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Résumé – Deux méthodes d’orthogonalisation des signaux d’entrée pour l’identification supervisée et aveugle de canaux de
communication MIMO de type Volterra sont considérées dans cet article. Dans le cas supervisé, la méthode proposée consiste
en une extension de l’utilisation des polynômes orthogonaux aux systèmes de Volterra MIMO. Dans le cas aveugle, on présente
une solution originale pour l’identification des canaux à l’aide de codes de modulation avec des signaux PSK. Des algoritmes
d’estimation de canal basés sur l’utilisation de ces méthodes d’ortogonalisation sont présentés et leurs performances sont évaluées
à l’aide de simulations numériques.

Abstract – Input orthogonalization methods for supervised and blind identification of third-order MIMO Volterra communica-
tion channels are considered. In the supervised case, we extend the use of orthonormal polynomials to MIMO Volterra systems.
In the blind case, we propose an original solution for channel identification based on the use of state-dependent modulation
code schemes with PSK signals. Several channel estimation methods using input orthogonalization are presented and their
performances are evaluated by means of computational simulations.

1 Introduction

In this paper, two input orthogonalization methods
are considered for identifying third-order Multiple-Input-
Multiple-Output (MIMO) Volterra channels. This kind of
nonlinear models has important applications in the field
of telecommunications to model wireless communication
links with nonlinear power amplifiers [1] and uplink chan-
nels in Radio Over Fiber (ROF) multiuser communication
systems [2].

The first method assumes the knowledge of the trans-
mitted signals, i.e. a supervised scenario. In this case,
the Least Mean Square (LMS) algorithm exhibits a slow
convergence speed and the Minimum Mean Squared Error
(MMSE) estimate in a block processing (off-line) scheme
suffers from an ill-conditioning that can be the source of
numerical problems. The diagonalization of the zero delay
covariance matrix of the nonlinear regression vector is re-
quired in order to overcome these effects and improve the
channel estimation. The method presented in this paper
is based on the development of orthonormal polynomi-
als for the transmitted signals. Several works have used
similar approaches for Single-Input-Single-Output (SISO)
Volterra systems, exploiting the advantages of an input or-
thonormalization in an adaptive context [3], or in a block
processing scheme [4]. This paper extends the procedure
of construction and the use of orthonormal polynomials
to the case of MIMO Volterra systems, allowing different
probability density functions (pdf) for the input signals.

The second orthogonalization method considers a blind
channel estimation scenario. The identifiability conditions
for blind estimation of linear MIMO mixtures from sec-
ond order statistics (SOS) are not sufficient to ensure the
identifiability of a MIMO Volterra system. The proposed
method performs the diagonalization of covariance matri-
ces of the nonlinear regression vector for various delays,
with the goal of ensuring some identifiability conditions.
In this case, the communication channel is assumed to
be memoryless. State-dependent modulation codes (con-
strained codes) [5] are used to ensure the orthogonality
of products of the delayed transmitted signals for several
time delays, leading to a Parallel Factor (PARAFAC) de-
composition [6] of a tensor composed of estimated spatio-
temporal covariance matrices.

2 Channel Model

The proposed orthogonalization methods require multi-
ple observations at the receiver, which can be obtained
through oversampling or an antenna array. The sampled
baseband equivalent model of the nonlinear communica-
tion channel is assumed to be expressed as:

x(i)(n) =

MR∑
m1=1

h
(i)
1 (m1)s̄m1(n) +

MR∑
m1=1

MR∑
m2=m1

MR∑
m3=1

h
(i)
3 (m1, m2, m3)s̄m1(n)s̄m2(n)s̄∗m3

(n) + υ(i)(n), (1)
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where x(i)(n) is the ith signal measured at the time in-
stant n with i = 1, 2, ..., I, I is the number of observa-
tions (antennae or oversampling rate), M is the number
of users, R is the system memory, s̄mj

(n) corresponds
to the mth

j component of the vector s̄(n) = [s1(n) ...

s1(n − R + 1) · · · sM (n) ... sM (n − R + 1)]T , sm(n), for
1 ≤ m ≤ M , are the stationary, complex-valued and
mutually independent signals transmitted by the users,

h
(i)
2k+1(m1, . . . , m2k+1), for k = 0, 1, are the kernel coef-

ficients and υ(i)(n) is an Additive White Gaussian Noise
(AWGN). The noise components υ(i)(n), 1 ≤ i ≤ I, are
assumed to be zero mean, independent from each other
and from the transmitted signals sm(n).

The received signals can be expressed in a vector form:
x(n) = Hs(n) + v(n), where x(n) ∈ C

I×1, H ∈ C
I×MV

and v(n) ∈ C
I×1 contains respectively, the received sig-

nals, the channel coefficients and the noise components,
and the nonlinear regression vector s(n) ∈ C

MV ×1 con-
tains the linear {s̄m1(n)} and cubic terms {s̄m1(n)s̄m2(n)
s̄∗m3

(n)}, MV being the number of coefficients of each sub-

channel in (1), given by MV =
∑1

k=0 CMR,kCMR,k+1,

where CMR,k = (MR+k−1)!
(MR−1)!k! .

3 Input Orthonormalization for

Supervised Identification

In this section, a set of orthonormal polynomials is de-
veloped in order to improve the performance of the LMS
and block MMSE estimates of the channel given by (1).
This orthonormalization process extends the method of
construction of orthonormal polynomials to the case of
MIMO Volterra systems, allowing different probability
density functions (pdf) for the input signals, which are
assumed to be white in the supervised case. Similar ap-
proaches have been considered by some authors, in the
case of Single-Input-Single-Output systems [3, 4] and in
the case of real-valued MIMO Wiener systems [7].

3.1 Orthonormal Polynomials

The orthonormalization problem consists in finding a
lower triangular matrix W ∈ C

MV ×MV so that s̆(n) =
Ws(n), satisfying Rs̆s̆ = WRssW

H = IMV
, where

Rs̆s̆ = E[s̆(n)s̆H(n)], Rss = E[s(n)sH(n)] and IMV
is the

MV × MV identity matrix. So, we may write x(n) =
Fs̆(n) + v(n), with F = HW−1 being the channel ma-
trix associated with the orthonormal polynomials. The
components of s̆(n) are multivariable functions of the de-
layed inputs that can be expressed as products of monomi-
als, denoted {Tαl,βl

(s̄l)}, where Tαl,βl
(s̄l) = (s̄l)

αl (s̄l
∗)

βl

0 ≤ αl ≤ k + 1, 0 ≤ βl ≤ k, l = 1, · · · , MR and k = 0, 1.
Exploiting the hypothesis of independency between the
inputs and their white characteristic, an orthonormaliza-
tion can be carried out by applying the Gram-Schmidt
procedure to this set of monomials, considering the fol-
lowing scalar product: < A(S), B(S) >= E[A(S)B∗(S)],
where A(S) and B(S) are polynomials. The orthonormal
polynomials are then obtained as products of orthonormal

monomials {Pαl,βl
(s̄l)}, given by:

Q
(2k+1)
m1,··· ,m2k+1(S) =

MR∏
l=1

Pαl,βl
(s̄l) , (2)

where αl ( resp. βl) is the cardinality of s̄l (resp. s̄∗l )
in the set {s̄m1 , . . . , s̄mk+1} (resp. {s̄∗mk+2

, . . . , s̄∗m2k+1
})

and the set of orthonormal monomials results from the
orthonormalization of the set of monovariable polynomials
{Tαl,βl

(s̄l)}, using the Gram-Schmidt procedure:

P0,0(s̄) = 1, P1,0(s̄) =
s̄

√
ρs̄,1,1

, (3)

P0,1(s̄) =
s̄∗

√
ρs̄,1,1

, P2,0(s̄) =
s̄2

√
ρs̄,2,2

, (4)

P1,1(s̄) =
s̄s̄∗ − ρs̄,1,1√
ρs̄,2,2 − ρ2

s̄,1,1

, (5)

P2,1(s̄) =
ρs̄,1,1s̄

2s̄∗ − ρs̄,2,2s̄√
ρ2

s̄,1,1ρs̄,3,3 − ρs̄,1,1ρ
2
s̄,2,2

. (6)

where ρs̄,p,q = E[s̄ps̄∗
q

].
The main advantage of this method is that the Gram-

Schmidt orthogonalization is applied to calculate only few
monomials, even if the system has a high number of non-
linear input terms.

3.2 Estimation Algorithms

The LMS equation for updating the estimated channel
matrix F associated with the orthonormal polynomials is

given by: F̂(n + 1) = F̂(n) + µ
(
x(n) − F̂(n)s̆(n)

)
s̆
H(n),

where µ is the step-size parameter, the matrix F̂(n) repre-
sents the estimation of F at the nth iteration and x(n) =
[x(1)(n) . . . x(I)(n)]T ∈ C

I×1 is the vector of received sig-
nals (output vector). On the other hand, the MMSE block

estimate of F is given by: F̂ = Rxs̆R
−1
s̆s̆ = Rxs̆, where

Rxs̆ = E[x(n)s̆H(n)].

4 Input Orthogonalization for

blind Identification

In this section, state-dependent modulation code schemes
using Phase-Shift Keying (PSK) modulated signals are
developed to ensure some identifiability conditions from
SOS, by means of a PARAFAC analysis. The redundancy
provided by the codes introduces temporal correlation in
a controlled way, which means that the transmitted sig-
nals are not white. In this case, the channel is assumed
to be memoryless, i.e. R = 1 in (1). In addition, for PSK
signals, the cubic terms corresponding to m3 = m1 and
m3 = m2 can be excluded from (1), as they have the form:
smj

(n) |sm3(n)|2, j ∈ {1, 2, 3}, where |sm3(n)|2 is a mul-
tiplicative constant absorbed by the channel coefficients.
Thus, we have MV = M

2 (M2 − M + 2).
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4.1 PARAFAC Decomposition of a Ten-

sor of Covariance Matrices

The spatio-temporal covariance matrices of the received
signals are given by R(τ) = E

[
x(n + τ)xH(n)

]
=

HC(τ)HH , with C(τ) = E
[
s(n + τ)sH(n)

]
, where τ ∈

Υ = {τ1, τ2, ..., τT }. The noise term is not considered in
R(0) since it can be estimated and then subtracted [8]. A
third-order tensor R ∈ C

T×N×N can be defined from the
matrices R(τ), for τ ∈ Υ. The PARAFAC decomposition
of the tensor R can be obtained if the C(τ) matrices are
diagonal for τ ∈ Υ, leading to the following scalar nota-
tion:

rt,i1,i2 =

MV∑
q=1

hi1,qh
∗
i2,qcq,q(τt) , (7)

where rt,i1,i2 = [R]t,i1,i2 , hi,q = [H]i,q and cq,q(τt) =
[C(τt)]q,q. The following theorem states sufficient con-
ditions to ensure the diagonality of C(τ) for τ ∈ Υ [9].

Theorem 1: Suppose that all the signals transmit-
ted by the users are mutually independent and have con-
stant moduli. Then, the following conditions are suf-
ficient to ensure the diagonality of the covariance ma-
trices C(τ), ∀ τ ∈ Υ: (i) E [sm(n)] = 0, for all the
users; (ii) E

[
s2

m(n)
]

= 0, for (M − 1) users; (iii)

E
[
s2

m(n + τ)sm(n)
]

= 0 and E
[
s2

m(n)sm(n + τ)
]

= 0, for
(M − 1) users; (iv) E [sm(n + τ)sm(n)] = 0, for (M − 1)
users (see [9]).

4.2 Design of Coding Schemes

State-dependent modulation codes can be designed to en-
sure that the transmitted signals satisfy the constraints of
Theorem 1. In these modulation code schemes, the modu-
lation makes part of the encoding process and it introduces
redundancy by expanding the signal constellation.

The modulated signals are characterized by Discrete
Time Markov Chains (DTMC) with Rm states, given
by the PSK symbols ar = {Am· ej2π(r−1)/Rm}, for
r = 1, 2, ..., Rm, where Am is the amplitude of the sig-
nal of the mth user. The symbol transitions are state-
dependent and defined by a block of km bits, denoted by

Bn = {b
(1)
n , b

(2)
n , ..., b

(k)
n }, where b

(k)
n , for k=1, ..., km, is

uniformly distributed over the set {0, 1} and 2km < Rm.

In addition, it is assumed that b
(k)
n (k=1, ..., km) are mu-

tually independent. For each of the Rm states, the block
of bits Bn defines 2km equiprobable possible transitions.
Therefore, the coding imposes some restrictions on the
symbol transitions. For each state, there is

(
Rm − 2km

)
not assigned transitions. The code rate of the mth user is
then given by (km/lm), where lm = log2 Rm.

Let us denote by T = {Tr1,r2}, with r1, r2 ∈
{1, 2, ..., Rm} the Transition Probability Matrix. Note

that
∑Rm

r2=1 Tr1,r2 = 1 and Tr1,r2 ∈ {0, 1/2km}. The ma-
trix T defines the possible state transitions for each state.
The following theorem proposes some constraints on the
transition probability matrix T in such a way that the
conditions of Theorem 1 are verified for τ = 0.

Theorem 2: Let us assume that for all the users: (i)
the DTMC associated with the modulation code is ir-

reducible and aperiodic and (ii)
∑Rm

r1=1 Tr1,r2 = 1, for
1 ≤ r2 ≤ Rm. Then conditions of Theorem 1 are veri-
fied for τ = 0 (see [9]).

Let T n
r1,r2

be the (r1, r2)
th entry of Tn. By definition,

T n
r1,r2

represents the probability of being in the state ar2

after n transitions, supposing that the current state is ar1 .
Concerning the conditions of Theorem 1 in the case τ 6= 0,
conditions (iii) and (iv) can be rewritten as

aT Tτa2 = 0, aT
2 Tτa = 0 and aT Tτa = 0, (8)

where a = [a1, a2, ... aRm
]
T

and ak =
[
ak
1 , ak

2 , ... ak
Rm

]T
.

Equations (8) only depend on the constellation order,
which means that the transition probability matrices can
be a priori designed to verify these constraints. For exam-
ple, for 4-PSK signals (a = [1 j − 1 − j]T ) with 1/2-rate
code, the following matrices:

T2,A = 0.5

0
BB@

1 1 0 0
1 0 1 0
0 1 0 1
0 0 1 1

1
CCA ,T2,B = 0.5

0
BB@

0 1 0 1
0 0 1 1
1 1 0 0
1 0 1 0

1
CCA ,

(9)
verify the conditions of Theorem 2. Moreover,

T1,A = 0.5

0
BB@

1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1

1
CCA ,T1,B = 0.5

0
BB@

0 1 1 0
0 0 1 1
1 0 0 1
1 1 0 0

1
CCA ,

(10)

verify the conditions of Theorem 2 and the equations (8).

4.3 Estimation Algorithms

Based on the orthogonalization provided by the modu-
lation codes, two estimation methods are proposed for
estimating the channel: (i) a two-step Alternate Least
Squares (ALS) algorithm [9] and (ii) a joint diagonaliza-
tion algorithm [10], corresponding to an extension of the
Second Order Blind Identification (SOBI) algorithm [8] to
nonlinear channels. The covariance matrices of the sources
C(τ) are assumed to be known, which explains why the
ALS algorithm needs only two steps.

Once the matrices C(τ) are diagonal, the identifiabil-
ity conditions of the methods (i) and (ii) can be obtained
respectively from the Kruskal Theorem [11] and the The-
orem of Essential Uniqueness of Joint Diagonalization [8].
We must remark that I ≥ MV is only required for the
method (ii). Moreover, if the channel matrix is full column
rank, then both identifiability conditions become equiva-
lent.

5 Simulation results

A MIMO Wiener filter corresponding to the model of an
uplink channel of a Radio Over Fiber (ROF) multiuser
communication system [12] is considered for the simula-
tions. Fig. 1 shows the Normalized Mean Square Error
(NMSE) of the estimated output vector x̂(n) using the
LMS algorithm with the canonical and orthonormal poly-
nomials, for I = 4, M = 4, R = 2 and a fixed Signal-to-
Noise-Ratio (SNR) of 30dB. The four users transmit uni-
formly distributed q-QAM (Quadrature Amplitude Mod-
ulation) signals, for q = 16, 16, 32 and 64. The adaptation
using orthonormal polynomials converges approximately
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after 5000 iterations and using canonical polynomials af-
ter 22000 iterations. Moreover, Fig. 2 shows the NMSE of
the estimated output vector x̂(n) using the block estima-
tion with the orthonormal and canonical polynomials, for
I = 4, M = 4, R = 2, 16-QAM signals and various values
of L, the length of the data block used for the moment es-
timation. The gain provided by the orthonormal approach
is evident, specially for high SNR’s. Moreover, the better
performance is obtained with a smaller complexity, due to
the absence of matrix inversion.

Fig. 3 shows the NMSE of the estimated output vector
x̂(n) using the blind estimation techniques of Section 4,
for I = 4, M = 2, R = 1, T = 5, L = 1000 and L = 3000.
The used modulation is 4-PSK and the code rate is 1/2.
We can conclude that the joint diagonalization estimator
performs significantly better than the ALS for high SNR’s.
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Fig. 1: NMSE of the est. output vector - LMS Estima-
tion.
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Fig. 2: NMSE of the est. output vector - Block MMSE
Estimation.

6 Conclusion

In this paper, two input orthogonalization methods for
identification of third-order MIMO Volterra communica-
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Fig. 3: NMSE of the est. output vector - Blind Tech-
niques.

tion channels have been presented. In the supervised case,
the proposed method is designed for white input signals
and it is based on the utilization of orthonormal polyno-
mials. The use of this orthonormalization method acceler-
ates the convergence of the LMS algorithm and improves
the MMSE estimate in a block processing scheme while
needing a smaller computational cost. In the blind case,
the proposed orthogonalization method is based on the use
of modulation codes to ensure the orthogonality of non-
linear interfering terms for different time delays, which
constitutes a new application of modulation codes. Two
channel estimation techniques have been considered for
this case. Some simulation results illustrate the perfor-
mance of the proposed identification methods.
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