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Résumé :
L’os cortical est essentiellement biphasique (pores+matrice). Pour le calcul de propriétés effectives, il faut choisir un
volume élémentaire représentatif (VER). Ce choix est délicat car 1) le tissu est hétérogène à plusieurs échelles (i.e. zones
plus ou moins poreuses en moyenne) ; 2) la couche corticale peut être très fine. Nous montrerons que le choix d’un VER
de taille millimétrique peut permettre de calculer de manière satisfaisante des propriétés effectives.

Abstract :
Corical bone is essentially a biphasic composite material (mineralized matrix + pores). In order to calculate effective
properties a representative volume element (RVE) needs to be defined. The choice of the size of the RVE is difficult
because: (i) bone material is heterogeneous (variation of porosity in the cortical shell); (ii) the thickness of the cortical
shell is small. It is shown that an RVE size in the millimeter range may actually be used to calculate effective properties
with a limited precision.
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1 Introduction
Cortical bone is a well-organized hard tissue which represents approximately 80 % of the skeletal mass in

the human adult. It can be described as a two-phase compositematerial: a dense mineralized matrix and a soft
phase, i.e. pores containing fluid and soft tissues. Corticalbone tissue is a multi-scale material with different
characteristic microstructural patterns from the nanometer to the millimeter scales. Porosity is distributed over
several length scales: the diameter of pores range from a fewmicrometers to several hundreds of micrometers
[13]. Resorption cavities (approximately50 − 200 µm) and Haversian canals (approximately50 µm) are
characteristic of the higher level of organization in bone.These pores are roughly aligned with the longitudinal
direction of bone [4, 2] and embedded in the matrix which is a mixture of the smaller pores (at least one order
of magnitude smaller than resorption cavities and Haversian canals) and mineralized collagen fibrils.

In the framework of continuum mechanics [6], each material point is a volume of a homogeneous material
which is mathematically shrunk to zero from the macroscopicpoint of view but which represents a volume of
finite microscopic dimension with a microstructure. Accordingly, the concept of material point is associated
to the concept ofrepresentative volume element(RVE). For a non-periodic microstructure, the RVE is defined
as a volume containing a very large (mathematically infinite)number of microscale elements [14, p. 237].
This definition is valid, in principle, only for the case of a statistically homogeneous and ergodic material.
In what follows we will make reference to three scales and their characteristic dimension: the microscale of
characteristic dimensiond, typically the scale of Haversian channels and resorption cavities (around100 µm);
the mesoscale with characteristic dimension denotedL; the macroscale with characteristic dimension denoted
Lmacro which is the size of the macroscopic body, typically0.5 − 10 mm for the cortical shell thickness of a
long bone. In continuum mechanics, the statement of separation of scales is [14]

d < L ¿ Lmacro or d ¿ L ¿ Lmacro. (1)

The mesoscale appears to be an intermediate scale; for the mesoscale to be actually separated from the micros-
cale,L should be at least as large as the RVE:L ≥ LRV E . If the microstructure has a weak disorder and/or a
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weak mismatch in properties, the inequalityd < L may be sufficient; otherwised ¿ L applies. The issue of
central concern is how fast theapparentmesoscale homogenized properties approach theeffectiveresponse of
the RVE, i.e. macroscopic elastic properties, with increasing values of the ratioL/d.

Recently, the mesoscale of cortical bone has been given particular attention [11, 9, 1] in association to
novel experimental techniques such as nanoindentation [21], syncrhotron X-Ray computed tomography, and
quantitative scanning acoustic microscopy [17]. These techniques enable the explicit description of the me-
soscopic domains in terms of geometry (microstructure) and/or distribution of local elastic properties. The
characteristic size of RVE in cortical bone is considered tobe in the millimeter range since a millimetric vo-
lume includes several resorption cavities and Haversian canals and is usually smaller than the thickness of the
cortical shell. However the more restrictive statement of scale separation:d ¿ L ¿ Lmacro can hardly be
met in cortical bone for which the ratiod/Lmacro is approximately bounded as1/100 < d/Lmacro < 1/5
for a large thickness (10 mm) and a small thickness (0.5 mm), respectively. In addition gradients of porosity
are commonly observed in cortical bone, leading to mesoscopic heterogeneity, i.e a variation of the mesosco-
pic response from points to points. To the authors’s knowledge, it is yet unknown whether the statement of
separation of scales applies in practice for cortical bone;in other words the minimum sizeL of a mesodo-
main such thatL ≥ LRV E is not known. Several authors have attempted to estimate millimeter scale elastic
properties based on idealized and virtually unbounded geometry of the osteonal pattern. For instance in refe-
rences [3, 19, 5, 15], authors either considered periodic or, alternatively, random microstructures and assumed
the separation of scale to be valid. In the latter works, homogenization of bone elastic properties have been
conducted following adeterministicapproach assuming that there actually exists a mesodomain of bone tissue
of sizeL such thatL ≥ LRV E . In fact authors have assumed that homogenized bone properties can be uniquely
defined. According to Hill [10, 14], the homogenized properties of a mesodomain of sizeL are unique only in
the caseL ≥ LRV E ; in that case the homogenized properties are “independent of the surface values of traction
or displacement, so long as these values are macroscopically uniform”, in other words, the elastic response
is independent of the boundary conditions applied on the mesodomain. A detailed analysis of the conditions
for scale separation in bone material is lacking. As a consequence, the applicability of the effective properties
estimations based on homogenization models is unclear.

The work presented in this paper is a contribution to the definition of the RVE size for cortical bone. The
specific aim of the paper is to determine the evolution of the apparent mesoscale elastic response with increa-
sing mesodomain sizeL. At the limit of largeL (d ¿ L), the apparent properties of a mesodomain of size
L ≥ LRV E should equal the macroscopic effective properties. The apparent elastic response of mesodomains
subjected to different boundary conditions (BCs) were computed for different mesodomain sizes. With this
approach, the RVE size may be defined as the mesodomain size forwhich apparent elastic properties become
weakly dependent on the BCs type used. Our approach is similar to those followed for various types of mi-
crostructures, see e.g., [18, 20, 16]. A model of cortical bone mesoscopic properties coupled to quantitative
images of bone tissue [9] is used to generate mesodomains with different sizes. The model is particularly well
suited to the determination of the RVE size for cortical bonebecause is accounts for the realistic heterogeneity
of bone at the microscale.

2 Method
One square image of 3 mm edge size (see Figure 1) of cortical bone tissue was extracted from the image

of a cross-section of a human femur. The 3 mm2 area within the femur cross-section was chosen so that the
homogeneity of the microstructure was maximized to the first authors’s eye. In particular, areas including
very large pores or an obvious porosity gradient were avoided. Note that it was not possible to obtain an image
much larger than 3 mm edge size with a sufficiently homogeneousmicrostructure. The image was obtained with
50 MHz scanning acoustic microscopy (SAM) [17] for the purposes of another study. The direction of the bone
axis (diaphysis) was taken parallel to axisx3 and the cross-section was assumed to be in the plane (x1,x2).
The scanning acoustic microscope had a physical resolution of 23 µm and the image resolution (pixel size)
was 16µm. Each pixel of the SAM image is associated to a value of acoustic impedance representative of the
tissue elasticity [17]. With the resolution used, only the largest pores (Haversian channels, resorption cavities)
are actually resolved; the smallest pores (Volkmann’s canal, osteocyte lacunae, etc.) cannot be distinguished
from the matrix so that they contribute to the bulk matrix properties probed. The sample had a mean porosity
of 8.5 % which is typical for human cortical bone [4].

A large “parent” image of9× 9 mm2 was constructed based on the3×3 mm2 impedance image. The latter
was duplicated to pad a surface made of nine3 × 3 mm2 images. The padding was achieved by assembling
along each of the four sides of the3 × 3 mm2 image the symmetric image with respect to the side; images
in the corner of the padding were obtained by taking the symmetric image with respect to each corner of the
3 × 3 mm2 image. With this procedure, the central image of the paddingis the initial 3 × 3 mm2 image.
The microstructure of the9× 9 mm2 image was assumed to be representative of bone microstructure. Surface
padding using symmetry rather than translation ensured that there was no discontinuity in the9 × 9 mm2

microstructure. Four sets ofN (i) (i = 1..4) square “children” images with different edge sizesL(i) were
extracted randomly from the parent image, see table 1. To obtain one children imagek, (1) a coordinate point
(x

(i)
k ,y

(i)
k ) was selected randomly within the central image of the padding; (2) a square image with edge size
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FIG. 1 – Left: acoustic impedance image (SAM, 23µm resolution) of a human femur cross-section. Right:
image of area approximately3 × 3mm2 from which smaller children images were extracted. The numbers are
pixel numbers; size of pixel is16 × 16µm2.

Li and with center(x(i)
k ,y

(i)
k ) and randomly chosen orientation angleθ

(i)
k was extracted. Each children image

was then extruded in directionx3 so as to form a parallelepipedic realization of volume
(

L(i)
)2

× L3, where
L3 is the volume dimension in directionx3. Computation were performed forL3 = 0.5 mm. Following Kanit
et al. [12] each mesodomain realization may be considered asa microstructure realization from a distinct bone
sample with the same overall properties as the parent image.

TAB . 1 –Definition of mesodomain sets
Characteristic size of mesodomain (L(i), mm) 0.5 1 1.5 2

Number of realizationsN (i) 60 50 20 20

The impedance data contained in each mesodomain was converted to elasticity values following a pro-
cedure described in [9]. Briefly, (1) pixels in pores were segmented from the pixels in the bone matrix and
associated with the elastic properties of bulk water (undrained); (2) pixels in matrix were associated with a
transverse isotropic stiffness tensor (with(x1,x2) being the isotropy plane) representative of bone tissue and
dependent on the pixel impedance value.

The apparent properties of each mesodomain were computed using a finite-element based upscaling pro-
cedure. The mesodomain was subjected successively to six sets of uniform tractions (hTrac) or uniform dis-
placements (hDisp) boundary conditions (see e.g. [20] for adescription of the classical procedure). Stress and
strain fields in each mesodomain were calculted with a commercial finite element code (Comsol Multiphysics)
in the framework of linearized elasticity. In order to avoidunphysical edge effects due to the possible pre-
sence of pores at the mesodomain boundary, the mesodomains were surrounded with a thin layer of thickness
0.05 mm with elastic properties close to the searched apparent properties of the mesodomain. The layer pro-
perties were estimated based on empirical relationships from mean porosity and mean elasticity values in the
mesodomain [8]. The columns of the apparent stiffness (hDisp) or compliance (hTrac) tensors where finally
obtained by dividing components of strain and stress fields [20, 9]. The computed apparent stiffness tensors of
a mesodomain corresponds to a material symmetric with respect to the plane (x1, x2); however it is close to
hexagonal symmetry withx3 as the axis of symmetry, due to the distribution of pores and transverse isotropy
of the matrix. Accordingly the closest transversely isotropic (hexagonal) stiffness tensor of each ’raw’ apparent
stiffness tensors was calculated following a procedure described in [7, 9]. Finally for each mesodomain, two
transverse isotropic apparent stiffness tensors are obtained, associated to hTrac (Ctr) and hDisp (Cd) boundary
conditions.

Apparent tensorsCtr andCd provide lower and upper bounds, respectively, for any otherapparent tensor
C of the mesodomain that may be calculated with any type of boundary condition (see e.g. [20, 14]). This
means that the eigenvalues of(Cd − C) and(C − Ctr) are all positive. We introduce the tensor normn(A) =
√

∑

i=1..6 λ(A)2i , whereλ(A)i (i = 1..6) denote the six eigenvalues of the tensorA. The quantityδ = n(Cd)−

n(Ctr) is always positive and is a suitable scalar measure of the interval between the bounds. The quantity
δk = n(Ck

d) − n(Ck
tr) was calculated for each mesodomain realizationk. From each tensorCk

d andC
k
tr, we

calculated Young moduliEk
l;d,tr andEk

t;d,tr and shear coefficientsGk
lt;d,tr andGk

tt;d,tr, wherel andt correspond
to directionsx3 andx1 (or equivalentlyx2), respectively. The differences between engineering coefficients
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estimated with hDisp and hTrac boundary conditions are defined as

g1 = El;d − El;tr ; g2 = Et;d − Et;tr ; g3 = Glt;d − El;tr ; g4 = Gtt;d − El;tr. (2)

Similarly to δk, it is expected that the quantitiesgk
i (i = 1..4) calculated for each mesodomain be positive

and be suitable measures of the dispersion of apparent properties that may be obtained from different types of
boundary conditions.

3 Results
Figure 3 displaysEt for all tested mesodomains realizations. The correspondingplots for other engineering

coefficients (not shown) were qualitatively similar. The plots illustrate both the dispersion on the apparent
modulus value and the dispersion of the gapg1(k).

The data on the relative gap between apparent properties calculated with hTrac and hDisp boundary condi-
tions is synthesized in figure 3. The figure shows: (i) the mean relative gapsgi(k) calculated for the 25 %
largest gap values; (ii) the mean relative value ofδ calculated for the 25 % largest gap values (right).
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FIG. 2 – Computed transverse elas-
tic modulus (Et, GPa) for all micro-
structure realizations for different me-
sodomain (material volume, MV) sizes.
Boundary conditions hDisp (circle) and
hTrac (+).

4 Discussion and conclusion
The data presented above was considered to discuss the size ofthe RVE in human cortical bone. The RVE

size is defined as the minimum mesodomain sizeL for which apparent properties become weakly sensitive to
the type of boundary condition. The sensitivity of the computed apparent properties to boundary conditions
is quantified withδ andgi (i = 1..4) which are measures of the distance between the bounds of the elastic
behavior, for the stiffness tensor itself and the engineering moduli, respectively. Consequentlyδ andgi are
suitable measures of the closeness of a mesodomain size to the RVE size.

There is a wide distribution of gap valuesgi(k), as shown forEt in figure 3. The smaller the mesodomain,
the wider the distribution. Interestingly, the smaller gaps are reached for the smaller volumes; in fact the
small gaps correspond to samples with a rather homogeneous distribution of properties (e.g. samples 1, 5, 54,
see figure 4), i.e. low porosity. The largest gaps (e.g. samples12, 24, 33, see figure 5) correspond to samples
including a large pore or high heterogeneity. This indicatesthat in areas where the porosity is low, a very limited
volume of tissue can be considered as a locally representative volume (RVE) for which effective properties
can actually be estimated locally. For areas with larger porosity, effective properties can not be defined with
mesodomain size 0.5 mm.

Because the gap values are scattered, it is not meaningfull to compare the mean gap value for the different
mesodomain sizes; as a matter of fact the mean gaps estimatedfrom the whole distributions are not strongly
affected by the mesodomain size. It appears to be more relevant to look for a mesodomain size for which
a sufficient number of realizations (high probability) will have a small gap. To obtain the data of figure 3
we calculated the average gap for the 25 % samples with highergap values. This is a simple procedure to
quantify the error. Nevetheless other quantitification may be used. Figure 3 reveals the same trend for all four
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FIG. 3 – Left: Mean relative difference (%) between apparent engineering moduliobtained with hDisp and
hTrac boundary conditions for increasing size of mesodomains; Right: mean relative difference of the norms of
apparent tensors obtained with hDisp and hTrac boundary conditions forincreasing size of mesodomains. The
means were calculated for the values in the4th quartile of values distribution, i.e. on the 25 % largest gaps.

engineering coefficients and differences in tensor norms. Thegap decreases rapidly between 0.5 and 1.5 mm
and seems to reach a plateau. There is no reason to believe thatcalculation with mesodomain sizes in the same
range of values (0.5-2 mm) would contradict this conclusion.

The notion of representative volume element is associated toa desired precision on the estimation of
effective properties. In view of the different sources of error (computational, experimental data, etc.) the level
of precision required on the RVE definition can be assessed. Compared to most other areas of engineering
sciences, the level of precision of models in the biomechanics field is less. Typically under 10 % error between
model prediction and reference experimental data is often considered as a good result. Even for the smallest
mesodomain considered in this work (0.5 mm) the uncertaintyon the homogenized elastic response due to
boundary condition effects may be considered small enough (below 5 %). However, the scattering of apparent
properties due to the fluctuation of the mesodomain content may be considered important. This scattering
becomes smaller for mesodomain size 1.5 mm and 2 mm.

The results presented in the paper suggest that for a size as small as 0.5 mm it may be meaningful to
calculate effective properties providing these are calculated based on thelocal content of the mesodomain
volume, which undergoes important fluctuations from points to points. The uncertainty due to boundary condi-
tions is small, especially for mesodomain sizes 1.5 mm and 2 mm for which homogenized properties may be
considered as unique.

Only one bone sample was used for the purposes of the study. Thesample was assumed to be represen-
tative of human cortical bone tissue. Nevertheless the results of the present study should be supplemented
with computation based on other parent microstructures. Finally, the mesodomains used to estimate apparent
properties were constructed by extruding a 2D image. This procedure neglects all 3D effects in the porous
network. Nevertheless, the approach followed is consistent with that followed for most cortical bone models.
Three-dimensional images of cortical bone obtained with synchrotron computed tomography could be used to
conduct similar studies with 3D bone models.
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FIG. 4 –Samples with weak heterogeneity. From left to right (% porosity): sample 1 (4.4 %), 5 (2.2 %) and 54
(1.6 %). of smales with low heterogeneity

5



19èmeCongrès Français de Mécanique Marseille, 24-28 août 2009

5 10 15 20 25 30

5

10

15

20

25

30
10

15

20

25

30

35

40

5 10 15 20 25 30

5

10

15

20

25

30 5

10

15

20

25

30

35

40

5 10 15 20 25 30

5

10

15

20

25

30
10

15

20

25

30

35

40

45

FIG. 5 –Samples with high heterogeneity. From left to right (% porosity): sample 12 (9.6 %), 24 (12.7 %) and
33 (16.9 %).
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