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Résumé :  
Différentes approches numériques de l’hydrodynamique de bassins en eau peu profonde sont considérées et 
comparées. Deux des approches ont été développées par le TIT : l’une d’elle est basée sur la résolution 
numérique des équations de Navier-Stokes avec correction de pression, l’autre (développée il y a plusieurs 
années) est basée sur la résolution numérique de l’équation de Boltzmann sur réseau. L’analyse comparative 
de ces deux approches a été faite avec MARS3D dans le cas d’un bassin en eau peu profonde : l’Etang de 
Berre. 

Abstract : 
Different numerical approaches of hydrodynamics of shallow water basins are considered and compared. 
Two approaches are developped in TIT-Russia: one of them is classical and based on numerical solution of 
the Navier-Stokes equations by Pressure-Correction method, another (developed several years ago) is  based 
on the solution of the Lattice Boltzmann kinetic equation. The comparative analysis of these two approaches 
with MARS3D is performed for a shallow water basin example: «Etang de Berre». 
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Introduction 

For the numerical simulation of hydrodynamics of shallow water basins different approaches are considered 
and compared. Two of them are developed in TIT-Russia: one is classicaly based on numerical solution of 
the Navier-Stokes equations by Pressure-Correction method, another (developed several years ago) is based 
on the solution of the Lattice Boltzmann kinetic equation, which is higher in the hierarchy of models. The 
comparative analysis of these two approaches with MARS3D is performed for a shallow water basin 
example: Etang de Berre.  

 

Brief description of the different approaches 

Let us to briefly describe the essence of each of the techniques and then perform a comparative analysis with 
concrete examples.  



First model based on Navier-Stokes equations   
 

For the first model, we consider the following Navier - Stokes equations [1,2]: 

( ) ( ) ( )1 2 ( sin cos )t x y z x x y zx zy
u uu vu wu a u u u v wµ µ ν θ θ

ρ
′ ′ ′′ ′ ′ ′ ′ ′ ′ ′+ + + = − + + + + Ω − ,   (1) 
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ρ
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and the equation of continuity for incompressible fluid:  0x y zu v w′ ′ ′+ + = , (4), where { , , }u v w=V  – 

components of a vector of velocity, a – hydrostatic pressure, ρ – density, Ω – angle velocity of the Earth 
rotation, θ – angle between a vector of angle velocity and normal vector, µ,ν – horizontal and vertical 
components of the coefficient of turbulent exchange.  

For conservative difference scheme based on the natural balance equations written for elementary 
volume (cell) grid area. Entering the balance equations derivatives and integrals should be replaced by 
approximate difference expressions. As a result, we obtain an homogeneous difference schemes. This 
method of obtaining conservative schemes is called integral-interpolation method.  

An effective numerical method for solving problems of hydrodynamics is the SOR - method. We 
consider the variant of this method, known as method of pressure correction. This method is an additive 
scheme of splitting into physical processes and guarantees the mass balance (equation of continuity). 
Consider the system of equations on the physical processes.  

Split each equation of system into two parts as follows: 
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where u - value at the previous temporary layer, u  – at the current time layer, u  – for non interim temporary 
layer. 

After differential of equations (8) - (10) on variables x, y, z respectively and summarizing and including (4) 
as a result we received: 

( )xx yy zz x y za a a u v wρ
τ

′′ ′′ ′′ ′ ′ ′+ + = + +          (11) 

Equations (5)-(10), (11) are solved by the SOR method. 

In the system of equations (5) - (10), (11) instead of partial derivatives, we will use their finite-difference 
analogues, obtained by means of integral-interpolation method. The most cumbersome task is to calculate the 
pressure presented by the Poisson equation. Finite-difference analogs of equations (5) - (10), (11) are solved 
by alternate - triangle method of rapid descent [3]. The main advantage of these schemes - a wide margin of 
stability. Discrete model is also conveniently used to calculate the stationary currents.  



Second model based on Boltzmann equation   
 

The second approach is based on the continuous Boltzmann equation - integral-differential 
equations, which describes the evolution of one particle distribution function f (x, ξ, t) in momentum space: 

( )f f f Q f, f
t

∂
+ ⋅∇ + ⋅∇ =

∂ x ξξ a ,           (12) 

where ( )Q f, f - collision integral. The situation in the physical space x and the speed indicated in the 

space of momentum (or velocity) is indicated ξ . Term ( )t 3 3f , , d x d ξx ξ  represents the probability of finding 

the particle in the volume 3d x  around the x and at velocities between ξ and ξ + dξ, a - the force per unit mass 
acting on a particle. 

In numerical solution of the Boltzmann equation using Lattice Boltzmann Method (LBM), which 
uses minimal discrete kinetic model for solving problems in fluid mechanics and other fields of physics [5-
8]. Instead of a direct solution of Navier-Stokes equations, LBM includes the lattice Boltzmann equation 
(LBE), which describes the evaluation of the distribution of an ensemble of particles on a lattice, the 
collective behavior that asymptotically represents the dynamics of fluid flow. As shown in dealing with LBE 
in the limit of fluid flow is produced to the weakly compressible Navier-Stokes equations.  

The effects of particle collisions in determining LBE generally represent a relaxation model. One of 
the most common - is the single relaxation time model (SRT), also known as the BGK (Bhatnagar, Gross and 
Krook) model [12]. Generalized Lattice Boltzmann Equation (GLBE) with external forces consists of the 
evolution equation for the distribution function of particle populations as they move and collide on a lattice 
and is given by [16, 17]:  

( ) ( ) ( ) 1, ,
2
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t t tf x e t f x t f f I Sα α α αβ β β αβ αβ β

β β
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∑ ∑ .    (13) 

Here the left side of equation (13) corresponds to a change of the distribution function for the 
interval tδ , so the ensemble of particles moving from the situation x  in its neighboring position tx eαδ+  with 
the speed along the characteristic directions. We consider the three-dimensional 19-speed eα  and a lot of 
velocity of particles (D3Q19), shown in Fig.1, with the following: 
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FIG. 1 – Velocities of particles (D3Q19) 

Values of velocity components , ,x y zc c c  of a particle eα  are determining /x x tc δ δ= , /y y tc δ δ=  and 

/z z tc δ δ= , where , ,x y zδ δ δ  – grid steps in space, also tδ  – time step. The first term on the right side of 



equation (13) represents the cumulative effect of particle collisions in the evolution of the distribution 
function fα . GLBE has a general form of a matrix with multiple collisions of relaxation times that 
correspond to the basic physical parameters such as density, momentum and stress tensor. They, in turn, 
represent different points of kinetic distribution function. The second term on the right side of equation (13) 
changes in the distribution function dependent on external fields of forces F  through source - Sα  , Iαβ –

elements of the unit matrix. The source can be written as follows [13,11]: ( ) ( ),
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e u F
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−
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,     (15)  

and 2 2 2 / 3s x y zc c c c= + +  – speed of sound of model, jF – cartesian components of external force. 

 The local macroscopic density and velocity are calculated as follows: fαα
ρ = ∑ , 

1
2 tj u f e Fα αα

ρ δ≡ = +∑ , and pressure p can be found as 2
sp cρ= . 

The nature of the kinetic equation (13), and in particular, the matrix of the collision αβΛ  becomes 

more evident when we define it in terms of sets of linearly independent moments f  and S , instead of the 

functions assigned [ ]0 1 18, ,..., Tf f f=f  and [ ]0 1 2 18, , ,..., TS S S S=S , ie through 0 1 18, ,...,
T

f f f =  f  and 

0 1 2 18, , ,...,
T

S S S S =  S , which is obtained through a matrix transformation :T T=f f , T=S S . Elements of the 

matrix T  are given in [16]. Each row of matrix is orthogonal to any other series. This matrix Λ  is such that 
the matrix of collisions becomes a diagonal matrix 0 1 2 18( , , ,..., )diag s s s sΛ = , where 0 1 2 18, , ,...,s s s s  relaxation 

time the coefficients of the relevant moments, after transformation 1T T −Λ = Λ . 

 Described two approaches were adopted for a shallow water basin Etang de Berre (see Fig.3), also 
results of modeling were compared with results of simulation using a package Mars3D (IFREMER).  

Thus, in the three-dimensional domain of definition of the problem { }( , , ) : ( , ) 0G x y z H x y z= ≤ ≤  - 

shallow basin Etang de Berre, is required to find the components of flow velocity 
( , , , )u u x y z t= , ( , , , )v v x y z t= , ( , , , )w w x y z t= , pressure of water ( , , , )P P x y z t= , where ( , )H x y  the known 

function of the bottom topography. External forces in this model are: wind force, the force of friction on the 
bottom and the Coriolis force. 

Boundary conditions on the free surface is thus: 0, ( , , ), ( , , ), 0sx sy
u v pw F x y t F x y t
z z z

ν ν∂ ∂ ∂
= = = =

∂ ∂ ∂
, 

where s sx sy aF F θρ= + =F i j w w  – the friction force of wind on the sea surface, where 38.8 10θ −= ⋅  - 

coefficient of friction on the sea surface, 1,25aρ =  - the density of the atmosphere, w  - wind speed (Law 
Van Dorn). These conditions for the velocity, consistent with the boundary condition for the particle 

distribution function: 2

( )( , ,0, ) ( , , , ) s
z z

s

f x y t f x y t
c
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α α αδ δ ω ρ

ν
⋅

= − +
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At the bottom ( , )z H x y=  and on the solid parts of the boundary no slip conditions are applied to the 

velocity of adhesion 0u v w= = =  and pressure conditions 0p
n
∂

=
∂

 that correspond to the bounce-back 

boundary condition (BB BC) for the distribution function: f fα α= . 

Also, such conditions can be used at the bottom: 



( , , ), ( , , ), ( , , ),bx by bz
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z z z

ν ν ν∂ ∂ ∂
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 where 1 0b bx by bzF F F θ ρ= + + =F i j k w w – the friction 

force of water on the surface of the bottom, where 6
1 1.3 10θ −= ⋅  - coefficient of friction on the bottom, 0ρ - 

the density of water, w  - the speed of flow. The corresponding boundary condition for the particle 

distribution function: 2
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At the liquid part of the border and in the sources (estuarine) constu u=  set the known flow of liquid. 
For this type of boundary conditions for the components of the velocity at the border, often using BB BC 

[8,9] for the partial distribution function fα  at the entrance:  2

( )2
s

f f
c
α

α α αω ρ ⋅
= +

e u ,  where αe  and αe  

denote the opposite directions of each other: α α= −e e . 

 
FIG. 2 – Location of boundaries in the entrance. 

Boundary conditions.  

For the open boundary: ( )( ), 1 /n nu u t u m s= ≈ - in the general case a function of time (direction of velocity 

can still depend on the ebb tide or during a given period of time)  

For rivers:  0 ,nu u=  estuaries l'Arc and the la Touloubre, where the set-known flow of liquid.  

Connection between Etangs de Berre and de Bolmon: 0∂
=

∂
u
n

, where n - normal to the side of the Berre.  

On moving the marine environment at all times act Coriolis force, calculated as follows: 
2corF uρ  = Ω×  ,where Ω  – vector angular velocity of rotation of the earth. 

Numerical results and comparison 
 

Briefly describe the essence of each of the techniques and then perform a comparative analysis. 
Numerical simulation results using the Lattice Boltzmann method are presented in Fig.3 (a), for the next set 
of parameters: Ma = 0.002, Re = 10, northern wind (5 m / s). Similar results for the reservoir with the same 
wind speed, calculated by the amendments to the pressure are illustrated in Fig.3 (b). For comparison, results 
obtained using Mars 3D [18, 20] are also depicted in Fig.3. To the north-west wind (5 m / c), taking into 
account the effect of tidal-drip caps in the channel Caronte. Simulation results for all three models agree 
qualitatively with each other, however, LBM - approach was more promising in terms of  existence and 
uniqueness of solutions with well-developed turbulence. 

 

 



  

(a) (b) (c) 

FIG. 3 –  Barotropic currents: (a) LBM, (b) Azov 3D, (c) Mars 3D. 
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