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Abstract :

In this paper the Empirical Mode Decomposition (EMD) method and Hilbert-Huang transform are used to analyse
experimental homogeneous turbulence time series. With this method, one can decompose nonlinear time series into
a sum of different modes, each narrow-banded. Here we consider experimental turbulent velocity time series with
a large Reynolds number (Reλ = 720). The Fourier power spectrum reveals a wide inertial range with a classical
−5/3 Kolmogorov power-law spectrum. We show that the EMD method applies very nicely to the turbulent velocity
time series, with a dyadic filter bank in the inertial range. We estimate the Fourier power spectra of each mode,
showing that adding more and more modes corresponds to including lower and lower frequencies. This filtering
property can have interesting applications in the field of turbulence modelling. We estimate the Hilbert-Huang
power spectrum of the turbulent time series and show its scaling properties, with an exponent different from−5/3.

Résumé :

Il s’agit d’une mise en application de la méthode d’analyse de séries temporelles non-linéaires EMD (décompo-
sition modale empirique), et de la transformation de Hilbert-Huang, à des données expérimentales de turbulence,
possédant des fluctuations invariantes d’échelle dans la zone inertielle de cascade d’énergie. Nous montrons que
la méthode EMD permet de décomposer une série temporelle turbulente en une somme de modes intrinsèques ap-
partenant aux échelles inertielles. Nous estimons le spectre de Fourier de chaque mode, et montrons qu’ajouter des
modes correspond à remonter en échelles, incluant les basses fréquences dans la zone inertielle. Cette propriété de
filtre peut avoir d’intéressantes applications en modélisation de la turbulence. Nous montrons aussi que le spectre
de Hilbert-Huang est invariant d’échelle, avec une pente différente de la pente classique turbulente de −5/3.
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1 Introduction

In this paper the Empirical Mode Decomposition (EMD) method and the Hilbert-Huang trans-1

form are used to analyse experimental homogeneous turbulence time series. With this method,2

one can decompose nonlinear time series into a sum of different modes, each one having char-3

acteristic frequencies Huang et al. (1998, 1999). Due to the simplicity of its algorithm, the4

EMD method has met a large success; this technique has already been applied to several fields,5

including acoustics Loutridis (2005), climate Salisbury and Wimbush (2002); Coughlin and6

Tung (2004) and nonlinear waves in oceanography Hwang et al. (2003); Veltcheva and Guedes7

Soares (2004). It has also been applied to numerically simulated fractional Gaussian noise8

(fGn) time series, and shown to act as a dyadic filter bank Flandrin et al. (2004). In the same9

paper, it was shown how to use the hierarchy of modes to estimate the fGn scaling exponent H .10
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However, to our knowledge, it has seldom been applied to fully developed turbulent time11

series, characterized by a high Reynolds number, a large scaling range for the fluctuations, and12

strong intermittency Frisch (1995). Here we consider experimental turbulent velocity time13

series with a large Reynolds number (Reλ = 720). We show that the EMD method applies14

very nicely to the turbulent velocity time series, with a dyadic filter bank in the inertial range.15

Section 2 presents the data; section 3 the EMD method and Hilbert-Huang transform. Section16

4 presents the results obtained on the velocity time series.17

2 Presentation of the experimental database18

We consider here a database obtained from measurements of nearly isotropic turbulence down-19

stream an active-grid. The experiment is characterized by the Taylor-based Reynolds number20

Reλ = 720. The sampling frequency is fs = 40kHz, and a low-pass filtered at a frequency of21

20kHz is applied on the experimental data. The sampling time is 30 s, and the total number22

of data points per channel for each measurement is 1.2 × 106. We used data in the streamwise23

direction at position x1/M = 20, where M is the grid size (the mean velocity at this location is24

12 m/s and the turbulence intensity is about 15.4%). For details about the experiment and the25

data see Kang et al. (2003); the data can be found at http://www.me.jhu.edu/˜meneveau/datasets.html.26

3 Empirical Mode Decomposition and Hilbert−Huang Transform27

Empirical Mode Decomposition is a recently developed method Huang et al. (1998, 1999) that28

can be applied to study the nonlinear and non-stationary properties of a time series. This method29

contains the following two steps: Empirical Mode Decomposition (EMD) and Hilbert Spectra30

Analysis (HSA). The main idea of EMD is to locally estimate a signal as a sum of a local trend31

and a local detail: the local trend is a low frequency part, and the local detail a high frequency.32

When this is done for all the oscillations composing a signal, the high frequency part is called an33

Intrinsic Mode Function (IMF) and the low frequency part is called the residual. The procedure34

is then applied again to the residual, considered as a new times series, extracting a new IMF35

and a new residual. At the end of the decomposition process, the EMD method expresses a time36

series x(t) as the sum of a finite number of IMFs Ci(t) and a final residual rn(t) Huang et al.37

(1998); Flandrin et al. (2004). The procedure is precisely described below.38

An IMF is a function that satisfies two conditions: (i) the difference between the number39

of local extrema and the number of zero-crossings must be zero or one; (ii) the running mean40

value of the envelope defined by the local maxima and the envelope defined by the local minima41

is zero. The procedure to decompose a signal into IMFs is the following Huang et al. (1998,42

1999):43

1 The local extrema of the signal x(t) are identified;44

2 The local maxima are connected together forming an upper envelope emax(t) , which is45

obtained by a cubic spline interpolation. The same is done for local minima, providing a46

lower envelope emin(t);47

3 The mean is defined as m1(t) = (emax(t) + emin(t))/2;48

4 The mean is subtracted from the signal, providing the local detail h1(t) = x(t)−m1(t);49

5 The component h1(t) is then examined to check if it satisfies the conditions to be an IMF.50

If yes, it is considered as the first IMF and denoted C1(t) = h1(t). It is subtracted from the51

original signal and the first residual, r1(t) = x(t)−C1(t) is taken as the new series in step52
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Figure 1: IMFs estimated from one 214 points segment of the velocity. The time scale is increasing with
the mode.

1. If h1(t) is not an IMF, a procedure called “sifting process” is applied as many times53

as needed to obtain an IMF. In the sifting process, h1(t) is considered as the new data;54

the local extrema are estimated, lower and upper envelopes are formed and their mean is55

denoted m11(t). This mean is subtracted from h1(t), providing h11(t) = h1(t) −m11(t).56

Then it is checked if h11(t) is an IMF. If not, the sifting process is repeated, until the57

component h1k(t) satisfies the IMF conditions. Then the first IMF is C1(t) = h1k(t) and58

the residual r1(t) = x(t)− C1(t) is taken as the new series in step 1.59

By construction, the number of extrema decreases when going from one residual to the next;
the above algorithm ends when the residual has only one extrema, or is constant, and in this case
no more IMF can be extracted. The complete decomposition is then achieved in a finite number
of steps, of the order n ≤ log2 N , for N data points. The signal x(t) is finally written as:

x(t) =
N∑

i=1

Ci(t) + rn(t) (1)

The IMFs are orthogonal, or almost orthogonal functions (mutually uncorrelated). This method60

does not require stationarity of the data and is especially suitable for nonstationary and nonlinear61

time series analysis Huang et al. (1998, 1999). Each mode is localized in frequency space62

Flandrin and Gonçalvès (2004); Wu and Huang (2004). EMD is a time-frequency analysis63

Flandrin et al. (2004) since it can represent the original signal in a energy-frequency-time form64
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Figure 2: Mean frequency versus mode number for
the turbulent velocity time series. There is an expo-
nential decrease with a slope very close to 1. This
indicates that EMD acts as a dyadic filter bank.

Figure 3: Fourier spectrum of each mode (from 1 to
12) showing that they are narrow-banded. The slope
of the reference line is −5/3.

at local level, using a complementary method called Hilbert-Huang spectrum Huang et al.65

(1998). This decomposition can be used to express the original time series as the sum of a trend66

(sum of modes from p to N ) and small-scale fluctuations (sum of modes from 1 to p−1), where67

p is an index whose value depends on the trend decomposition which is desired.68

In the second step of this method, Hilbert Spectra Analysis, Hilbert transform is applied69

to each IMF. Then we can design the Hilbert spectrum H(ω, t), which represent the energy70

as the function of instantaneous frequency and time. Here the Hilbert transform is a singular71

integration, it can be taken as the best local fit of an amplitude and phase varying trigonometric72

function to x(t) (Huang et al. (1998)). Therefore the Hilbert spectrum can provide sufficient73

locality information in both physics and frequency space. In global sense we also can define74

the Hilbert marginal spectrum h(ω) which, in some sense, is an equivalence of power spectrum75

in Fourier analysis. In fact, here the definition of instantaneous frequency is different with the76

one in Fourier frame. The interpretation and the detailed physical meaning of Hilbert marginal77

spectrum should be paid more attention in future research. The locality and adaptivity abilities78

make this method unique and suitable for nonlinear and nonstationary time series analysis.79

Since it was proposed, HHT has been applied successfully to many fields. However, to our80

knowledge, it has seldom been applied to fully developed turbulent time series, characterized81

by a high Reynolds number, a large scaling range for the fluctuations, and strong intermittency82

4 Results83

The original velocity time series is divided into 73 segments (without overlapping) of 214 points
each. After decomposition, the original velocity series is decomposed into several IMFs (see
Fig.1), from 11 to 13 modes with one residual. It is clear that the time scale is increasing with
the mode; each mode has a different mean frequency, which is estimated by considering the
(energy weighted) mean frequency in the Fourier power spectrum. The relation between mode
number k and mean frequency Huang et al. (1998) is displayed in Fig. 2. The straight line in
log-linear plot which is obtained suggests the following relation:

f(k) = f0ρ
−k (2)
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Figure 4: Fourier spectrum of the sum of modes
from 1 to p, with p = 2, 3...12. It shows a clear
asymptotic behavior.

Figure 5: Hilbert marginal spectrum of the veloc-
ity signal. For comparison Fourier spectrum is dis-
played in the up-right pannel.

where f is the mean frequency, f0 is a constant and ρ is very close to 2. This indicates that EMD84

acts as a dyadic filter bank in the frequency domain; it was shown previously using stochastic85

simulations of Gaussian nose and fBm Flandrin et al. (2004); Wu and Huang (2004), and it is86

interesting to note here that the same result holds for fully developed turbulence time series.87

When compared with the original Fourier spectrum of the turbulent time series (see Fig.388

and 4), these modes can be termed as follows: the first mode, which has smallest time scale,89

corresponds to the measurement noise; modes 2 and 3 are associated to the dissipation range90

of turbulence; mode 4 corresponds to the Kolmogorov scale; modes 5 to 11 all belong to the91

inertial range; larger modes belong to the large turbulent forcing scales. Fig. 3 and 4 represent92

the Fourier power spectra of each mode and of the sum of the modes, respectively. They show93

(i) that each mode in the inertial range is narrow-banded; (ii) that adding more and more modes94

corresponds to going farther and farther towards large scales in the inertial range, reconstituting95

the −5/3 Kolmogorov spectrum. This property can be very interesting to decompose a turbu-96

lent signal into a mean and small-scale fluctuations, as is often done for turbulence modelling97

purposes.98

The Hilbert marginal spectrum h(ω) (defined in Huang et al. (1998)) of the velocity is
displayed in Fig. 5 together with the Fourier spectrum. It is clear that the following relation

h(ω) ∼ ω−βH (3)

holds in some range, with an exponent βH different from the −5/3 Fourier exponent. We99

recall here that the frequency ω defined in EMD is different from the Fourier frequency, and the100

precise physical meaning of Hilbert marginal spectrum is still to be explored.101

Let us finally note here that, due to the limitation of this paper, we just present here the102

results of velocity U at location x/M = 20. For other points and velocity V we get the same103

results, which does not present here.104

5 Conclusion105

In present paper, we applied Hilbert−Huang transform to analyze a high Reynolds number,106

Reλ = 720, turbulent experimental time series. After decomposition, the original velocity time107

series is separated into several intrinsic modes. This method acts as a dyadic filter bank in the108
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frequency domain (in Fourier frame). Comparing the Fourier spectrum of each mode, we can109

draw that the first mode contains the smallest scale and the most noise of the measurement, and110

that many modes are associated to the inertial subrange. Finally, when the Fourier spectrum of111

each mode is compared with the original one, these modes can be divided into three terms: the112

smallest scales corresponding to the dissipation range, the moderate scales corresponding to the113

inertial subrange and the large scales corresponding to the coherent structures (energy-contain114

structure). However, if all these modes are added back step by step, it illustrates a clearly115

asymptotic approximation behavior. This will be very useful for turbulence modeling: some116

model parameters can be adjusted based on these interesting results. And also this provides a117

possible way to establish a low dimensional dynamical system. Otherwise, the Hilbert marginal118

spectrum demonstrates a generalized power-law, which is different with the Fourier spectrum.119

Detailed interpretation should be given in future investigations.120

In Hilbert spectra analysis, instantaneous frequency is used to represent the relation between121

energy, time and frequency, and Hilbert spectrum reveals a direct relation between frequency122

and energy. For Hilbert marginal spectrum, an approximate power-law has been obtained,123

whose slope, different from −5/3, is still to be interpreted.124
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