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Abstract :

The interaction between internal gravity wavepackets dradrtassociated wave-induced mean flow is shown
to dominate their weakly nonlinear evolution at early tim&ufficiently large amplitude waves either grow in
amplitude as the wavepacket narrows or decrease in amplingdthe wavepacket broadens due to nonlinearly
enhanced dispersion depending on whether the frequen®@spctively greater or less than the frequency of
internal waves having the fastest vertical group velocityis is true whether the waves are horizontally periodic
or horizontally compact. In non-uniformly stratified fluithe weakly nonlinear effect acts to enhance or retard
transmission of the waves across a localized evanesceonrdgpending upon the wave amplitude and relative
frequency.
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1 Introduction

Surface waves induce a mean flow known commonly as the Stoeslthe maximum speed
of this flow increases as the square of the wave amplitudesinfiuence back upon the waves
is negligible even when the waves are close to breaking &molgli

Likewise, vertically propagating internal wavepacketsamtinuously stratified fluid induce
a horizontal mean flowi/(z, ¢), whose vertical structure changes in time as the wavepacket
propagates vertically and disperses. Unlike surface wédnmgever, the influence of the wave-
induced mean flow back upon internal waves is non-negligistn when the waves are well
below overturning amplitudes. At very large amplitude, te/e-induced mean flow can be
larger than the horizontal group velocity of the wavepaciet thus drives the initially stable
wavepacket into an overturning state (Sutherland (2004f)noderately large amplitude the
waves may remain stable, but the evolution of the wavepatikietrs qualitatively from the
propagation and dispersion characteristics predictedchiesi theory.

Recently a nonlinear Schrédinger equation including togier dispersion terms was de-
rived and, by comparison with fully nonlinear numerical siations, was shown to capture
well the vertical structure of horizontally periodic intel wavepackets (Sutherland (2006)).

This paper shows how the horizontally periodic results carektended to examine the
evolution of internal wavepackets that are horizontallyvad as vertically localized. This is
done using fully nonlinear numerical simulations that fespecifically upon the case of non-
hydrostatic waves having vertical wavenumber= —0.4k, in which £ is the fixed horizontal
wavenumber. Such waves are modulationally unstable scthikatvave-induced mean flow
Doppler-shifts the waves to lower peak vertical wavenunaet larger maximum amplitude.
We further examine the evolution of such wavepackets upamatratified finite-depth slab of
fluid, thus extending linear theory predictions (Suthetlamd Yewchuk (2004); Brown and
Sutherland (2007)).
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2 Weakly Nonlinear Theory

Generally, a one-dimensional, quasi-monochromatic waslegt can be written in terms of its
Fourier transform (Whitham (1974)):

Ae(z,t) exp[e(mz — wot)] = /f(fn) expli(mz — wt)] dm, (1)

In which A, is the amplitude envelope of waves having vertical waverarmband frequency
wo = w(m).

The influence of a mean flow/, acting in thez-direction is including by replacing in
(1) with the Doppler-shifted frequendy = w — Uk. The methods of Hamiltonian fluid dy-
namics predicts that the leading order contribution towase-induced mean flow is given by
(Scinocca and Shepherd (1992); Sutherland (2001))

Uz, 1) = — (60) = —5R{AAC), @

in which ¢ is the vertical displacement, = 0,u — J,w is the vorticity, A, and A, are the
corresponding complex-valued amplitude envelopes, aadtigle brackets denote averaging
over one horizontal wavelength. Using linear theory toeviite amplitude of the vorticity field
in terms ofA,, the explicit formula for the leading order contributiorthe wave-induced mean
flow is

1 -
UGz,t) = 3N IR, ©

in which N is the buoyancy frequency and= (k,m) is the wavenumber vector.

Thus we arrive at the following nonlinear Schrédinger eaumat

A= —w'A, + z%w”Azz + éw”’Azzz - z%Nk:|E||A|2A, (4)

in which primes denoten derivatives ofw and, for notational convenience, we have defined
A = A¢. Theresult, (4), was derived rigourously using pertudoatheory (Sutherland (2006)).

On the right-hand side of (4), the first term represents gyapan at the vertical group
velocity, the next two terms represent linear dispersianh the last term introduces nonlinear
effects due to the influence of the wave-induced mean flow thmwaves. For small-amplitude
waves the last term is negligible. Compared with the secend,tthe third term is negligible
for sufficiently wide wavepackets except for those movingrniae speed of the maximum
vertical group velocity, in which case’ = 0. Solving the equation reveals that the third term

is non-negligible even for finite-amplitude waves with~ 0 (w ~ N); it acts in concert with
nonlinear effects to decrease the vertical group velocity.

3 Numerical Methods
The numerical simulations of two-dimensional, Boussinasgrnal wavepackets solve the fol-

lowing coupled, fully nonlinear equations for the evolutiof the vorticity and density fields
(Sutherland (2006)):

D¢ dp 2

Dt 9. +vVi( (5)
and N .

P 2P 2

D = Vg, + xkV<p. (6)

2
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Here the constanig v andx represent gravitational acceleration, kinematic viggaamnd dif-
fusivity, respectively. The last two are set to be suffidesimall to have negligible effect
upon the wavepacket dynamics, but not so small that the codemerically unstable. For an
incompressible fluid; = —V?2¢ and the vertical velocity can be written in terms of the strea
function byw = .. In uniformly stratified fluid, the fluctuation density canwstten in terms
of the vertical displacement field through the backgrountsdeg profile: p = —(dp/dz)¢.

The simulations are initialized by a internal wavepackehwii andm prescribed so the
waves move upward in time. Generally we focus upon the eildf Gaussian wavepackets
with the vertical displacement field given initially by

2 2
£(z,2,0) = A(z, 2,0) cos(kx + mz) with A(x, z,0) = Agexp [— 2;2] exp [— 2;2] . (™

For horizontally periodic waves, the prescribed initiatkground mean flow is given by
computing the wave-induced mean flow using (2). The locaizbatal flow associated with
horizontally localized waves is prescribed by computing, everywhere in space and super-
imposing this on the horizontal velocity field. As the wavesgagate, the corresponding hor-
izontally averaged flow is found to move upward with the waleving behind no residual
stationary mean flow.

In all simulationss.k = 10. In horizontally localized wavepacket simulationgt = 40,
and o,k is treated as infinitely large for horizontally periodic veav We focus upon finite-
amplitude effects by examining waves withhk = 0.3 andm/k = —0.4.

4 Results

4.1 Horizontally periodic waves

Figure 1 shows the evolution of a large amplitude, horizZibngeeriodic wavepacket. Snapshots
of the wavepacket at nondimensional timés= 0 and Nt = 150 (about 24 buoyancy periods)
are shown in Figures l1a and b, respectively. The latter pdatrly shows that the nonlinear
dynamics act to advect the waves differentially so thatslioeconstant phase tilt closer to the
vertical where their amplitude is largest.

The corresponding vertical timeseries formed from suéeegsofiles of the computed
wave-induced mean flow/(z,t), is shown in Figure 1c. This reveals that the wavepacket
moves upward initially at the vertical group velocity budthrer than broadening as expected
from linear dispersion theory, the wavepacket narrows aedpeak wave-induced mean flow
increases to nearly double its initial valé&, The corresponding amplitude envelope increases
by approximately 40%. At timéVt ~ 80 the vertical propagation of the wavepacket slows
and the pattern becomes considerably more complicatecatét imes, there is little vertical
advance while the maximum amplitude remains large.

In comparison with Figure 1c, Figure 1d shows timeseriefefstrictly weakly nonlinear
wavepacket evolution, which is found by solving (4). Thetialidevelopment is the same
as that determined from the fully nonlinear simulationdwgignificant qualitative differences
appearing only afteNt ~ 100. At these late times the fully nonlinear wavepacket begins t
undergo parametric subharmonic instability, which is appathrough the small vertical-scale
structures superimposed on the large-scale wavepackejuneFLb.

Comparison of the simulation with weakly nonlinear theceyves to demonstrate that the
interactions of waves with the wave-induced mean flow is tfgry mechanism governing
the initial evolution of finite-amplitude horizontally-pedic, vertically localized wavepackets.
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Figure 1. Results of a fully nonlinear numerical simulatafa wavepacket prescribed initially by (7)
with o, = 10k=!, m = —0.4k and 4y = 0.3k~!(~ 0.048),) with the panels showing grayscale
contours of the normalized vertical displacement figld),., at times a} = 0 and b)t = 150N 1.
Time series of the normalized wave-induced mean flo\, t)/Uy, are computed c) from the fully
nonlinear simulation and d) from weakly nonlinear theorgrél/; is the maximum wave-induced mean
flow determined at the midpoint of the wavepacket at time0.

We now go on to examine the influence of the mean flow acting theshorizontal extent
of a horizontally localized wavepacket.

4.2 Horizontally localized waves

Figure 2 shows the results of a simulation of a wavepackenhpgahe same characteristics as
those of the internal wavepacket shown in Figure 1 but wititefinorizontal extent prescribed
by 0, = 40k~!. For ease of visualization, the snapshots are taken in aefi@meference
moving with the horizontal group velocity as predicted mekr theory.

As with the horizontally periodic case, the wavepacket grawamplitude and narrows as
it propagates upward. However, because the wavepacketrdesphorizontally, it takes longer
for the growth in amplitude to occur. Over the time of the diation, there is no substantial
vertical deceleration of the wavepacket.

This simulation demonstrates that the wave-induced mewargitbing over the extent of the
wavepacket has an influence upon the finite-amplitude @woluthich is qualitatively similar
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Figure 2: Simulation of a horizontally localized wavepacken with same parameters as the simula-
tion shown in Fig. 1 except with, = 40k~!. The plots show snapshots of the normalized vertical
displacement field at times &jt = 0, b) Nt = 150 and c) the vertical timeseries ef (£(),. /Uo.

to that for horizontally periodic wavepackets.

In this case, however, the wave-induced mean flow is undmigtorefer to the flow acting
over the extent of the wavepacket. Thus, similar to (2), witndé/ = — (£¢), in which the
subscriptr denotes averaging over the wavepacket widlth, rather than the horizontal extent
of the domain.

Finally, we consider how these dynamics affect the evotutiica wavepacket propagating in
non-uniformly stratified fluid. In particular, we examine awepacket propagating in a station-
ary fluid with buoyancy frequencyy, everywhere except in a slab of degth= 1k~ situated

between: = 19.5k~ and20.5k~! (3.10\, ~ z ~ 3.26),) where the fluid is unstratified. Al-
though the waves are evanescent in this region, the veeitaht of the slab is small enough
that the waves can partially transmit across it through agse called tunnelling. Linear theory
predicts the transmission coefficient is (Sutherland andcielk (2004))

. 2
i, (sn%h(kL))

sin 20
inwhich® = tan~!(m/k) is the angle at which lines of constant phase of the initialepacket
are oriented with respect to the vertical. At fixed, the maximum transmission occurs for
waves with® = 45° (m = k). Our intent is to examine how the wave-induced mean flow
affects the transmission of finite-amplitude waves.

The simulation results are shown in Figure 3. As occurs foalsamplitude waves (not
shown), at late times the wavepacket splits into an upwargggating transmitted part and a
downward propagating reflected part. However the propodidhe wavepacket that transmits
is moderately smallerfl{ = 25.6%) compared to the transmission coefficient waves wigh=
0.3k~ ! for whichT = 28.4%. As the waves approach the reflection level the amplitudélds
and so the wave-induced mean flow quadruples. Initially #lcis to retard the transmission

of waves. But as the waves reflect and the amplitude decreghgeBoppler-shifted frequency
decreases) becomes closer t#5° and the transmission of the waves is enhanced.

T = : (8)
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Figure 3: As in figure 2 but for a wavepacket incident upon astratified slab of fluid of depthk !
(=~ 0.16),) centered about the position indicated by the dashed line.

5 Conclusions

We have focused upon a finite-amplitude wavepacket withiBp@haracteristics in order to
demonstrate that the primary weakly nonlinear mechanisverging its evolution is through
the action of the wave-induced mean flow acting back upon #wepacket. Thisis true whether
the waves are horizontally periodic or horizontally contpate feedback mechanism becomes
more pronounced in non-uniformly stratified fluid, partemly where the waves approach a
reflection level. This is because the magnitude of the wadeged mean flow increases as
the square of the wavepacket amplitude. The superposifiomcment and reflected waves
effectively double the wave amplitude and quadruple thei@nfite of the wave-induced mean
flow.
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