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Résumé :

L'os cortical est essentiellement biphasique (pores+majr Pour le calcul de propriétés effectives, il faut cliois
volume élémentaire représentatif (VER). Ce choix estatétiar 1) le tissu est hétérogéne a plusieurs échelles freeg
plus ou moins poreuses en moyenne) ; 2) la couche corticaieges tres fine. Nous montrerons que le choix d’'un VER
de taille millimétrique peut permettre de calculer de mamigatisfaisante des propriétés effectives.

Abstract :

Corical bone is essentially a biphasic composite matemaingralized matrix + pores). In order to calculate effeetiv
properties a representative volume element (RVE) needeg tdebined. The choice of the size of the RVE is difficult
because: (i) bone material is heterogeneous (variationasbgity in the cortical shell); (ii) the thickness of the toal
shell is small. It is shown that an RVE size in the millimeterge may actually be used to calculate effective properties
with a limited precision.

Mots clefs : os, homogénéisation, volume élémentaire représentatif

1 Introduction

Cortical bone is a well-organized hard tissue which represapproximately 80 % of the skeletal mass in
the human adult. It can be described as a two-phase compusiégial: a dense mineralized matrix and a soft
phase, i.e. pores containing fluid and soft tissues. Coitieaé tissue is a multi-scale material with different
characteristic microstructural patterns from the nanemtetthe millimeter scales. Porosity is distributed over
several length scales: the diameter of pores range from anfevometers to several hundreds of micrometers
[13]. Resorption cavities (approximatefy) — 200 pm) and Haversian canals (approximatély ym) are
characteristic of the higher level of organization in bofigese pores are roughly aligned with the longitudinal
direction of bone [4, 2] and embedded in the matrix which isiétume of the smaller pores (at least one order
of magnitude smaller than resorption cavities and Haversémals) and mineralized collagen fibrils.

In the framework of continuum mechanics [6], each mateahpis a volume of a homogeneous material
which is mathematically shrunk to zero from the macroscegpiat of view but which represents a volume of
finite microscopic dimension with a microstructure. Accagly, the concept of material point is associated
to the concept ofepresentative volume elemdRVE). For a non-periodic microstructure, the RVE is defined
as a volume containing a very large (mathematically infinite)nber of microscale elements [14, p. 237].
This definition is valid, in principle, only for the case of atstcally homogeneous and ergodic material.
In what follows we will make reference to three scales and ttigaracteristic dimension: the microscale of
characteristic dimensia#, typically the scale of Haversian channels and resorptisities (around 00 pm);
the mesoscale with characteristic dimension denatgtie macroscale with characteristic dimension denoted
Lmacro Which is the size of the macroscopic body, typicdlly — 10 mm for the cortical shell thickness of a
long bone. In continuum mechanics, the statement of sepamaitscales is [14]

d < L << Lmacro or d << L << Lmac'ro- (1)

The mesoscale appears to be an intermediate scale; for thscatsto be actually separated from the micros-
cale,L should be at least as large as the RVE> Lgy . If the microstructure has a weak disorder and/or a
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weak mismatch in properties, the inequality: L may be sufficient; otherwisé < L applies. The issue of
central concern is how fast tla@parentmesoscale homogenized properties approackfteetiveresponse of
the RVE, i.e. macroscopic elastic properties, with incregsalues of the ratid. /d.

Recently, the mesoscale of cortical bone has been giveityartattention [11, 9, 1] in association to
novel experimental techniques such as nanoindentatigng$g2acrhotron X-Ray computed tomography, and
guantitative scanning acoustic microscopy [17]. Thesertiecies enable the explicit description of the me-
soscopic domains in terms of geometry (microstructure)Yandistribution of local elastic properties. The
characteristic size of RVE in cortical bone is consideretigan the millimeter range since a millimetric vo-
lume includes several resorption cavities and Haversiaalsand is usually smaller than the thickness of the
cortical shell. However the more restrictive statementaafles separationd <« L < Ly,qero €an hardly be
met in cortical bone for which the rati@/ L,,,q.r, iS approximately bounded d3100 < d/Lyacro < 1/5
for a large thicknessl() mm) and a small thicknes$ 6 mm), respectively. In addition gradients of porosity
are commonly observed in cortical bone, leading to mesasdmterogeneity, i.e a variation of the mesosco-
pic response from points to points. To the authors’s knogdedt is yet unknown whether the statement of
separation of scales applies in practice for cortical bimether words the minimum siz€ of a mesodo-
main such thal. > Lgy g is not known. Several authors have attempted to estimatamatlr scale elastic
properties based on idealized and virtually unbounded gé&gmof the osteonal pattern. For instance in refe-
rences [3, 19, 5, 15], authors either considered periodialmrnatively, random microstructures and assumed
the separation of scale to be valid. In the latter works, hgenazation of bone elastic properties have been
conducted following @eterministicapproach assuming that there actually exists a mesodorhiagne tissue
of sizeL such thatl. > Ly g. In fact authors have assumed that homogenized bone piespestn be uniquely
defined. According to Hill [10, 14], the homogenized propstdf a mesodomain of siZzeare unique only in
the casd. > Lgy; in that case the homogenized properties are “independém gurface values of traction
or displacement, so long as these values are macroscgpicatiorm”, in other words, the elastic response
is independent of the boundary conditions applied on theodmsain. A detailed analysis of the conditions
for scale separation in bone material is lacking. As a camsece, the applicability of the effective properties
estimations based on homogenization models is unclear.

The work presented in this paper is a contribution to the defmif the RVE size for cortical bone. The
specific aim of the paper is to determine the evolution of theaegnt mesoscale elastic response with increa-
sing mesodomain sizé. At the limit of large L (d < L), the apparent properties of a mesodomain of size
L > Lgyg should equal the macroscopic effective properties. Therappalastic response of mesodomains
subjected to different boundary conditions (BCs) were aategb for different mesodomain sizes. With this
approach, the RVE size may be defined as the mesodomain sizifdr apparent elastic properties become
weakly dependent on the BCs type used. Our approach is sitoithose followed for various types of mi-
crostructures, see e.g., [18, 20, 16]. A model of corticaldomesoscopic properties coupled to quantitative
images of bone tissue [9] is used to generate mesodomaingliffirent sizes. The model is particularly well
suited to the determination of the RVE size for cortical bbaeause is accounts for the realistic heterogeneity
of bone at the microscale.

2 Method

One square image of 3 mm edge size (see Figure 1) of cortical tisgue was extracted from the image
of a cross-section of a human femur. The 3 franea within the femur cross-section was chosen so that the
homogeneity of the microstructure was maximized to the fimh@rs’s eye. In particular, areas including
very large pores or an obvious porosity gradient were agbiete that it was not possible to obtain an image
much larger than 3 mm edge size with a sufficiently homogeneder®structure. The image was obtained with
50 MHz scanning acoustic microscopy (SAM) [17] for the pugmosf another study. The direction of the bone
axis (diaphysis) was taken parallel to axig and the cross-section was assumed to be in the plane).

The scanning acoustic microscope had a physical resolufi@d pm and the image resolution (pixel size)
was 16um. Each pixel of the SAM image is associated to a value of acoimspedance representative of the
tissue elasticity [17]. With the resolution used, only thrgkst pores (Haversian channels, resorption cavities)
are actually resolved; the smallest pores (Volkmann’s lcarsteocyte lacunae, etc.) cannot be distinguished
from the matrix so that they contribute to the bulk matrixgetdies probed. The sample had a mean porosity
of 8.5 % which is typical for human cortical bone [4].

A large “parent” image o x 9 mm? was constructed based on the 3 mm? impedance image. The latter
was duplicated to pad a surface made of rine 3 mm? images. The padding was achieved by assembling
along each of the four sides of tBex 3 mm? image the symmetric image with respect to the side; images
in the corner of the padding were obtained by taking the symmienage with respect to each corner of the
3 x 3 mm? image. With this procedure, the central image of the paddirthe initial 3 x 3 mm? image.
The microstructure of the x 9 mm? image was assumed to be representative of bone microseuSurface
padding using symmetry rather than translation ensuretthieae was no discontinuity in th& x 9 mm?

microstructure. Four sets af () (i = 1..4) square “children” images with different edge size® were
extracted randomly from the parent image, see table 1. Tairobthe children imagg, (1) a coordinate point

(x,(f),y,(f)) was selected randomly within the central image of the pagd®) a square image with edge size
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FIG. 1 —Left: acoustic impedance image (SAM, 28 resolution) of a human femur cross-section. Right:
image of area approximately x 3mm? from which smaller children images were extracted. The numbers are
pixel numbers; size of pixel i x 16.m?.

L' and with cente(méi),y,ii)) and randomly chosen orientation an@ﬁ@ was extracted. Each children image

was then extruded in directiary so as to form a parallelepipedic realization of volu(tiél))2 x Lg, where
Ls is the volume dimension in directiory. Computation were performed fdr; = 0.5 mm. Following Kanit

et al. [12] each mesodomain realization may be consideradvdsrostructure realization from a distinct bone
sample with the same overall properties as the parent image.

TAB. 1 —Definition of mesodomain sets
| Characteristic size of mesodomab({, mm) [ 0.5| 1 | 1.5] 2 |

| Number of realizationgv (9 | 60 | 50| 20 | 20 |

The impedance data contained in each mesodomain was cahteridasticity values following a pro-
cedure described in [9]. Briefly, (1) pixels in pores were segtad from the pixels in the bone matrix and
associated with the elastic properties of bulk water (uinexd); (2) pixels in matrix were associated with a
transverse isotropic stiffness tensor (With ,x2) being the isotropy plane) representative of bone tissue and
dependent on the pixel impedance value.

The apparent properties of each mesodomain were computegl aifinite-element based upscaling pro-
cedure. The mesodomain was subjected successively to sipfseniform tractions (hTrac) or uniform dis-
placements (hDisp) boundary conditions (see e.g. [20] ftesription of the classical procedure). Stress and
strain fields in each mesodomain were calculted with a comiaidiite element code (Comsol Multiphysics)
in the framework of linearized elasticity. In order to avaidphysical edge effects due to the possible pre-
sence of pores at the mesodomain boundary, the mesodonaiesurrounded with a thin layer of thickness
0.05 mm with elastic properties close to the searched apparentepiep of the mesodomain. The layer pro-
perties were estimated based on empirical relationshgms fnean porosity and mean elasticity values in the
mesodomain [8]. The columns of the apparent stiffness (HRispgompliance (hTrac) tensors where finally
obtained by dividing components of strain and stress fields9R The computed apparent stiffness tensors of
a mesodomain corresponds to a material symmetric with cespehe plane;, x2); however it is close to
hexagonal symmetry withs as the axis of symmetry, due to the distribution of pores amuktverse isotropy
of the matrix. Accordingly the closest transversely ispicdhexagonal) stiffness tensor of each raw’ apparent
stiffness tensors was calculated following a procedurerdsed in [7, 9]. Finally for each mesodomain, two
transverse isotropic apparent stiffness tensors aremsutaassociated to hTra€y.) and hDisp C,) boundary
conditions.

Apparent tensor€,,. andC, provide lower and upper bounds, respectively, for any odipparent tensor
C of the mesodomain that may be calculated with any type of 8ancondition (see e.g. [20, 14]). This
means that the eigenvalues(@; — C) and(C — C,,) are all positive. We introduce the tensor noniia\) =

\/>ie1.6 AM(A)?, whereX(A); (i = 1..6) denote the six eigenvalues of the tensofThe quantityy = n(Cy) —
n(Cy,) is always positive and is a suitable scalar measure of tleevidt between the bounds. The quantity
6% = n(Ck) — n(C}.) was calculated for each mesodomain realizatiofrom each tensot’ andC., we
calculated Young modul)’, ., andEf,; , and shear coefficienss;, ;. andGy,., .. wherel andt correspond
to directionsxs andx; (or equivalentlyxs), respectively. The differences between engineering cositie
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estimated with hDisp and hTrac boundary conditions are de:fise
g1 =Eqa—FEir; 92=FEpa— Euyr s 93=Gra— Eigr s 94 = Gia — Epr (2

Similarly to 6%, it is expected that the quantitie$ (i = 1..4) calculated for each mesodomain be positive
and be suitable measures of the dispersion of apparentrtiesphat may be obtained from different types of
boundary conditions.

3 Results

Figure 3 displayd’; for all tested mesodomains realizations. The corresporulotg for other engineering
coefficients (not shown) were qualitatively similar. The pldtustrate both the dispersion on the apparent
modulus value and the dispersion of the gagk).

The data on the relative gap between apparent propertiada@d with hTrac and hDisp boundary condi-
tions is synthesized in figure 3. The figure shows: (i) the meaativel gapsy; (k) calculated for the 25 %
largest gap values; (ii) the mean relative valué oflculated for the 25 % largest gap values (right).
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4 Discussion and conclusion

The data presented above was considered to discuss the #imeRfE in human cortical bone. The RVE
size is defined as the minimum mesodomain difer which apparent properties become weakly sensitive to
the type of boundary condition. The sensitivity of the congguapparent properties to boundary conditions
is quantified withy andg; (i = 1..4) which are measures of the distance between the bounds ofatee
behavior, for the stiffness tensor itself and the engimgemoduli, respectively. Consequentlyand g; are
suitable measures of the closeness of a mesodomain size Rvh size.

There is a wide distribution of gap valuggk), as shown fo; in figure 3. The smaller the mesodomain,
the wider the distribution. Interestingly, the smaller gage reached for the smaller volumes; in fact the
small gaps correspond to samples with a rather homogenésitibwtion of properties (e.g. samples 1, 5, 54,
see figure 4), i.e. low porosity. The largest gaps (e.g. sanif@e24, 33, see figure 5) correspond to samples
including a large pore or high heterogeneity. This indic#tiesin areas where the porosity is low, a very limited
volume of tissue can be considered as a locally represemtadlume (RVE) for which effective properties
can actually be estimated locally. For areas with largeogity, effective properties can not be defined with
mesodomain size 0.5 mm.

Because the gap values are scattered, it is not meaningftdimpare the mean gap value for the different
mesodomain sizes; as a matter of fact the mean gaps estifmatedthe whole distributions are not strongly
affected by the mesodomain size. It appears to be more regléwdook for a mesodomain size for which
a sufficient number of realizations (high probability) wike a small gap. To obtain the data of figure 3
we calculated the average gap for the 25 % samples with higdgevalues. This is a simple procedure to
guantify the error. Nevetheless other quantitification mawsed. Figure 3 reveals the same trend for all four

4
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Fic. 3 —Left: Mean relative difference (%) between apparent engineering motitgined with hDisp and
hTrac boundary conditions for increasing size of mesodomains; Rigignmelative difference of the norms of
apparent tensors obtained with hDisp and hTrac boundary conditionsfoeasing size of mesodomains. The
means were calculated for the values in #% quartile of values distribution, i.e. on the 25 % largest gaps.

engineering coefficients and differences in tensor norms.glipedecreases rapidly between 0.5 and 1.5 mm
and seems to reach a plateau. There is no reason to beliewalfitition with mesodomain sizes in the same
range of values (0.5-2 mm) would contradict this conclusion

The notion of representative volume element is associatexd desired precision on the estimation of
effective properties. In view of the different sources abefcomputational, experimental data, etc.) the level
of precision required on the RVE definition can be assessemhp@med to most other areas of engineering
sciences, the level of precision of models in the biomedisdfield is less. Typically under 10 % error between
model prediction and reference experimental data is oftersidered as a good result. Even for the smallest
mesodomain considered in this work (0.5 mm) the uncertantghe homogenized elastic response due to
boundary condition effects may be considered small enoclgloW 5 %). However, the scattering of apparent
properties due to the fluctuation of the mesodomain content Imeaconsidered important. This scattering
becomes smaller for mesodomain size 1.5 mm and 2 mm.

The results presented in the paper suggest that for a sizeakasr).5 mm it may be meaningful to
calculate effective properties providing these are cateal based on thiecal content of the mesodomain
volume, which undergoes important fluctuations from poiafsdints. The uncertainty due to boundary condi-
tions is small, especially for mesodomain sizes 1.5 mm andan2fon which homogenized properties may be
considered as unique.

Only one bone sample was used for the purposes of the studysarhple was assumed to be represen-
tative of human cortical bone tissue. Nevertheless thelteesfithe present study should be supplemented
with computation based on other parent microstructureallyjthe mesodomains used to estimate apparent
properties were constructed by extruding a 2D image. Thisquhore neglects all 3D effects in the porous
network. Nevertheless, the approach followed is condistéh that followed for most cortical bone models.
Three-dimensional images of cortical bone obtained witlteyotron computed tomography could be used to
conduct similar studies with 3D bone models.

- = 4
: . i )
> .

FiG. 4 —Samples with weak heterogeneity. From left to right (% porosity): sampled1%), 5 (2.2 %) and 54
(1.6 %). of smales with low heterogeneity
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FiG. 5 —Samples with high heterogeneity. From left to right (% porosity): sampl®12%), 24 (12.7 %) and
33 (16.9 %).
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