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RÉSUMÉ 
Cet article décrit l’analyse statistique d’un programme de surveillance de la qualité 
des eaux de ruissellement qui a pour but principal l’estimation de la masse de 
polluants rejetés dans les fleuves de la région de Melbourne, Australie.  La mesure 
en continue de la turbidité se montre très efficace pour estimer les masses de MES, 
avec des erreurs dans la prédiction sur le long terme inférieures à 5%.  Si 
l’échantillonnage ponctuel est employé au lieu de la mesure en continue, il faut avoir 
un écart d’échantillonnage de trois jours maximum afin d’éviter une augmentation des 
incertitudes.  Pour la surveillance pendant le temps de pluie, l’utilisation de préleveurs 
automatiques pour obtenir des échantillons n'est pas nécessaire si seul l’estimation 
des masses sur le long terme est recherchée L’importance de l’élimination des 
erreurs systématiques en effectuant des calibrages fréquents des appareils de 
mesures ainsi qu’en analysant régulièrement les données, est aussi démontrée. 

ABSTRACT 
This paper reports on a statistical review of a water quality monitoring programme 
aimed at estimating long-term pollutant loads discharged from waterways in and 
around Melbourne, Australia.  Use of continuously-measured turbidity was found to 
be an effective surrogate measure for estimating TSS, with errors in long-term load 
estimates of less than 5%.  Where routine grab sampling is used instead, errors 
increase with sampling interval; a 3-day interval is required to maintain errors within 
10% of the continuously-measured load.  For storm event sampling, auto-samplers 
were found not to be required, if only long-term load estimates are required.  The 
importance of eliminating systematic errors, by ensuring frequent calibration and data 
verification, were demonstrated. 
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1 INTRODUCTION 
Estimation of pollutant loads in stormwater is a primary requirement of those charged 
with the responsibility of managing waterway water quality.  Far too often, however, 
monitoring programmes have not been designed with explicit consideration of the 
objectives and information requirements of the sampling (e.g. Bertrand-Krajewski et 
al., 2000a; Bertrand-Krajewski et al., 2000b).  As a consequence, the required level of 
uncertainty is often not specified, and thus the appropriate frequency and timing of 
sampling is not well understood (Fox et al., 2005; Leecaster et al., 2002).   
For example one recent study in rivers by Leecaster et al. (2002) found that to sample 
TSS adequately within a storm event, at least 12 flow-weighted samples were 
required, and that pollutographs of 7 storm events needed to be sampled within a 
year to estimate mean annual loads at a reasonable level of accuracy, provided that 
the sampled storms were classified as ‘medium to large’ storms.  Mourad et al. (2005) 
showed that there is no standard number of events which will give a known level of 
uncertainty in the estimate of Site Mean Concentration (SMC).   
It is thus appropriate for agencies responsible for monitoring water quality in 
waterways or stormwater, to periodically review the quality, representativeness and 
uncertainty of collected data, in order to refine the frequency, timing and methods of 
sampling. Melbourne Water (Melbourne, Australia) conduct monitoring of surface 
water quality, with the primary aim of estimating the loads of pollutants (predominantly 
TSS, TN, TP, but also heavy metals such as Pb, Zn, Cu, Cd, Ni and Hg) being 
discharged to receiving waters.  Secondary objectives of their water quality 
monitoring include the (i) ability to assess the effectiveness of management 
programmes, (ii) development, calibration and verification of water quality models, 
and to (ii) address knowledge gaps such as longitudinal pollutant transformations 
through the drainage network.   
This paper reports on parts of a review of Melbourne Water’s monitoring programme, 
with respect to its primary objective: to accurately estimate pollutant loads.   We 
examine the statistical characteristics of the data, and evaluate alternative sampling 
regimes, in order to estimate loads, with acceptable uncertainty, at the least cost. 

2 METHODS 

2.1 Sources of data 
The existing monitoring programme comprised ten primary sites (Table 1), monitored 
on a routine (monthly) basis since 2001, with additional opportunistic storm event 
sampling (Parslow et al., 1999). The catchments varied in size: from a large river 
basin (Yarra River) to a small urban stream (Gardiners Creek). At five sites, only grab 
sampling was undertaken, during both dry and wet weather (including in-situ analysis 
of turbidity, EC, pH, temperature and dissolved oxygen). In addition, in 2004, an 
autosampler was installed at Gardiners Creek, for monitoring of pollutographs. In the 
Yarra River a continuous multi-probe was used, whilst at Bunyip, Lang Lang and 
Cardinia, a similar probe is used alongside grab sampling. 

2.2 Data analysis 
Analysis of the datasets collected by Melbourne Water was based on asking a 
number of questions which aimed to determine (i) if the current sampling regimes are 
adequate and (ii) whether there can be savings made in the cost of the sampling 
programme, without impacting on the information provided.  Three of the specific 
questions posed to make these determinations, and the methods for assessing these, 
are presented below. 
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Catchment State date 
(to current) 

Parameters Monitored* Sampling method & 
frequency 

Dandenong Creek  Jan 1976 
Eumemmrring Creek Oct 1975 
Maribyrnong River Jan 1992 
Merri Creek Jan 1993 
Moonee Ponds Creek Jan 1993 

 

TSS, TN, N-species, TP, 
OP, E.coli, metals, BOD 
 

Turbidity, EC, pH, Temp, 
DO 

 

Grab samples (weekly-
monthly) 
 

In-situ analysis (weekly-
monthly) 

Gardiners Creek Feb 1992 
(grab) and 
Jan 2004 
(auto) 

TSS, TN, N-species, TP, 
OP, E.coli, BOD, chlorophyll 

Weekly-monthly 
Autosampling:intra-event 
(up to 24 per event) for 9 
events 

Yarra River Jan 1999 Turbidity, EC, pH, Temp, 
DO 

Continuous probe (6 min) 

Bunyip River 
Cardinia Creek 
Lang Lang River 

Aug 2000 
 

Jun 1990 

Turbidity, TSS 
 

TSS, TN, N-species, TP, 
OP, E.coli, metals, BOD 
 

Temp, DO, EC, pH, 
Turbidity 

Continuous (6 minute) 
 

Grab samples (weekly-
monthly) 
 

In-situ analysis (weekly-
monthly) 

Table 1.  Monitoring site details   *Flow is also measured at each site. 
 

2.2.1 Question 1: Can the loads of TSS and other pollutants be estimated 
(and if so, with what uncertainty) using turbidity as a surrogate?  

Melbourne Water installed continuous turbidity probes at three sites where grab 
sampling and in-situ water quality analyses were also undertaken (Bunyip, Cardinia 
Creek and Lang Lang: Table 1). The objective was to determine if TSS could be used 
as a surrogate measure for estimating the loads of TSS, and potentially, of other 
pollutants. Correlations between turbidity and other water quality parameters were 
calculated, and those with R2 > 0.6 were considered as acceptable for predictions of 
pollutant loads. Since only TSS was found to consistently satisfy this requirement, a 
regression relationship between turbidity and TSS was developed (Eqn1), and the 
uncertainty in estimated TSS concentrations assessed (Eqn 2), based on prediction 
intervals of the regression (Eqn 3). Based on advice from Melbourne Water, we 
assumed that turbidity and flow measurements each had an uncertainty of 10%. 

TSS=K×Turb     (Eqn 1) 
where K = regression coefficient (intercept = 0), Turb = measured turbidity 

⎡ ⎤= × × +⎣ ⎦
22 2( ) 2 1.96 ( )U TSS SE U Turbi ii    (Eqn 2) 

where U(TSSi) = uncertainty in concentration of TSS for time step I, u(Turbi) = uncertainty 
in measurements of turbidity for time step I, and SEi  = standard error for each time step i,. 
TSS loads over time were calculated thus using the TSS concentrations, calculated at 
6 minute intervals, from observed turbidity (Eqn 3). 

= = × ×Δ∑ ∑
= =1 1

N N
Load L Q TSS ti i ii i

    (Eqn 3) 

where: Li  = Load of TSS for time step I, Qi = flow rate measured at time step I, TSSi = 
TSS concentration calculated by measuring turbidity at time step I, Δt = time step i (=1 
hour), N = number of time steps for which the load has been calculated   

Uncertainty in the TSS load measured over the time-series, was then calculated using 
the approach of Bertrand-Krajewski & Bardin (2002) (Eqn 4): 

min( , )12 2( ) ( ) 2 ( , ) ( ) ( )
1 1 1

N i mN N
U Load U L R L L U L U Li i k i k

i i k i

+−
= + × ×∑ ∑ ∑
= = = +

 (Eqn 4)  

where U(Load) = uncertainty of total loads, U(Li) = uncertainty of load  for time step I, U(Lk) 
= uncertainty of load  for time step k, R (Li,Lk) = coefficient of correlation between Li and Lk, 
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m = lag (in time steps) beyond which serial auto-correlation between time steps is non 
significant (at p=0.05) (see Bertrand-Krajewski & Bardin, 2002). 

This approach allowed the long-term load of TSS to be estimated, along with an estimate of 
its uncertainty.  The approach described above assumes that there is no systematic error in 
measurements, but only random errors, although, these are still likely to be correlated over 
time (and therefore R(Li,Lk) was estimated using auto-correlation between the measured 
time series). However, since a likely source of errors includes systematic errors such as 
incorrect sensor calibration, maximum uncertainties due to systematic errors were also 
calculated, by multiplying measured turbidity and flow at each timestep by their respective 
potential errors (errors of 2, 5, 10, 15 and 20% were included in this analysis, after advice 
from Melbourne Water on sensory accuracy). 

2.2.2 Question 2: How frequently do routine samples need to be taken to 
estimate long-term loads? 

At some sites, Melbourne Water operates a storm-event grab sampling routine.  
However, at most sites, sampling is simply undertaken on a set-frequency (“routine”) 
basis. Samples are taken at the same time each week/fortnight/month, regardless of 
flow.  The frequency of such sampling will affect the probability of capturing the entire 
distribution of flows and concentrations at a site.  Using the continuously-measured 
turbidity data as a benchmark, we examined the potential errors in long-term load 
estimates resulting from daily, three-daily, weekly, two-weekly and monthly sampling.  
This was done by sub-sampling at the appropriate frequency from the 6-minute 
turbidity time-series, to calculate an equivalent TSS (using Eqn 1), and multiplying it 
by the integrated flow for the sampling interval (using recorded hourly flow data).  The 
analysis therefore assumed that continuous flow-monitoring would still be undertaken, 
regardless of the frequency of grab-sampling.  For each frequency, 12 replicate tests 
were applied, starting at randomly located points within the time-series. 

2.2.3 Question 3: Are autosamplers needed to estimate long-term loads? 
In 2004, Melbourne Water installed an autosampler at Gardiners Creek, in an attempt 
to better estimate the event pollutant load.  Seven storm events were captured during 
the trial period, with an average 19 samples per event) (Table 2). 
 

Event pollutant loads (kg)  Event 
No. N (samples) Flow (m3) TN TP TSS Pb Zn 
1 24 84844 160 19.7 4864 2.10 29.14 
2 20 87534 387 23.3 24534 3.00 21.71 
3 20 89919 269 30.7 24210 3.32 27.38 
4 20 26258 102 9.3 1560 0.90 5.90 
5 20 146210 394 52.9 44136 7.30 62.10 
6 11 36309 74 9.7 4906 0.99 12.00 
7 20 166096 426 69.6 7819 9.23 72.69 

Total 135 637169 1811 215 112030 27 231 
Table 2.  Storm event details from autosampled events at Gardiners Creek trial site. 

 

We used this dataset to calculate the ‘true’ pollutant load for each event.  We then compared 
this true load with that which would be obtained if, instead of using autosamplers, Melbourne 
Water had: 

i. Taken a grab sample, at a random time within the storm event (based on the 
assumption that the time of sampling will vary randomly, depending on the size of the 
storm, and the location of the field officer at the time). 

ii. Taken a sample at the same time (1 hour) after the start of every event (based on the 
assumption that when the flow sensor sends a telemetry signal to the field officer, it 
takes them one hour to get to the site). 
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Scenario (i) was analysed using bootstrapping (a non-parametric resampling 
technique: see Chernick, 1999), such that the concentration of a single randomly-
chosen sample bottle was multiplied by the event volume, to calculate the event load.  
This was repeated 20 times for each event, and appropriate statistics (μ, 95%ile) 
calculated.  Scenario (ii) was simply calculated by multiplying the concentration in the 
sample bottle taken at one hour after storm commencement, by the storm event 
volume.  The analysis was undertaken for TSS, TP, TN, Pb and Zn. 

3 RESULTS 
3.1.1 Question 1: Can the loads of TSS and other pollutants be estimated 

(and if so, with what uncertainty) using turbidity as a surrogate?  

Turbidity proved to be a useful predictor for TSS (Table 3), but not for other pollutants, 
as shown by the low R2 values obtained.  There is some suggestion that Chromium 
(Cr) could be reliably predicted by TSS (since it has a high affinity to fine particles), 
but given that heavy metal laboratory analysis is done as a “suite” (such that there is 
typically little or no extra cost to do one extra metal in the analysis). 
Interestingly, the regression coefficient between turbidity and TSS, for the three sites 
chosen as ‘trials’ for this question, were quite statistically different, reflecting 
differences in geology, land-use and channel form within the three catchments 
(Wallbrink et al., 2003): 

Bunyip River: TSS = 0.705 x Turbidity 
Lang Lang River: TSS = 1.376 x Turbidity 
Cardinia Creek : TSS = 0.301 x Turbidity 

Parameter Dandenong Eumemmerring Gardiners Maribyrnong Merri Moonee Ponds Yarra Cardinia Bunyip Lang Lang
Temp 0.10 0.11 0.01 0.04 0.14 0.05 0.04 0.00 0.00 0.00
DO 0.04 0.01 0.01 0.01 0.00 0.00 0.01 0.00 0.00 0.00

%sat DO 0.01 0.00 0.03 0.03 0.03 0.00 0.00 0.00 0.00 0.00
Cond 0.34 0.18 0.04 0.29 0.22 0.04 0.00 0.00 0.11 0.01

pH 0.01 0.07 0.00 0.06 0.00 0.05 0.02 0.00 0.00 0.00
SS 0.78 0.65 0.63 0.62 0.68 0.63 0.63 0.51 0.69 0.45

NO3-N 0.00 0.02 0.05 0.03 0.06 0.00 0.08 0.53 0.24 0.00
NO2-N 0.03 0.00 0.01 0.11 0.00 0.06 0.29 0.33 0.22 0.04
NH3-N 0.04 0.01 0.00 0.00 0.00 0.00 0.05 0.48 0.42 0.16
TKN 0.03 0.04 0.15 0.01 0.53 0.25 0.47 0.60 0.42 0.19
T-N 0.02 0.02 0.13 0.02 0.53 0.12 0.48 0.74 0.33 0.08
O-P 0.09 0.04 0.01 0.00 0.01 0.10 0.08 0.05 0.50 0.05
TP 0.07 0.02 0.16 0.08 0.52 0.45 0.49 0.56 0.42 0.20

E.coli 0.12 0.00 0.02 0.00 0.25 0.01 0.01 0.17 0.19 0.03
BOD5 0.00 0.00 0.04 0.02 0.10 0.24 0.21 - - -
Chl a 0.03 0.00 0.00 0.00 0.00 0.00 0.00 - - -
Org-N 0.02 0.23 0.23 0.63 0.81 0.29 0.45 0.45 0.15 0.38

Rainfall 0.02 0.00 0.00 0.00 0.00 0.00 0.00 - - -
As 0.00 0.00 0.03 0.03 0.17 0.01 0.41 0.16 0.00 0.21
Cd 0.00 0.00 0.00 0.03 0.06 0.00 0.14 0.01 0.00 0.00
Cr 0.36 0.69 0.38 0.42 0.74 0.62 0.25 0.71 0.62 0.43
Cu 0.10 0.08 0.05 0.00 0.24 0.10 0.03 0.26 0.01 0.06
Pb 0.42 0.20 0.18 0.05 0.24 0.19 0.00 0.10 0.14 0.18
Ni 0.04 0.00 0.00 0.08 0.22 0.19 0.51 0.61 0.36 0.20
Zn 0.13 0.04 0.29 0.09 0.44 0.19 0.07 0.13 0.19 0.32  
Table 3.  Correlations (R2 values) between turbidity and other water quality parameters.  

 R2>0.6 shown n bold. 

Assuming that uncertainties in turbidity and flow measurement are largely randomly 
distributed (correlation of measurement errors have been taken into account), the 
overall uncertainty in estimated TSS loads are extremely low over the five year 
sampled period (less than 5% at all sites) (Table 4).  Even over a single year, the 
potential error in the estimated TSS load is less than 10%.  However, the potential 
errors are much greater if systematic errors in measurement are allowed to occur 
(e.g. due to infrequent or incorrect calibration) (Table 5).  Systematic errors of 20% in 
both turbidity and flow (which are quite conceivable) result in errors in the long-term 
TSS load of up to 44%. 
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Monitoring period TSS Load U(Load) Catchment 
Start End 

No. 
years Total (t) Per year 

(t/yr) 
(t) (t/yr) 

Error  
(%) 

17/08/2000 13/12/2005 5.3 11506 2160 140 14 1 Bunyip 
17/08/2000 17/08/2001 1.0 3684  58  2 
17/08/2000 24/11/2005 5.3 18350 3478 696 66 4 Lang Lang 
17/08/2000 17/08/2001 1.0 3937  257  7 
17/08/2000 24/11/2005 5.3 1073 203 32 3 3 Cardinia 
17/08/2000 17/08/2001 1.0 225  13  6  

Table 4.  Estimated loads of TSS, based on continuous (6-minute) turbidity measurements.  
Uncertainties in the loads are provided, and expressed as a percentage of the estimated load. 

 

Assumed error (%) Error in Loads, EL (%) 
EQmeas ETmeas Maximum Range Minimum Range 

2 2 -4 4 0 0 
5 5 -10 10 0 0 
10 10 -19 21 -1 -1 
15 15 -28 32 -2 -2 
20 20 -36 44 -4 -4 

Table 5.  Errors in TSS load due to systematic errors in turbidity (ETmeas) and flow (EQmeas).  
 

3.1.2 Question 2: How frequently do routine samples need to be taken to 
estimate long-term loads? 

As expected, errors in the estimated load of TSS increase with decreases in the 
frequency of sampling.  There is no absolute determinant of the appropriate 
frequency, but clearly, at a sampling interval of greater than three days, the absolute 
error in load increases to above 10% of the total load (Figure 1). 
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Figure 1.  Absolute errors in TSS load estimates, relative to sampling frequency. 

 

3.1.3 Question 3: Are autosamplers needed to estimate long-term loads? 
At the Gardiners Creek trial site, the random and fixed (1 hour after commencement 
of storm) grab-sampling strategies produced overall load estimates that varied by 
generally around 10% from the ‘true’ load obtained by autosampling (Table 6).  The 
‘fixed time’ sampling strategy (ie. taking samples one hour after the commencement 
of the storm) has slightly lower errors than the random grab sampling strategy, but 
both are relatively low, compared to likely uncertainties in flow measurement, and 
even laboratory analysis of water quality samples (Greenberg et al., 1999). 
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Grab sample Parameter (%) TSS TP TN Pb Zn 
Mean difference 8 12 11 12 10 Random time 

within storm (20 
replicates) 

95%ile difference 10 16 12 14 17 

1 hour after storm 
commencement 

Difference 9 8 5 13 7 

Table 6.  Differences (%) between ‘true’ load and load estimated from grab samples taken (i) 
randomly and (ii) one hour after commencement of storm. 

4 DISCUSSION 
The use of turbidity as a surrogate measure for estimating long-term TSS loads has 
been shown to be effective, although not without caveats and limitations.  Firstly, it 
will often be necessary to know not just sediment loads, but also loads of other 
pollutants such as nitrogen or heavy metals, for which turbidity does not provide such 
a good surrogate.  On the other hand, there is an argument for the use of turbidity as 
a surrogate even for pollutants for which the regression has a low R2.  For TSS, the 
error in long-term loads, assuming that errors are randomly distributed, was always 
less than 5% (5 years of data), and less than 10% (one year).  This very small error is 
a simple expression of the Central Limit Theorem.  Whilst individual estimates of TSS 
concentration may have substantial errors, the long-term estimate is mitigated by the 
counter-balancing of individual over- and under-estimates.  Therefore, even when the 
regression R2 between turbidity and another parameter (e.g. TN) is low, the long-term 
load estimates predicted by turbidity could be quite accurate.   
The indisputable advantage of a continuously-measured variable such as turbidity is 
the ability to capture variations at high frequency.  The analysis showed that should a 
grab-sampling campaign be used instead, substantial errors will accrue where the 
sampling interval exceeds three days.  This is a very demanding requirement, and 
difficult to meet, due to logistic and financial constraints. 
On the other hand, one cannot overlook the critical importance of calibration, quality 
control and verification of data obtained from a continuous monitoring sensor. 
Uncertainty will grow rapidly if systematic errors are allowed to occur (due to sensor 
drift, improper calibration, or, for example, inaccurate flow rating curves).  Bertrand-
Krajewski et al. (2000b) offers a rigorous approach for addressing such problems, 
and a very useful practical example is given by the OTHU (Field Observatory for 
Urban Water Management) project in Lyon, France (see http://www.graie.org/othu/).   
We did not expect to find such good representation of storm loads by grab sampling, 
relative to the ‘true’ load estimated from autosamplers.  One might argue that the 
‘random timing’ of grab samples works, because it again expresses the Central Limit 
Theorem (ie. some storms are under-estimated because they are sampled when the 
concentration has receded, but others are over-estimated, because the sample is 
taken at the peak of the pollutograph).  However, the ‘fixed-time’ grab sample gave 
similar results, because it too expresses the Central Limit Theorem.  Taking a sample 
one hour from storm commencement will, for some storms be before the peak, for 
others after the peak, and for others, right at the peak; the timing of the sample 
relative to the storm peak is again a random distribution. 
Our finding that long-term pollutant loads (or site mean concentrations) can be 
adequately captured without the use of autosamplers has significant benefits in terms 
of cost reduction, and reducing the need for complex installation and problem-solving 
which are inevitably associated with automatic-sampling equipment.  However, there 
are situations where autosamplers may still be the best solution.  In catchments with 
very ‘flashy’ hydrologic response, or which are located far from field staff, it is likely 
that many storms will simply be missed.  Thus, the statistical behaviour of grab 
sampling is only one consideration.  Lastly, understanding the intra-event variation is 
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often important; for example, understanding the frequency of exceeding certain 
pollutant concentration thresholds is often necessary to understand the ecological 
response of receiving waters (Taylor et al., 2005). 

5 CONCLUSION 
Frequently, water quality monitoring programmes are established, for the purposes of 
meeting a given objective, such as determining mean annual pollutant loads.  Rarely, 
however, are such programmes reviewed, to see if these objectives are being met.  
This paper presents a subset of the key questions which were used, in a review of 
Melbourne Water’s loads monitoring programme, to determine the uncertainties in the 
data being collected, and to identify ways of collecting better quality data, at a lower 
cost.  The results showed the value of continuously measured variables (such as 
turbidity) as surrogate measures, given their ability to capture variability (provided that 
calibration and quality control are given appropriate attention). The study also showed 
that grab sampling can provide reliable estimates of storm event loads.  On the other 
hand, a routine-sampling campaign (which does not specifically respond to storm 
events) will have increasingly large uncertainty, as the sample interval grows.  An 
interval of 3 days will generally deliver errors of less than 10%.  As a result of this 
study, Melbourne Water has designed and implemented a revised monitoring 
programme, and will review it again after one year of operation.   
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