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Abstract :
The level set approach is used for fully compressible simulations of premixed combustion. The motivation of the present
work is to numerically simulate thermo-acoustic combustion instabilities. These instabilities are excited by the interaction
of heat release and pressure fluctuations, which can numerically only be accurately accounted for in fully compressible
simulations. A major challenge is the discretization and the inclusion of the heat release due to combustion at the flame
front. To this end, a finite-volume formulation, which uses the ideas of the ghost-fluid method [Fedkiw et al. J. Comp. Phys.
154, 393-427 (1999)], is developed based on a low-dissipation scheme which has been successfully used for large-eddy
simulations of non-reacting flows.
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1 Introduction
The numerical simulation of thermoacoustic instabilities in premixed combustion resolving the (turbulent)
flow, the chemical reactions, and the acoustic field is a very challenging task due to the disparity of length
scales involved. Premixed combustion often occurs in thin layers, in which diffusive transport and chemical
reactions are strongly coupled. A common modeling approach in the numerical simulation of turbulent pre-
mixed combustion is the flamelet assumption, which states that the length scale of the combustion process is
smaller than the smallest scale of the turbulent flow. Hence, to simulate the turbulent reacting flow field, the
premixed flame can be viewed as an infinitely thin interface, which is commonly referred to as the flame front.
The idea of tracking a propagating interface to describe the motion of the premixed flame front was introduced
by Markstein [1], which later led to the formulation of the G-equation [2].
The G-equation describes only the motion of the flame front in the flow field, which is in the present context
compressible including acoustic waves, and does not incorporate the local heat release of the premixed flame.
At the discontinuous flame front jumps in the density and the normal velocity due to the thermal expansion
are encountered. At small Mach numbers the pressure jump is relatively small and is often neglected. The
discontinuous density and velocity profile make the discretization at the flame front difficult. Additionally, the
heat release due to combustion at the flame front must be accounted for.
The objective of this contribution is to present a finite-volume scheme for fully compressible large-eddy simu-
lation of premixed combustion using the G-equation approach. The baseline numerical scheme to discretize
the compressible Navier-Stokes equations involves the advection upstream splitting method (AUSM) [3] with a
low-dissipation pressure splitting to compute the convective flux and has been successfully used in large-eddy
simulations of non-reacting flows [4]. This scheme is extended to be capable of accounting for a premixed
flame front the motion of which is governed by the G-equation. The necessary modifications are formulated
drawing on the ideas of the ghost fluid method [5].

2 Mathematical model
Let the density be denoted by %, the Cartesian components of the velocity vector v in the xi directions of x
be given by vi (i = {0, 1, 2}), and the total specific energy and the pressure be represented by E = e + v2

2
and p, respectively. The quantity e denotes the specific internal energy and t denotes the time. We consider the
compressible Navier-Stokes equations in their non-dimensional form, which can be written as

∂tQ + ∇H = 0, (1)
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with Q = [%, %v, %E]T being the vector of the conservative variables and H = [F0,F1,F2]T being the flux
vector containing an inviscid part Hi and a viscous part Hv

H = Hi −Hv =

(
%v

%vv + p
v(%E + p)

)
+

1
Re

(
0
τ

τv + q

)
, (2)

where q contains the heat conduction terms. The superscript T identifies the vector transpose and ∇ denotes
the vector of spatial derivatives in the Cartesian coordinate system, ∇ = [∂x0 , ∂x1 , ∂x2 ]

T . Furthermore, let P
designate the vector of primitive variables, P = [%,v, p]T . The Reynolds number is given by Re = %∞v∞l

µ∞
,

where l is a characteristic length. The dynamic viscosity µ is computed using a Sutherland law. We assume a
Newtonian fluid such that the components τij of the second-rank stress tensor τ can be formulated by

τij = −2µSij +
2
3
µSijδij , (3)

where the Sij are the components of the rate-of-strain tensor

S =
1
2
(
∇v + (∇v)T

)
. (4)

The vector of heat conduction q is accounted for by Fourier’s law

q = − k

Pr(γ − 1)
∇T, (5)

where γ is the ratio of specific heats. The Prandtl number Pr = µ∞cp

k∞
contains the specific heat at constant

pressure cp. Finally, the thermal conductivity is evaluated from k(T ) = µ(T ), which holds for a constant
Prandtl number.
Using the Gauss divergence theorem, the integral form of the Navier-Stokes equations suitable for a finite-
volume discretization is obtained as ∫

V
∂tQdV +

∫
A

H ndA = 0, (6)

where n is the outward unit normal vector on the surface dA.

2.1 G-equation to describe the flame front motion
As a gasdynamic discontinuity, the flame front is in the level set approach represented by a hypersurface asso-
ciated with the contour G0 = {(x, t) : G(x, t) = 0} of the scalar field G. The interface G0 is in this approach
implicitly captured rather than explicitly tracked. The evolution of the scalar G carrying the information on the
location of the flame front is governed by the G-equation, which is written

∂G

∂t
+ f ·∇G = 0, (7)

where f = v + (sul + suκ)n is the local extension velocity of the flame front with the outward normal vector n.
Here, sul denotes the laminar burning velocity with respect to the unburnt gas, and suκ is the flame front motion
due to its curvature κ, which can be computed directly from the scalar G field by

κ = ∇ · n, n = − ∇G

|∇G|
. (8)

3 Numerical method
The level set solver and the flow solver are coupled in a hierarchical dual-mesh framework. Similar approaches
have been presented in [6, 7]. In this dual-mesh framework, the G-equation and the compressible Navier-
Stokes equations can be solved on different grids, such that a locally refined grid can be used for the flow
solver, while the G-equation can be discretized with high-order spatial accuracy on a uniformly spaced grid.
In the present context, Cartesian grids are used for both solvers, and the cells are organized in hierarchical
cell-tree data structures sharing the same root cell, as illustrated in Fig. 1. This significantly simplifies the data
transfer, which, in the present work, is only required on the cells directly at the front. Assuming there is a level
r which both trees have in common and the flow grid is not finer than the G grid around the flame front, the
data synchronization between the grids is performed in 4 steps :

2
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Tabulated 
chemistry

Level set solverLevel set solver
● G equation solver
● Reinitialization method

State variables at the flame front

Flame front position 
and dynamicsVelocity field

Flame speed

Heat release
flow octree-grid

Compressible flow solverCompressible flow solver
● Adaptive-grid NSE solver
● Flame front-flow coupling

G octree-grid

FIG. 1 – Coupling of the adaptive-grid flow solver and the level set solver in a dual-mesh framework, which is
based on hierarchical Cartesian grids.

1. Average the G-field from cell levels r + i, i > 0, to level r on the G grid.
2. Transfer G from the level set solver to the flow solver.
3. Transfer the flow velocity vector v from the flow solver to the level set solver.
4. Interpolate v from level r to higher grid levels on the G grid.

Since both solvers can access the data from all grids at all times, step 2 is not explicitly performed.

3.1 Level set transport
The G-equation (7) is integrated in time using a third-order 3-stage Runge-Kutta scheme and discretized in
space using a fifth-order upstream-central finite-difference scheme. For efficiency, a fast, localized level set
method is used, i.e., the G-field is evolved only in a narrow band around the flame front. For details we
refer to [8]. It is common practice to initialize the G-field into a signed distance function with respect to the
flame front, i.e., |∇G| = 1, and it is well known [9, 8] that the G-field must be frequently reinitialized to
approximately maintain this property. It has been shown that the reinitialization can be of crucial importance
for the accuracy of the level set solution and that inappropriate or too infrequent reinitialization significantly
degrades the solution accuracy [10]. In this work, the constrained reinitialization equation

∂G

∂τ
+ S(G(τ = 0))(|∇G| − 1) = βF,

S(G) =
G√

G2 + h2
,

(9)

developed in [11] is solved in artificial time τ to reinitialize the level set function. The left-hand side of Eq. (9)
is formulated to restore the property |∇G| = 1, while the forcing term F weighted by β = 0.5 on the right-
hand side corrects the displacement of the flame front, which occurs during the reinitialization. The formulation
HOCR-2 [11], which is based on the constrained reinitialization scheme developed in [8], is used to formulate
the forcing term. Like the G-equation (7), Eq. (9) is only solved in a narrow band around the flame front.
Since the flame speed is only defined at the flame front and the accuracy of the level set solution significantly
benefits from a smooth distribution of the extension velocity f in the narrow band, the PDE-based method
of [12] is used to provide the extension velocity f in the narrow band.

3.2 Discretization of the Navier-Stokes equations
The compressible Navier-Stokes equations are discretized using a finite-volume formulation on an adaptively
refined Cartesian grid [13, 14]. Embedded boundaries are represented by means of cut-cells, such that the
present method can be used to simulate flows in complex geometries such as gas turbines or engines.
A difficulty in representing the flame front by a gasdynamic discontinuity is the discretization of the governing
equations at the front. Furthermore, the heat release due to combustion at the flame front must be taken into
account, i.e., the unburnt and the burnt states ahead of and behind the front have to be coupled. The objective
is to derive a consistent and low-dissipation flux formulation, which can be used for large-eddy simulations of
premixed combustion.
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3.2.1 Inviscid flux
For a clear description, we refer in the following to a uniformly spaced grid with a meshwidth h. Consider a
surface between two cells L andR. First, the discretization of the convective terms is discussed. The convective
flux at the surface is computed based on left and right interpolated variables using an appropriate scheme
represented by the operator F ,

F = F
(
PL,PR

)
. (10)

Consider now the case that the cells L andR are on different sides of the flame front. To achieve an oscillation-
free discretization and to account for the heat release at the flame front, we consider two fluid states, the unburnt
state and the burnt state, which are separately evolved. That is, to discretize the unburnt state no data of the
burnt state is directly used and vice versa. In this case, two fluxes are computed on the surface

F u = F
(
Pu,L, P̃u,R

)
F b = F

(
P̃b,L,Pb,R

)  if GL < 0, GR > 0, (11)

F u = F
(
P̃u,L,Pu,R

)
F b = F

(
Pb,L, P̃b,R

)  if GL > 0, GR < 0, (12)

where the superscripts u and b denote the unburnt state and the burnt state, respectively. The vectors of ghost
variables P̃u,R and P̃b,L in Eq. (11) and P̃u,L and P̃b,R in Eq. (12) cannot be reconstructed from the respec-
tive side of the flame front since the required fluid state is not available. However, the unburnt and the burnt
interpolated variables on the surface must satisfy the Rankine-Hugoniot relations requiring the conservation of
mass, momentum, and energy across the moving flame front, which can be written neglecting viscous and heat
conduction fluxes 〈

F%
F%vn

F%E

〉
= 0, (13)

where 〈F〉 denotes the jump of F across the flame front and the fluxes are evaluated in a frame of reference
moving along with the flame front, that is,

F% = %(vn − fn), (14)

F%vn
= %(vn − fn)2 + p, (15)

F%E =
(
%e+

%(vn − fn)2

2
+ p

)
(vn − fn). (16)

The quantities vn = v · n and fn = f · n are the normal flow velocity and the normal extension velocity with
respect to the flame front normal vector. The unknown ghost variables P̃u and P̃b can then be computed by
solving the system  F̃%

F̃%vn

F̃%E

u

=

(
F%

F%vn

F%E

)b
,

 F̃%
F̃%vn

F̃%E

b

=

(
F%

F%vn

F%E

)u
, (17)

supplemented by the equation of state for the ghost variables

p̃ = (γ̃ − 1) %̃ẽ, (18)

which is evaluated in the unburnt and in the burnt gas, respectively. The system of equations (17) can be
manipulated using Eq. (18) to obtain algebraic expressions for the ghost variables P̃, which have been used to
formulate the ghost fluid method in [5].
What remains is to determine the left and right interpolated variables on the surface and the flux function
F . We use the advection upstream splitting scheme [3] to compute the convective flux with a modified low-
dissipation pressure splitting scheme as proposed in [4] in the context of large-eddy simulation of non-reacting
flows. As in [4], the interpolated primitive variables are obtained using the MUSCL approach [15]. Second-
order accuracy is obtained by computing the cell center gradients using a central-difference scheme. On the
cells at the flame front, the stencil of this scheme includes one cell at a different state, see Fig. 2, and the
principle of the ghost-fluid method is used as above by solving Eq. (17) to reconstruct the required ghost
variables on the cell. That is, in the case illustrated in Fig. 2a, the unburnt variables Pu

j−1 and P̃u
j+1 are used to

compute the derivative on j, and in the case illustrated in Fig. 2b, the burnt variables P̃b
j and Pb

j+2 are used to
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j−2 j−1 j j+1 j+2

unburnt state flame front burnt state

(a)

j−2 j−1 j j+1 j+2

unburnt state flame front burnt state

(b)

FIG. 2 – Illustration of the discretization at the flame front : (a) the stencil of the center difference on j, which
is in the unburnt state, reaches over the flame front and includes j+1, which is in the burnt state ; (b) the stencil
of the center difference on j + 1, which is in the burnt state, reaches over the flame front and includes j, which
is in the unburnt state.

compute the derivative on j + 1. The ghost variables P̃u
j and P̃b

j−1 are obtained from Pb
j and Pu

j−1 by solving
Eq. (17) as aforementioned.
Note, the cell-center ghost variables are needed only once to compute the cell center gradient. Furthermore,
the surface ghost variables are needed only once to compute the ghost flux. Hence, all ghost variables can be
computed at the time they are needed, such that the modifications of the standard finite-volume method do
not cause any memory overhead. Finally, in the presented second-order accurate scheme, the ghost variables
are only needed on the cells at the flame front and on the surfaces between cells of different state. Hence, the
Rankine-Hugoniot relations need to be applied only very locally around the flame front.

3.2.2 Viscous flux
The viscous flux is evaluated based on the cell-center gradients which have been computed for the inviscid
flux, such that no further modifications at the flame front are necessary. The surface gradients are obtained
with second-order accuracy by averaging the gradients on the adjacent cell centers.

4 Results
The presented method has been validated for a number of simple test cases, of which the merger of flame
kernels is illustrated in Fig. 3 showing contours of the temperature, the velocity vectors, and iso-contours of
the pressure as black lines. Solutions are shown for different time levels before and after the flame kernels
coalesce. Initially, a quiescent flow field at ambient pressure with two circular flame kernels is prescribed. The
flame Mach number is chosen as Mf = 1 × 10−3 corresponding to a laminar flame speed of approximately
sul = 34cm/s. Curvature corrections are not accounted for in this simulation, i.e., suκ = 0cm/s. Due to this
initialization, a pressure wave emanates from the flame front, which can be observed in Fig. 3a. A more detailed
discussion of the test cases and the application of the presented method to large-eddy simulation of premixed
combustion will be discussed at the conference.

Références
[1] Markstein G. Nonsteady flame propagation. Pergamon Press, 1964.
[2] Williams F. Turbulent Combustion. in : J.D. Buckmaster (Ed.), The mathematics of combustion, SIAM,

1985.
[3] Liou M.-S. and Steffen Jr. C. J. A new flux splitting scheme. J. Comput. Phys., 107, 23–39, 1993.
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(a) (b)

(c) (d)

FIG. 3 – Fully compressible solution of coalescing flame kernels at different non-dimensional time levels : (a)
t = 1.75 × 10−4 ; (b) t = 1.12 × 10−2 ; (c) t = 1.75 × 10−2 ; (d) t = 2.0 × 10−2. The temperature contours
and the velocity vectors are shown. Black lines : pressure contours.
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