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RESUME 

Cet article décrit une analyse systématique de l’incertitude liée à l’estimation de la 
charge polluante totale (cuivre) dans un système séparatif de drainage des eaux 
pluviales, sur la base d’une combinaison  spécifique de données d’entrée, d’un 
modèle d’accumulation-lessivage de polluants, et de mesures (volumes de 
ruissellement et charges polluantes). Nous avons utilisé la méthodologie d’estimation 
de mesure généralisée d’incertitude (GLUE) et nous avons généré des distributions 
de paramètres postérieurs qui résultent des sorties du modèle englobant un nombre 
significatif de mesures fortement variables. Compte tenu du modèle appliqué 
d’accumulation-lavage de pollution et un nombre total de 57 mesures pendant un 
mois, la charge de cuivre totale prévue peut être comprise dans une plage de ± 50% 
de la valeur moyenne. 

ABSTRACT  
In this paper, we conduct a systematic analysis of the uncertainty related with 
estimating the total load of pollution (copper) from a separate stormwater drainage 
system, conditioned on a specific combination of input data, a pollutant accumulation-
washout model and measurements (runoff volumes and pollutant masses). We use 
the generalized likelihood uncertainty estimation (GLUE) methodology and generate 
posterior parameter distributions that result in model outputs encompassing a 
significant number of the highly variable measurements. Given the applied pollution 
accumulation-washout model and a total of 57 measurements during one month, the 
total predicted copper mass can be predicted within a range of ± 50% of the median 
value. 
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1 INTRODUCTION 
Suppose you have access to a number of catchment-specific stormwater quality 
measurements and wish to make a statement about the magnitude of pollutant loads 
from the area. Most often, you would base your statement on a more or less complex 
model, a function that transfers knowledge about the catchment rainfall-runoff 
processes into a model response. The selection of an appropriate model type is a 
question in itself. However, whatever model you select, you are required to accept 
that the model output does not equal one unique true solution to the problem. To post 
the statement you will need to say something about the reliability and validity of the 
model output.   
In this work focus lies on determining the uncertainty of a conceptual stormwater 
quality model given a, in this context relatively detailed measurement campaign. The 
motivation for determining this is an aim to know to what extent micro-pollutant loads 
in stormwater systems can be estimated. As a reference compound, the heavy metal 
copper was selected.  
The paper sets out from the ideas of the generalized likelihood uncertainty estimation 
(GLUE) method of Beven and Binley (1992). GLUE was developed for hydrological 
models and has been applied in the area of hydrology several times since it was first 
presented (see e.g. Beven and Freer, 2001). The main message is that calibration of 
conceptual models is to be done keeping in mind that several parameter sets equally 
well describe your measured observations. The method makes use of Bayes’ 
Theorem and the modeller is allowed to subjectively assess when the uncertainty is 
adequately described, generally when simulations with a number of derived 
parameter sets yield an output that cover a significant number of observations. 

2 SITE DESCRIPTION AND FIELD DATA 
All data in this work come from an urban catchment called Vasastaden in the city of 
Göteborg, Sweden. The area is densely populated and consists mainly of older 
residential and commercial buildings. The catchment has a total impervious area of 
4.83 ha and a separate sewer system. For a detailed description of the case study the 
reader is directed to Ahlman (2006). 
Measurements of rainfall, stormwater flow and stormwater quality were undertaken in 
April-May 2002. An ISCO 6700 automatic water sampler was installed in the vicinity 
of a manhole to take samples in a Ф400 mm separate storm sewer made out of 
concrete. A flow meter forced the sampler to take flow-weighted samples. Rain data 
was collected with a tipping bucket rain gauge (type HoBo/MJK), located 
approximately 60 meters from the sampler on the boundary of the catchment.  
For analysis 13 rain events during a period of 30 days were identified. The rainfall for 
the events ranged between 0.8 and 11.7 mm with durations from 0.4 to 9.7 hours. 
The maximum intensities (with a one-minute resolution) ranged between 0.4 and 3.7 
mm/h. Within 8 hours after each rain event, the collected stormwater samples were 
transported to the laboratory, where they were analysed for pH, conductivity, total 
suspended solids (TSS), chemical oxygen demand (COD) and for heavy metals 
(copper, zinc, lead and cadmium). In total, the 13 events included analyses of 57 
copper concentrations, which were representative for 57 runoff volumes. We 
combined this information to form an observation vector mk (k=1,2,…,57) [μg], the 
observed total masses of copper in runoff during the sampling periods.    
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3 METHOD 

3.1 Model description 
We apply the pollutant accumulation and wash-off module of SEWSYS (Ahlman, 
2006) to simulate the load of copper in the stormwater. SEWSYS is a conceptual 
stormwater model developed for simulations of substance flows in urban drainage 
systems, running in the mathematical software MATLAB/Simulink. In the considered 
model pollutants are accumulated in dry periods and washed off during rainfall, 
processes described with classical build-up and wash-off functions (Overton and 
Meadows, 1976). The mass flow of a considered pollutant in the stormwater runoff is 
obtained from the following mass balance around the (not observed) amount of 
pollutant X(t) [μg m-2], accumulated on the surfaces:  
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The dry deposition load Θ1 [μg·s-1·m-2] is assumed to be constant and represents 
different sources of pollution, e.g. traffic activities, surface corrosion and atmospheric 
deposition. The rate coefficient for pollutant dry removal Θ2 [s-1] describes removal by 
wind and other means, a process which is assumed to be proportional to the 
accumulated mass. The wet removal by wash-off is assumed to be proportional to the 
accumulated mass and the rain intensity p(t) [μm·s-1] with a rate constant Θ3 [μm-1]. In 
all simulations in this paper, it is assumed that the system is at steady state at the 
time for the first event, which yields X(0)= Θ1/Θ2. The simulated observations Yk [μg] 
(k=1,2,…,57) represent predictions of the measured observations mt, which were 
taken over the sample lengths ik [s] centred at tk [s] (see also Figure 1, right): 
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The effective rain intensity, runoff volume vRunoff,k [l] and impervious area A [m2] has 
been calibrated in a previous study (Ahlman et al., In prep.) and are considered to be 
fixed. The concentration of copper in rain water, cRain [μg·l-1] is assumed to be 
constant and low (1 μg·l-1) so that it does not affect the results much. Left for analysis 
is the parameter vector Θ = (Θ1,Θ2,Θ3). 

3.2 Uncertainty analysis  
Although the proposed model is complex compared to those often used in the area of 
micro-pollutants in stormwater, it is a crude simplification of reality. If it is accepted to 
apply such a simplified model, model parameters yielding solutions that are almost 
equally good should also be accepted. One single “optimal” solution, e.g. one that 
minimizes/maximizes a specific objective function is of less interest. This is the basis 
for the GLUE method, which has inspired this work. The uncertainty analysis 
presented here is based on the premise that input data uncertainty, model structural 
uncertainty and measurement uncertainty can be lumped into model parameter 
uncertainty. This view, that the parameter vector Θ is a random variable, should be 
interpreted as a way to model the uncertainty involved in all assumptions of the model 
(Equations 1 and 2). If we let yk (k=1,2,…,57) and θ = [θ1, θ2, θ3] be realisations of Yk 
and Θ respectively, this uncertainty is, in a Bayesian framework, described through 
the posterior parameter distribution f(Θ|Yk=yk,mk), the distribution of the parameters 
conditioned on data. Following Bayes’ Theorem, this distribution is proportional to the 
product of the likelihood L(Ytk|Θ=θ,mk), the distribution of simulated observations 
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conditioned on the parameters, and π(Θ), the prior distribution of parameters 
reflecting our (lack of) knowledge about these before observing the data.  

 )()m,()m,( Θ⋅=Θ∝=Θ πθ kkkkk |YLy|Yf  (3)  

From the posterior distribution f(Θ|Yk=yk,mk), answers about the statistical properties 
of Θ then follow directly from probability theory. Of specific interest here is to choose 
the likelihood function and prior distribution so that the simulated observations (with θ 
drawn from f) lie in a region Ak, which is large enough to encompass the measured 
observations with high probability P: 
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In practice, the e.g. P=95% quantiles are the ranges [A1,A2,…,A57], within which 95% 
of the modelled observations fall. Part of the notation is exemplified to the right in 
Figure 1 below.  

 
Figure 1: Measured (stars) and simulated (95 and 50% quantiles) observations for 2 out of 13 

events. Time normalised to zero at start of event. For further discussion, see the results section. 
 

To calculate probabilities as in Equation 4, two issues need to be formalised: (i) how 
are the prior distribution and the likelihood function defined? and (ii) how are draws 
from the posterior generated? For the first issue, our suggestion follows one of the 
basic thoughts behind the GLUE methodology, that is to chose a likelihood function 
which the modeller can manipulate to obtain a reasonable prediction uncertainty (Ak 
above). For the second issue, two popular techniques (also mentioned in Kuczera 
and Parent, 1992) to draw from f are implemented: A Markov Chain Monte Carlo 
(MCMC) method and importance sampling. A dense survey of the theory behind 
these two methods can be found in e.g. Robert and Casella (2004). 

3.2.1 Choosing the prior distribution and likelihood function 
In the prior distribution, the modeller includes information about the parameters that 
he/she had before obtaining the observed data. In the case of little prior knowledge, 
the common choice is to select uniform prior distributions. There are incentives to 
constrain the priors into a hypercube, one reason being to reduce the parameter 
space, which the computational algorithms (see 3.2.2 below) need to explore. Based 
on the discussion in Ahlman et al. (In prep.) the constraints were chosen as shown in 
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Table 1. Regarding Θ2, any model describing build-up as a dynamic process with rate 
1.3-13 days are given equal probability 1 whereas faster or slower models are 
disregarded. Regarding the parameter Θ3, which determines the rate of storage 
depletion, we constrain it to be maximum 0.056 µm-1, which corresponds to a storage 
depletion of approximately 15 minutes for a (hypothetical, rectangular) rain with 
intensity 0.02 µm s-1. Finally, for the dry deposition load Θ1 we constrained an upper 
limit of 1 μg·s-1·m-2. This was adjusted so that the choice of prior did not affect the 
possibility of covering the observations. 
 

Parameter description Notation and unit Min. value Max. value 
Dry deposition load Θ1: [μg·s-1·m-2] 0 1 
Dry removal rate  Θ2: [s-1] 1.5·10-5 1.5·10-4 
Wet removal rate constant Θ3: [μm-1] 0 5.56·10-2 

Table 1: Overview of parameters used and their prior distribution. 

 
Based on a realisation θ from the prior distribution, the likelihood function compares 
the simulated observation with the corresponding measured one. It can thus be seen 
as a measure of goodness-of-fit. A common choice is to assume that the residuals 
between modelled and measured observations are independent and normally 
distributed. This was done in Kanso et al., (2005) who studied suspended solid 
concentrations in stormwater runoff with a model similar to the one presented here.  
In our case this assumption yields confidence limits not large enough to encompass a 
desirable number of the measured observations. Out of several likelihood functions 
used in GLUE studies (Beven and Freer, 2001), we instead apply: 
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where exp denotes the exponential function. Equation 6 was also used by Mailhot et 
al., (1997) to investigate the uncertainty related to stormwater quality modelling (using 
artificial data). The parameter T can be seen as a scaling factor whose value depend 
upon the confidence the modeller has on measurements compared to the model. A 
small value of T will result in a peaked posterior distribution and tight uncertainty 
bounds while a larger value will widen the posterior and the uncertainty bounds. By 
varying T, it is thus possible for the practitioner to manipulate the modelled 
uncertainty. 

3.2.2 Sampling of the posterior distribution  
Having defined the prior distribution and likelihood function, the posterior distribution 
is known up to proportionality (Equation 3). The remaining problem is that to evaluate 
the probability of Equation 4, independent draws from the posterior distribution 
f(Θ|Yk=yk,mk) are required.  
With a Markov Chain Monte Carlo (MCMC) method, N draws θ1,…, θN

 are directly 
generated from f by producing an ergodic Markov chain whose stationary distribution 
is f. The distribution of Yk can subsequently be estimated empirically by Monte-Carlo 
integration of Equation 4. Out of several possible MCMC methods, we implemented 
the so-called SCEM-UA algorithm proposed in Vrugt et al., 2003. This method has 
recently also been applied in a GLUE study by Blasone et al. (In prep.).  
Importance sampling, sometimes also called weighted sampling, re-formulates 
Equation 4 so that draws from f can be replaced by draws from an almost arbitrary 
importance sampling distribution, in our case the prior uniform distribution π. Although 
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computationally expensive, the algorithm is often used in GLUE applications and is 
easy to implement with this setting:  
Repeat for n=1,2, …, N: 
1. Draw a parameter set θn from the prior hypercube distribution (Table 1).  
2. Calculate X(0) and simulate the entire 30 day period with the model (Equation 1)  
3. Observe [y1

n,y2
n, … , y57

n] with Equation 2 , calculate an importance weight (in 
our case Equation 5) and normalise it:  
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The set {θn,Pn} know represents N weighted random samples from the posterior f with 
Pn interpreted as the probability of drawing θn (Kuzcera and Parent, 1998). For each 
sample k, the mass predicted by each parameter set is ranked in order of magnitude 
and, using the weights associated with each set, a distribution function of the 
prediction is calculated (Figure 2 below). 

4 RESULTS 
The posterior distribution was approximated by both importance and MCMC sampling 
for various values of the scaling parameter T. The two methods yielded nearly 
identical distributions of Yk. With T= 3·108, we judged that the uncertainty was 
adequately described. Figure 2 shows the 57 measured and simulated observations. 
 

 
Figure 2: Results from 100 000 importance samples with T=3·108. Measured (stars) and 

simulated observations (95 and 50% quantiles). 

 
There is some subjectivity involved with the judgement. Six out of 57 (10.5%) 
encircled measurements fall outside the modelled 95% quantiles, which could be 
argued to be on the upper edge. However, in this work we include few assumptions 
such as presence of outliers. There are e.g. two measured observations (3 and 10) 
that the model fails to predict, even if T is chosen significantly higher. It should also 
be noticed that 35 of the measured observations (61%) lie within the 50% prediction 
limit.  
Figure 2 does not show the intra-event dynamics of the model. To study this, one can 
refer to Figure 1. In general, the model has some difficulties with predicting high initial 
peaks in the copper concentrations, which can be seen as high copper loads in the 
beginning of the events. It is also clear from the figure that it is highly uncertain to 
predict e.g. the copper concentration at a certain time.   
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In Figure 3, 10 000 draws from the posterior distribution obtained with MCMC 
sampling are shown. It can be seen, that to simulate the observations with the 
proposed model, a wide range of parameter sets need to be considered. The banana-
shaped correlation between the initial pollutant mass (θ1/θ2) and wet removal 
coefficient in the right plot arises because when the initially accumulated pollutant 
mass is low, the model output is no longer sensitive to increases of the wet removal 
rate parameter; all pollutants are washed off any way. To the left it is seen that the 
posterior distribution has moved quite far away from the prior distribution. To make a 
similar plot as Figure 3 with the results from importance sampling, only approximately 
5% of the parameter sets with highest likelihood weights would be selected. This 
implies that 95 % of the samples are basically unnecessary. This inefficiency of 
importance sampling becomes more and more evident as the number of random 
variables increases, as prior knowledge decreases as well as when the model takes a 
long time to simulate. In such cases, MCMC sampling is to be preferred.  

 
Figure 3: 10 000 draws from the posterior distribution by MCMC sampling.  

 
Besides a simulated observation of the 57 measured masses, each sampled 
parameter set is associated also with cumulative (the sum of) masses throughout the 
30 day period. In Figure 4 (left) the total masses of each event has been divided by 
the event runoff volumes to give the event mean concentrations (EMCs). The events 
not encompassed by simulations are each based on few (1-2) measured 
observations. To the right the cumulative masses, from the first sample 1 to the final 
sample 57 are shown. The jump at k=26 is caused by the abnormally high observed 
mass in this sample. The final cumulative mass gives the answer to our original 
question, which is how accurately we can determine the total mass of copper. Given 
the proposed model the total sampled copper mass is 206-576 g with 95% probability 
and 327-459 g with 50% probability. The median of the predicted total mass is 385 g.  

 
Figure 4: Results from 100 000 importance samples with T=3·108 shown as EMC and 

cumulative loads. Measured (stars) and simulated observations (95 and 50% quantiles). 
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5 CONCLUSIONS 
With the proposed model and input data from the 30 day period, the applied 
uncertainty assessment methodology states that the total sampled copper mass can 
be predicted within a range of ± 50% of the median value (385 g). This final 
uncertainty includes both model structure uncertainty, input data uncertainty as well 
as measurement uncertainty, but no attempts to distinguish between the various 
sources of uncertainty have been made. The message is that given the model, the 
considered catchment and rain data, and the 57 measured runoff volumes and 
masses, this relatively large uncertainty should be acknowledged in connection with 
posting statements about the actual copper loads. If the model is to be used for 
prediction in other areas or for other rainfall conditions, the uncertainty ranges will be 
different. While viewing the rather high final uncertainty one should bear in mind that 
few assumptions such as presence of outliers have been made.   
The proposed uncertainty analysis method is a great tool for assessment of 
uncertainty related with predicting micro-pollutants in stormwater. It is fairly simple to 
implement and flexible to update if e.g. more data become available or if other case 
studies are to be considered. The method provides and keeps track of the correlation 
of parameters, information which is vital for the design of future experiments, as well 
as for motivating new and better model structures. It may furthermore be used to 
justify a simplified model structure when limited data is available. 
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