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Abstract— Oscillatory gas flow in squeeze-film dampers is
studied up to frequencies where the length of the acoustic wave
is comparable with the dimensions of the air gap. Damping and
spring forces are calculated both numerically and analytically
from the linearized 2D Navier-Stokes equations. In addition
to the low frequency region of inertialess gas, where the use
of the Reynolds equation is limited, the new model considers
several additional phenomena. These are the inertia of the gas,
the transition from isothermal to adiabatic conditions, and the
gap resonances at frequencies where the acoustic wavelength is
comparable to the air gap height. Velocity and temperature
slip conditions are considered to make the model valid in
micromechanical structures where the air gap heights are of
the order of a micrometer.

An approximate compact model is derived combining the low
frequency model and the gap resonance model. The accuracy of
the compact model is studied by comparing its response to the
numerical results calculated with the finite element method. The
agreement is very good in a wide frequency band when the ratio
of the damper width and the gap height is greater than 10. The
numerical study and the compact model are directly applicable
in predicting the damping and the resonance frequency shift due
to air in RF MEMS resonators having narrow air gap widths
and operating at frequencies where the wavelengths become
comparable to the flow channel dimensions.

I. INTRODUCTION

It has been reported RF MEMS resonators that operate
at frequencies up to 1 GHz [1], [2]. Since these devices
can operate also at atmospheric pressures, models predicting
the quality factor and resonance frequency shift due to air
are needed. The challenges in the modelling are the small
acoustic wavelengths that might become comparable with the
dimension of the damper width and even the air gap height,
and the small dimensions of micromechanical devices that
invalidate the continuum flow assumptions.

Squeeze-film damping in air gaps of oscillating struc-
tures has been traditionally modelled with the Reynolds
equation [3], [4]. It considers the viscous gas flow and
the compressibility and assumes constant pressure across
the air gap. With an effective viscosity, the rarefied gas
phenomenon can be considered. This extends the model to
be used for micromechanical devices and or low ambient
pressure. However, the Reynolds equation is usable only up to
a certain frequency where the inertial forces can be neglected
(Reynolds number � 1). This limitation can be avoided
using a modified form of the Reynolds equation considering

the inertia in the gap flow [5] together with non-isothermal
conditions [6], [7]. This viscoelastic wave propagation model
is not directly applicable to model MEMS devices, since it
assumes continuum boundary conditions.

When the frequency of the oscillation is so high that the
length of the acoustic wave becomes comparable to the height
of the air gap, the constant pressure assumption across the
air gap breaks down. This situation has been studied and
modelled in [8]. The study shows that since the gas is trapped
in the gap, it is justified to assume closed damper borders in
deriving the model. The analytic model derived in [8] models
accurately the damper in the higher frequency region where
the air gap resonances occur.

In this paper, numerical simulation of the linearized
Navier-Stokes equations are first used to study the oscillating
flow in the air gap of a 1D squeeze-film damper in a
wide frequency band. Slip velocity and temperature boundary
conditions at the surfaces, and zero pressure conditions at the
damper borders are applied. A finite element method (FEM)
software is used in the study.

Next, reduced linearized Navier-Stokes equations are pre-
sented that consider the variable pressure across the air gap
to be able to include the gap resonances in the model [8]. The
gap resonances are solved at high frequencies and the squeeze
film phenomenon is solved at lower frequencies. Then, these
results are combined to have a compact approximate model
for a wide frequency regime. Finally, the compact model is
compared with the numerical model to verify its accuracy.

II. OSCILLATING GAS FLOW IN A SQUEEZE-FILM DAMPER

A. Topology of the damper

Figure 1 shows the topology of the studied 1D squeeze-
film damper. It is assumed that the 3rd dimension ly is much
larger than lx justifying the study of the 2D gas flow in
the cross-section. The gas is bounded by two rigid parallel
surfaces, and the upper surface is oscillating with a small
amplitude of w0 in the z direction. Trivial zero-pressure
boundary conditions are used at the borders of the damper.

B. Damping and spring forces

The damper is characterized with a mechanical impedance
Zm = − F̃

w0
, that is calculated from the force F̃ acting on the

moving surface having a velocity of w0 in the z direction.
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Fig. 1. The cross-section of squeeze-film damper. The y dimension of the
damper ly is assumed to me much larger than the x dimension lx.

The damping coefficient c is the real part of Zm and the
spring coefficient k is the real part of iωZm.

C. Characteristic numbers

The behaviour of the flow in a narrow air gap is described
by a few characteristic numbers. The Reynolds number Re
(the square of the shear wave number s) is the ratio between
inertial and viscous forces: s2 = Re = ωh2

0ρ0/η, where ρ0

is the density of the gas, η is the viscosity coefficient, and
h0 is the characteristic height of the air gap.

The reduced frequency k = ωh0/c0 is a measure of the
ratio between the gap width h0 and the acoustic wave length.
c0 =

√
γp0/ρ0 is the speed of sound in free space, where

γ = cP/cV is the specific heat ratio and p0 is the ambient
pressure. The Prandtl number Pr characterizes the thermal
properties. Here we use the square root of Pr,

φ =
√
Pr =

√
ηcP

κ
, (1)

where cP is the specific heat at constant pressure and κ is the
thermal conductivity.

A frequency-domain analysis with small perturbation am-
plitudes is assumed, and the equations are presented in
normalized form. The small-amplitude perturbation variables:
pressure, temperature and density are specified with

p̃ = p0 + peiωt, T̃ = T0 + Teiωt, ρ̃ = ρ0 + ρeiωt, (2)

respectively.

D. Linearized Navier-Stokes equations

Beltman [6] has derived linearized dimensionless form of
the Navier-Stokes equations. The equations are in 2D (y-
direction is not considered):

iu =
−g

kγ

∂p

∂x
+

1
s2

[
g2 ∂2u

∂x2
+

∂2u

∂z2

]
+

g

3s2

∂

∂x

[
g
∂u

∂x
+

∂w

∂z

]
(3)

iw =
−1
kγ

∂p

∂z
+

1
s2

[
g2 ∂2w

∂x2
+

∂2w

∂z2

]
+

1
3s2

∂

∂z

[
g
∂u

∂x
+

∂w

∂z

]
(4)

g
∂u

∂x
+

∂w

∂z
= −ikρ (5)

p = ρ + T (6)

iT =
1

s2φ2

[
g2 ∂2T

∂x2
+

∂2T

∂z2

]
+ i

γ − 1
γ

p, (7)

where u and w are velocity components in the x and z
directions, respectively. The equations are in normalized form
such that velocities u and w are normalized to the speed of
sound c0 and the dimensions x and z are normalized with
the characteristic dimensions lx and h0, respectively. p, ρ,
and T represent small relative variations around p0, ρ0 and
TA, respectively. The narrowness of the gap is g = h0/lx.

E. Numerical modeling

To study gas flow in the air gap, pressure, velocity, and
temperature of the 1D-damper in Fig. 1 are simulated with a
FEM solver for visco-acoustic flow [9] in multiphysical FEM
software ELMER [10]. It solves linearized Navier-Stokes
equation presented in (3)-(7) as a function of frequency.

In this study, parameters for air at standard atmosphere
conditions are used, see Table I. The air gap height is h0 =
1µm and the length is lx = 5µm. The upper surface oscillates
in the z-direction with a constant velocity amplitude of 1 m/s
(w0 = 1).

TABLE I

GAS PARAMETERS USED IN THE SIMULATIONS

Symbol Description Value Unit

p0 pressure 101.3 103 N/m2

TA temperature 300 K
η viscosity coefficient 18.5 10−6 N s/m2

ρ0 density of air 1.155 kg/m3

cP specific heat 1.01 103 J/kg/K
γ specific heat ratio 1.4
κ heat conductivity 0.025 W/m/K
λ mean free path (17) 68.22 10−9 m
α accommodation coefficient 1.0
αT thermal acc. coefficient 1.0

To demonstrate the trapping of the gas in the air gap at high
frequencies, Fig. 2 shows forces acting on the upper surface
as a function of frequency in two cases. First, the borders are
assumed to be open (zero pressure) and then they are assumed
to be closed (zero velocity). The amplitude responses are
identical above a certain frequency indicating that at high
frequencies the flow velocity in the x direction becomes
insignificant. Hence, at high frequencies the gas is trapped
in the gap corresponding the closed border assumption, even
for open border conditions.

Figure 3 shows simulated pressure, velocity, and tem-
perature amplitude distributions for the open border case
at certain frequencies, represented with verticals in Fig. 2.
These frequencies represent different flow regions that will
be studied closer. Resonances occur both in the x and y
directions: squeeze film phenomenon at lower frequency
when the gas flows out from the gap and gap resonances
at higher frequency when the gas is trapped in the gap.

(a) Viscous flow region: pressure is constant across the gap,
and isothermal conditions (T = 0).
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Fig. 3. Amplitude profiles of pressure p, velocity u, and temperature T at different frequencies. a) f = 1 MHz, b) f = 30 MHz, c) f = 100 MHz, d)
f = 180 MHz
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Fig. 2. Simulated force amplitude on the upper surface for open (×) and
closed (�) ends cases.

(b) First resonance in the x direction. Its frequency fx,N is
determined by the wave propagation velocity in the x
direction and the length of the structure. The squeeze
film resonant frequencies are

fx,N ≈ Nce

4L
, N = 2, 4, . . . (8)

where L is the characteristic length of the damper and ce

is the effective speed of sound in the x-direction. The
temperature profile in Fig. 3 indicates non-isothermal
conditions.

(c) First (anti)resonance fz,1 in the x-direction: pressure
is not constant across the gap, small velocity (trapped
situation). The N th air gap resonance frequency is

fz,N ≈ Nc0

4h0
, N = 1, 2, 3, . . . (9)

where h0 is the height of the gap. Odd values of N give
antiresonances, while even values of N give resonances.
Air gap resonances occur at clearly higher frequency
than the squeeze film resonance if the gap is narrow
(h0 � lx). Non-isothermal conditions.

(d) 2nd gap resonance fz,2: pressure, velocity and tempera-
ture vary mainly in the z-direction, practically adiabatic
conditions.

F. Reduced equations for the approximative model

In order to derive the compact model, a reduced set of NS-
equations is needed. The complete set of 2D equations (3)-(7)
will be reduced by removing insignificant terms. Equation (3)
is first written in the following form:

iu = − g

kγ

∂p

∂x
+

4g2

3s2

∂2u

∂x2
+

1
s2

∂

∂z

[
∂u

∂z
+

g

3
∂w

∂x

]
(10)

Since velocity u varies less in the x-direction than in the z-
direction, and g is small, term ∂2u/∂x2 can be ignored. Also,
due to translational velocity excitation, the term ∂w/∂x is
very small and is ignored here. At low frequencies, k is small
and (4) reduces simply to ∂p/∂z = 0. At high frequencies
∂2w/∂x2 is small due to the excitation, and ∂u/∂x is small
in (4) due to the trapped situation. Temperature variations
are slower in the x direction than in the z direction, and g
is small in (7), making the term ∂2T/∂x2 to vanish. The
reduced equations are:

iu = − g

kγ

∂p

∂x
+

1
s2

∂2u

∂z2
(11)

iw = − 1
kγ

∂p

∂z
+

4
3s2

∂2w

∂z2
(12)

g
∂u

∂x
+

∂w

∂z
= −ikρ (13)

p = ρ + T (14)

iT =
1

s2φ2

∂2T

∂z2
+ i

γ − 1
γ

p. (15)

These equations are identical with the “narrow gap” equations
specified in [6], but they include an additional equation (12).

The strategy to have an approximate solution for the
equations above is the following. First, the equations are
further reduced to have the trapped air situation. This is
accomplished assuming flow in the z direction only, that
is, u(x) = 0, and solving the velocity profile w(z). Next,
the narrow gap situation is assumed ignoring (4), and a
differential equation for the pressure distribution is derived.
Finally, the flow profile w(z) is inserted in the differential
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equation that is solved for perpendicular motion and zero
pressure boundary conditions.

G. Air gap resonance region

It was shown numerically that at high frequencies the gas
is trapped in the air gap, and moves only in the z direction.
The problem has been studied closer in [8], where both a
simplified model with adiabatic conditions and a complete
model are given.

H. Squeeze film damping region

Next, the lower frequency (squeeze-film damping) region
is studied in order to derive the compact model for the
mechanical impedance of the damper. This is accomplished
by using the equations (11)-(15) for narrow gap problems,
that is, Eq, (12) will be ignored in the following analysis.

The solution strategy is similar to the one in [6], but here
the slip velocity and temperature conditions are used instead
of the continuum boundary conditions.

The slip boundary conditions for the gas velocity u and
the temperature T are used at the surfaces:

u = ∓Ks
∂u

∂z

∣∣∣∣
z=0,z=1

T = ∓KT
∂T

∂z

∣∣∣∣
z=0,z=1

(16)

The Knudsen number Kn = λ/h0 is a measure of gas
rarefaction. It is a ratio between the mean free path λ and
the nominal displacement h0. Here, the mean free path is
specified as

λ =
η

ρ0

√
π

2RT0
(17)

where R = cV − cP. In this paper, we use the quantity Ks =
σPλ/h0 as a measure of the rarefaction instead of Kn. Since
λ is inversely proportional to pressure, Ks increases as the
pressure drops below the ambient pressure. In this paper σP =
1 is assumed.

KT is the “thermal Knudsen number” [11]

KT =
2 − αT

αT

[
2γ

γ + 1

]
Kn

φ2
, (18)

where αT is the energy accommodation coefficient and γ is
the specific heat ratio.

Since the pressure was assumed to be constant on a cross
section, p and ∂p/∂x are independent of z in (11) and (15).
Therefore, the temperature can be solved from (15). Solution
is searched in form T (z) = b+c cosh[ξ(z− 1

2 )] and applying
boundary conditions in (16) results in

T =
γ − 1

γ
pA(φs,KT, z), (19)

where the temperature profile is described with

A(s,Ks, z) = 1 − cosh[
√

is(z − 1
2 )]

cosh(
√

is/2) +
√

isKs sinh(
√

is/2)
.

(20)

Remark, that although the pressure is assumed to be constant
in z-direction, the temperature depends on z. Next, the
density is solved from (14) resulting in ρ = p/m(φs,KT, z)
where

m(φs,KT, z) =
[
1 − γ − 1

γ
A(φs,KT, z)

]−1

. (21)

Equation (11) has the same form as (15) for temperature
and u can be solved when p = p(x) yielding

u =
ig
kγ

∂p

∂x
A(s,Ks, z). (22)

The differential equation for the pressure distribution in the
x-direction is derived from (13) by averaging the velocity u
and density ρ across the gap:

g

1∫
0

∂u

∂x
dz + ik

1∫
0

ρ dz = − ∂w

∂z

∣∣∣∣
z=1

. (23)

Since the mechanical impedance is specified at z = 1, the
term in the right hand side has not been averaged across the
gap. Instead of the average velocity in the z direction, the
excitation velocity at the upper surface (z = 1) is used here.

Inserting u from (22) and ρ from (14) into (23) gives a
general frequency-domain model for 1D air gaps

g2B(s,Ks)
ikγ

∂2p(x)
∂x2

− ik
n(φs,KT)

p(x) =
∂w

∂z

∣∣∣∣
z=1

. (24)

where

B(s,Ks) =
∫ 1

0

A(s,Ks, z) dz (25)

=
√

is − (2 − is2Ks) tanh(
√

is/2)√
is + is2Ks tanh(

√
is/2)

and the similar integration of m(φs,KT, z) gives the poly-
tropic constant

n(φs,KT) =
[
1 − γ − 1

γ
B(φs,KT)

]−1

. (26)

The function n is the result of thermal effects. It is generally
complex-valued signifying a phase shift between the pressure
and density perturbation. Hence, it models the losses due to
gas compressibility that are important in the transition regime
when conditions change from isothermal to adiabatic. At low
frequencies (φs � 1), the flow is isothermal leading to n = 1
and at high frequencies (φs � 1), B(s,Ks) approaches 1 and
n → γ (adiabatic conditions).

Equation (24) is solved with trivial pressure boundary
conditions p(± 1

2 ) = 0. The solution is searched in form
p(x) = b cosh(cx) + d, yielding

p(x) =
n(φs,KT)

ik

[
cosh(

√
iσcx)

cosh(
√

iσc/2)
− 1

]
∂w

∂z

∣∣∣∣
z=1

, (27)
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where σc is the complex squeeze number

σc =
ik2γ

g2B(s,Ks)n(φs,KT)
=

is2σ

12B(s,Ks)n(φs,KT)
,

(28)
where the traditional squeeze number σ is defined as σ =
12ηl2xω/(p0h

2
0). It specifies the ratio between the spring force

due to the gas compressibility and the force due to the viscous
flow.

I. Complete approximate model

The resulting force acting on the surface is

F =
∫ 1/2

−1/2

∫ 1/2

−1/2

p(x) dxdy (29)

=
n(φs,KT)

ik

[
2√
iσc

tanh(
√

iσc/2) − 1
]

∂w

∂z

∣∣∣∣
z=1

,

where the velocity excitation is calculated when z = 1.
In (32) the last derivative is still unknown. Two different

velocity functions w(z) has been derived in [8] assuming
closed damper boundaries and gap resonances.

The simpler model gives at z = 1

∂w

∂z

∣∣∣∣
z=1

=
w0q

tanh(q)
(30)

and the more complicated model gives

∂w

∂z

∣∣∣∣
z=1

= C1r1e
r1 + C2r2e

r2 + C3r3e
r3 + C4r4e

r4, (31)

respectively. Coefficients Ci and ri are given in the Ap-
pendix.

The un-normalized force becomes

F̃ = − lxlyn(φs,KT)p0

iωh0

[
2√
iσc

tanh(
√

iσc/2) − 1
]

∂w

∂z

∣∣∣∣
z=h0

.

(32)
Equation (32) is the complete model to calculate the force

as a function of frequency for a velocity excitation. The
damping force is the real part of F̃ .

III. RESULTS

In the following, the results of the compact model are
compared to numerical FEM simulations which can be con-
sidered as exact results. Then, the importance of the included
features in the compact model is studied by comparing the
responses of published models in a wide frequency band. In
the following figures, magnitude or real part is denoted with
× at left-side axis and phase (or spring coefficient) with �

at right-side axis.

A. 2D FEM Simulations

FEM simulations were performed with a solver for dis-
sipative acoustic flow [9] included in Elmer [10] software.
The solver gives the results directly at specified frequencies.
Since the compact model considers a 1D damper, 2D FEM
simulations are sufficient here. A sinusoidal velocity ampli-
tude of 1 m/s was used as the excitation. The symmetry of
the structure was utilized in the FEM simulations; only a half
of the air gap was simulated. Slip velocity and temperature
conditions were applied, and the thermal boundary conditions
were set for ideally thermally conducting surfaces. Boundary
conditions p(±lx/2) = 0 were used at the borders. A mesh of
8000 elements was used, and the simulation was performed at
81 frequencies from 10 kHz to 1 GHz. The grid convergence
showed that the element count is sufficient. Gas parameters
for air in Table I were used in the simulations.

B. Validity of the compact model

Several numerical simulations were performed to be able
to test the validity and accuracy of the compact model for
the 1D squeeze-film damper derived in the previous section.
Here, the accurate model for the air gap region in Appendix A
is used. Table II summarizes the dimensions of all simulated
damper topologies. The simulated topologies were limited to
cases where the ratio lx/h0 ≥ 10. With smaller ratios the zero
pressure border condition is not justified. Also, the pressure
is no more constant across the gap even at small frequencies.
These phenomena have been studied in [12]

TABLE II

DIMENSIONS OF THE SIMULATED DAMPERS

Length Gap x-resonance z-resonance 1 z-resonance 2
lx [µm] h0 [µm] fx,2 [MHz] fz,1 [MHz] fz,2 [MHz]

5 0.5 - 168.4
5 1 22.8 83.9 172.4
10 0.5 - 168.4 329
10 1 - 83.84 168.4
10 2 14.4 40.82 85.6
15 0.5 - 176.5 337
15 1 - 81.96 172.4
15 2 8.41 71.78 85.9
15 3 10.1 28.8 52.2
20 0.5 - 167.5 329
20 1 - 88.0 169
20 2 4.58 42.0 85.3
20 3 7.21 29.0 58.3

Figure 4 compares frequency responses of numerical and
compact models in a case when lx = 20µm and h0 = 2µm.
The simulated data is presented in two forms: (a) ampli-
tude/phase of the impedance Zm, and (b) damping/spring
coefficients. Both responses show that the compact model
response is very accurate at low and high frequencies, but
there is a noticeable error in the compact model just below the
first gap resonance frequency. This was expected, since this
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Fig. 4. Simulated frequency responses of the numerical model (×, �) and
the new compact model (solid lines). Here lx = 20 µm and h0 = 2 µm.
(a) magnitude (×) and phase (�) of the impedance, (b) damping coefficient
c = �(Zm) (×) and the spring coefficient k = −�(iωZm) (�).

regime is between the squeeze-film and the gap resonance
regions.

Table II summarizes the resonant frequencies detected
from the amplitude/phase responses of all simulated topolo-
gies. Here, the resonant frequencies are those where the phase
of the impedance crosses zero.

To see the validity of the resonant frequency approxima-
tions in (8) and (9), they are compared with the results in
Table II. The effective speed of sound propagating in the
gap is

ce = c0

√
5(1 + 2Ks)

6γ
(33)

The fundamental resonant frequencies fx,2 and fz,1 become
6.94 MHz and 43.52 MHz respectively, for a topology of a
width of 20µm and gap height of 2µm.

IV. CONCLUSIONS

With these models, the Reynolds equation has been ex-
tended to be applicable to rapidly oscillating surfaces and
rarefied gas conditions in addition to modelling damping at

low frequencies. It was shown that the compact model is in
good agreement with numerical FEM simulation results. Slip
conditions are used to have an accurate model also for small
air gaps typical in MEMS devices.

In this study, idealistic border conditions for the damper
borders were assumed. These conditions are not justified in
cases where the aspect ratio (lx/h0) is not small. To model
accurately such cases, the flow outside the gap should be
considered [12]. It is straightforward to extend the approach
to 2D squeeze damper topology considering the y dimension.

The solver for viscous acoustic flow in the Elmer soft-
ware [10] turned out to be very useful in studying the
squeeze-film phenomena at the high frequency regime.

REFERENCES

[1] J. W. Wang, Z. Ren, and C. T.-C. Nguyen, “1.156-GHz Self-
Aligned Vibrating Micromechanical Disk Resonator,” IEEE
Transactions on Ultrasonics, Ferroelectrics, and Frequency
Control, vol. 51, no. 12, pp. 1607–1628, 2004.

[2] J. Wang, J. E. Butler, T. Feygelson, and C. T.-C. Nguyen,
“1.51-GHz Nanocrystalline Diamond Micromechanical Disk
Resonator With Material-Mismatched Isolating Support,”
IEEE Micro Electro Mechanical Systems Conference, (Maas-
tricht, The Netherlands), pp. 641–644, January 2004.

[3] J. J. Blech, “On Isothermal Squeeze Films,” Journal of Lubri-
cation Technology, vol. 105, pp. 615–620, October 1983.

[4] W. S. Griffin, H. H. Richardson, and S. Yamanami, “A Study of
Fluid Squeeze-Film Damping,” Journal of Basic Engineering,
Trans. ASME, vol. 88, pp. 451–456, June 1966.

[5] T. Veijola, “Compact Models for Squeezed-Film Dampers with
Inertial and Rarefied Gas Effects,” Journal of Micromechanics
and Microengineering, vol. 14, pp. 1109–1118, 2004.

[6] W. M. Beltman, P. J. van der Hoogt, R. M. E. J. Spiering, and
H. Tijdeman, “Air Loads on a Rigid Plate Oscillating Normal
to Fixed Surface,” Journal of Sound and Vibration, vol. 206,
pp. 217–241, 1997.

[7] W. M. Beltman, “Viscothermal Wave Propagation Including
Acousto-Elastic Interaction, Part I: Theory,” Journal of Sound
and Vibration, vol. 227, pp. 555–586, 1999.

[8] T. Veijola and A. Lehtovuori, “Model for Gas Damping in Air
Gaps of RF MEMS Resonators,” Symposium on Design, Test,
Integration and Packaging of MEMS/MOEMS, DTIP 2007,
(Stresa, Italy), pp. 156–161, April 2007.

[9] M. Malinen, M. Lyly, P. Råback, A. Kärkkäinen, and
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[10] Elmer, “Elmer – Finite Element Solver for Multiphysical
Problems,” 2006. http://www.csc.fi/elmer.

[11] G. E. Karniadakis and A. Beskok, Micro Flows, Fundamentals
and Simulation. Springer, Heidelberg, 2002.

[12] T. Veijola, A. Pursula, and P. Råback, “Extending the Validity
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APPENDIX A

An exact solution for (12) – (15) is presented considering
the non-adiabatic thermal conditions and boundary conditions
for velocity and temperature. After some manipulation, the
following fourth order differential equation results

1
s2φ2

(
1
ik

+
4kγ

3s2

)
w′′′′−

(
i4k

3s2
+

ikγ

s2φ2
+

1
k

)
w′′−kw = 0

(A1)
for velocity w and

1
s2φ2

(
1
ik

+
4kγ

3s2

)
T ′′′′−

(
i4k

3s2
+

ikγ

s2φ2
+

1
k

)
T ′′−kT = 0

(A2)
for temperature T as well. In this Appendix, the derivatives
with the respect to z are denoted with primes (T ′′′′ =
∂4T/∂z4), and the dependence on z is denoted by, e.g.,
w(z) or T ′′′(z). These homogenous linear equations with
constant complex coefficients have a characteristic equation
α1r

4 + α2r
2 − k = 0, where

α1 =
1

s2φ2

(
1
ik

+
4kγ

3s2

)
(A3)

α2 = −
(

i4k

3s2
+

ikγ

s2φ2
+

1
k

)
(A4)

The roots of the characteristic equation are

r1 =

√
−α2 +

√
α2

2 + 4α1k

2α1
, r3 = −r1 (A5)

r2 =

√
−α2 −

√
α2

2 + 4α1k

2α1
, r4 = −r2 (A6)

and thus the solution of (A1) is

w(z) = C1e
r1z + C2e

r2z + C3e
r3z + C4e

r4z. (A7)

Constants C1, C2, C3, and C4 are determined using boundary
conditions:

w(0) = 0, w(1) = w0, (A8)

T (0) = KTT ′(0), T (1) = −KTT ′(1). (A9)

Therefore, the temperature is written as function of velocity
w. Equations (12) – (15) reduce now to

T ′ = A1w + A2w
′′ (A10)

w′ = A3T + A4T
′′, (A11)

where

A1 = −ikγ, (A12)

A2 =
(

1
ik

+
4kγ

3s2

)
, (A13)

A3 = − ik
γ − 1

, (A14)

A4 =
kγ

(γ − 1)s2φ2
. (A15)

Solving T from (A10) and (A11) and p from (5), (6) and
(A16) yields

T = B1w
′ + B2w

′′′, (A16)

p = − 1
ik

w′ + T =
(

B1 − 1
ik

)
w′ + B2w

′′′,(A17)

where B1 and B2 are the auxiliary variables:

B1 =
1 − A1A4

A3
, B2 = −A2A4

A3
. (A18)

Equation (A16) can be used to utilize the boundary con-
ditions for temperature in (A9) to solve the velocity:

B1w
′(0) + B2w

′′′(0) = KTB1w
′′(0) + KTB2w

′′′′(0),
B1w

′(1) + B2w
′′′(1) = −KTB1w

′′(1) − KTB2w
′′′′(1).

After applying boundary conditions for velocity in (A8) in
addition to the conditions above, the following system of
equations results:

C1 + C2 + C3 + C4 = 0, (A19)

C1e
r1 + C2e

r2 + C3e
r3 + C4e

r4 = w0, (A20)

C1Q1 + C2Q2 + C3Q3 + C4Q4 = 0, (A21)

C1S1e
r1 + C2S2e

r2 + C3S3e
r3 + C4S4e

r4 = 0, (A22)

where Qi = (B1ri + B2r
3
i )(1 − KTri) and Si = (B1ri +

B2r
3
i )(1 + KTri). Solving the system of equations (A19)–

(A22) gives the coefficients Ci in (A7) which are

C1 =
H2P3M − GP3 − MP2

P1 + P2L − H1P3 − H2P3L
, (A23)

C2 = LC1 + M, (A24)

C3 = G − H1C1 − H2C2, (A25)

C4 = −C1 − C2 − C3, (A26)

where
G = w0/(er3 − er4), (A27)

H1 = (er1 − er4)/(er3 − er4), (A28)

H2 = (er2 − er4)/(er3 − er4), (A29)

L =
H1K3 − K1

K2 − H2K3
, (A30)

M =
−GK3

K2 − H2K3
, (A31)

Ki = B1(ri − r4) + B2(r3
i − r3

4)
− KTB1(r2

i − r2
4) − KTB2(r4

i − r4
4), (A32)

Pi = B1(rie
ri − r4e

r4) + B2(r3
i eri − r3

4e
r4)

+ KTB1(r2
i eri − r2

4e
r4)

+ KTB2(r4
i eri − r4

4e
r4). (A33)

Now the values for variables p(z), w(z), T (z) can be
calculated from (A17), (A7) and (A16), respectively. The
density is simply ρ(z) = p(z) − T (z).
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