tensions appear (Ca <
CaL or Ca > CaH), our numerical method remains stable and a steady equilibrium state is achieved. This
is probably due to the larger numerical stiffness of the finite elements as compared to the bi-cubic B-spline
functions used by Lacet al. Neither Doddi & Bagchi [7] nor Li & Sarkar [3], who also used lower order
discretization than Lacet al., reported stability problems at lowCa, which would confirm the hypothesis. The
stiffness introduced by the numerical method contributes to the stability of the problem because it enriches
the membrane model with some bending rigidity. But being a byproduct of the numerical method, this small
bending rigidity cannot be controlled. Consequently the folds that are observed forCa< CaL (fig. 1a) depend
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on the mesh, with a wave length equal to the element size. Since we have not modelled a proper shell with
bending stiffness, the folds are not physical, even though the occurrenceof buckling and its location are.
The existence of folds for certain values of the capillary number shows the limit of a membrane model when
simulating a capsule and the necessity to introduce some bending rigidity. In the range [CaL,CaH], a membrane
model is sufficient to obtain the mechanics of the deforming capsule, since no negative tensions are present
at steady state. But beyond these limiting values, the capsule wall needs to be treated as a thin shell with a
physical bending stiffness in order to properly model the buckling process. The framework of finite elements
seems quite appropriate to implement such a shell model.
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[11] Schenk O. and Gärtner K. Solving unsymmetric sparse systems of linear equations with PARDISO.
Future Generation Computer Systems, 20(3), 475–487, 2004.
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