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Abstract :

We combine analytical, numerical, and experimental approaches to study the dynamics of the ‘liquid rope coiling’
that occurs when a thin stream of viscous fluid like honey falls onto a surface. As the fall height increases,
coiling traverses a sequence of four dynamical regimes (viscous, gravitational, inertio-gravitational, and inertial)
characterized by different balances of the forces acting on the rope. The inertio-gravitational regime is particularly
rich, exhibiting multiple states that correspond to resonant modes of the rope’s ‘tail’.

Résumé :

Nous étudions avec des méthodes analytique, numérique et expérimentale le flambage hélicoïdal d’un mince filet
de fluide visqueux (e.g., miel) qui tombe sur une surface. Lorsque la hauteur de chute augmente, quatre régimes
de l’instabilité se succèdent (visqueux, gravitationnel, inertio-gravitationnel, inertiel) qui correspondent aux dif-
férents équilibres de forces dans le filet. Le régime inertio-gravitationnel s’avère particulièrement riche, avec des
états multiples qui représentent des modes resonants dans la “queue” du filet.
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1 Introduction

A thin stream of honey falling onto a piece of toast winds itself into a whirling “corkscrew”.
This instability was called “liquid rope coiling” by Barnes & Woodcock (1958), who were the
first to study it experimentally. In these and in most later experiments, fluid with densityρ,
viscosityν and surface tension coefficientγ is ejected at a volumetric rateQ from a hole of
diameterd ≡ 2a0 and then falls a distanceH onto a solid surface (fig. 1.)

Among the milestones of the nearly 50 years of work on liquid rope coiling is the recognition
by Taylor (1969) that the phenomenon is a buckling instability that requires a longitudinal
compressive stress. Tchavdarovet al.(1993) performed a linear stability analysis of a stagnating
viscous jet to determine the fall height and frequency at the onset of coiling. Mahadevanet al.
(2000) demonstrated that coiling in the high-frequency limit is governed by a balance between
rotational inertia and viscous forces. Our own study of this problem during the past few years
combines analytical, numerical, and experimental approaches to reveal a hitherto unsuspected
complexity in this common instability.
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Figure 1: Steady coiling of a ‘rope’ of viscous corn syrup (photograph by N. Ribe.) Fluid with densityρ,
viscosityν and surface tension coefficientγ is injected at volumetric rateQ through a hole of diameter
d ≡ 2a0 and falls a distanceH onto a plate. The radius of the rope at its point of contact with the plate
is a1, and the angular coiling frequency isΩ.

2 Experimental observations

Maleki et al.(2004), Ribeet al.(2006) and Habibiet al.(2006) used two different experimental
setups to observe coiling over the widest possible range of fall heights and frequencies. In
the first setup, designed for higher frequencies, the working fluid drained through a hole in the
bottom of a reservoir maintained at constant head. The second setup, in which the working fluid
is extruded at a constant rate from a syringe pump driven by a stepper motor, permitted access
to very low fall heights and frequencies. Fig. 2 shows the measured frequencyΩ as a function
of fall heightH for three different experiments. A wide variety of behavior is observed. In fig.
2a, the frequency first decreases strongly with height and then slowly increases. In fig. 2b, the
frequency is a strongly increasing function of height, but there is a gap atH ≈ 7 cm where no
coiling states were observed. Finally, in fig. 2c two or three distinct coiling states with different
frequencies can be observed at a fixed height within a certain range.

3 Numerical model

To make sense of the variety of behavior shown in fig. 2, Ribe (2004) constructed a numerical
model based on an asymptotic theory that describes the arbitrary time-dependent motion of a
slender rope of viscous fluid. Motion of the rope is driven by buoyancy and by the imposed
volumetric ejection rateQ, and resisted by viscous forces and inertia. Surface tension forces
are also included, but typically have only a small (few percent) effect on the coiling frequency.

Because the motion of the rope is steady in the corotating reference frame, all the variables
describing its motion are functions only of the arclengths along the rope’s axis, wheres =
0 at the ejection hole ands = ` (say) at the rope’s point of contact with the surface. The
equations describing the rope’s geometry, kinematics, and dynamics (force and torque balance)
constitute a seventeenth-order system of ODEs in the independent variables. Because the
coiling frequencyΩ and the rope length̀ are unknown, nineteen boundary conditions at the
endss = 0 ands = ` are required. The resulting seventeenth-order two-point boundary-value
problem is solved using a numerical continuation method.
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Figure 2: Coiling frequency vs. fall height measured experimentally (symbols) and calculated numer-
ically (solid lines) for silicone oil (ρ = 0.97 g cm−3, γ = 21.5 dyne cm−1) and three sets of values
of {ν, d,Q} in units of {cm2s−1, cm, cm3s−1}: (a) {1000, 0.068, 0.0038}; (b) {300, 0.5, 0.094}; (c)
{1000, 0.068, 0.00215}.

The solid line in each panel of fig. 2 shows the coiling frequency predicted by the numerical
model for the same values ofν, ρ, γ, d andQ as in the corresponding laboratory experiment.
The agreement with the experimental measurements, with no free parameters, is very good
overall. Our next task is to interpret its physical significance.

4 Regimes of liquid rope coiling

Consider now the ‘coil’ portion of the rope (fig. 1), where deformation occurs primarily by
bending and twisting. The viscous forces that resist these deformations can be balanced in
three ways. At very low fall heights for which gravity and inertia are both negligible, the
viscous forces can only be balanced by other viscous forces, resulting in a zero net viscous
force on every fluid element. At greater heights, the buoyancy force becomes sufficiently large
to balance the viscous forces. Finally, at still greater heights the viscous forces are balanced
primarily by inertia. Mahadevanet al. (2000) and Ribe (2004) showed that these balances
imply the existence of three distinct coiling regimes - ‘viscous” (V ), ‘gravitational’ (G), and
‘inertial’ (I) - for which the coiling frequencies are proportional to the scales

ΩV =
Q

Ha2
1

, ΩG =

(
gQ3

νa8
1

) 1
4

, ΩI =

(
Q4

νa10
1

) 1
3

. (1)

To verify that these three regimes actually exist, Ribe (2004) and Malekiet al. (2004)
rescaled their numerical and experimental results, respectively, in a way that reveals clearly the
transitions between pairs of regimes. For the transition from theG to theI regime, for example,
one plots the scaled frequencyΩ/ΩG againstΩI/ΩG; theG andI regimes (if they exist) will
then be represented by segments of the curve with slopes of zero and unity, respectively. These
segments are clearly present on the left and right sides, respectively, of fig. 3a (rescaled numer-
ics) and fig. 3b (rescaled experimental measurements), demonstrating the existence of theG
andI regimes.
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Figure 3: (a) Rescaled coiling frequencyΩ/ΩG vs. ΩI/ΩG for coiling in the gravitational (slope=
0) and inertial (slope= 1) regimes. (a) Numerical calculation for three values of the dimensionless
viscosity(ν5/gQ3)1/5. (b) Experimental measurements (symbols) and numerical calculation (solid line)
for silicone oil withν = 300 cm2s−1, d = 0.5 cm, andQ = 0.094 cm3s−1.

However, it is also clear from fig. 3 that something strange is going on between theG and
I regimes, in the range0.7 < ΩI/ΩG < 2. This range corresponds to fall heights for which
multiple coiling states with different frequencies can exist, as in fig. 2c. To understand the
physical origin of these multiple states, we need to look more closely at the long and nearly
vertical ‘tail’ portion of the rope (see fig. 1a.) The tail behaves as a ‘viscous string’ that
deforms primarily by axial stretching induced by the pull of gravity, with negligible bending
and twisting. Because the axis of the tail is slightly curved, the viscous force acting on the string
has a small transverse component that is balanced by the buoyancy and centrifugal forces. Ribe
et al.(2006) showed that in the limit of strong gravity-induced stretching, the amplitudey(s) of
the deflection of the string’s axis from the vertical satisfies

gH

π
sin

π(H − s)

H

d2y

ds2
− g

dy

ds
+ Ω2y = 0, (2)

which has nontrivial solutions subject to the relevant boundary conditions only for particular
values of the angular frequencyΩ. Each of these eigenvaluesΩn is proportional to the simple
pendulum frequency(g/H)1/2 ≡ ΩIG, where the subscriptIG (‘inertio-gravitational’) empha-
sizes that the modes in question involve both gravity and inertia and are observed at fall heights
intermediate between those of theG and theI regimes. To test the simple viscous string model
(2) against solutions of the complete seventeenth-order boundary-value problem for a coiling
rope, Ribeet al. (2006) plotted the rescaled coiling frequencyΩ/ΩIG vs. ΩG/ΩIG. On such
a diagram (fig. 4) the multiple frequencies predicted by the full model appear as right-facing
horizontal ‘spikes’ that coincide almost perfectly with the (numerically determined) eigenfre-
quenciesΩn (horizontal black bars.) Physically speaking, the eigenfrequenciesΩn correspond
to resonant oscillations of the tail of the rope in response to forcing by the coil at the gravita-
tional frequencyΩG. Three such resonant modes are evident in the experimental measurements
shown in fig. 2c, and a fourth mode has been observed by Habibiet al. (2006). Ribeet al.
(2006) and Habibiet al. (2006) showed that transitions between the modes occur in an appar-
ently chaotic way, usually (but not always) with a change in the sense of the rotation of the
coiling via an intermediate ‘figure of eight’ state.
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Figure 4: Rescaled frequencyΩ/ΩIG vs. ΩG/ΩIG in the limit of strong stretching (a1 � a0) calculated
numerically for three values of the dimensionless viscosityΠ1 = (ν5/gQ3)1/5. Segments of the curves
representing gravitational and inertio-gravitational coiling are denoted byG andIG, respectively. The
horizontal black bars (right) indicate the first six eigenfrequencies of a whirling viscous string described
by (2).

5 Summary

All the results discussed above can be conveniently summarized in the form of a curve of coiling
frequency vs. height for a large value of the dimensionless viscosityΠ1 = (ν5/gQ3)1/5. Fig.
5 shows the numerically calculated curve of dimensionless frequencyΩ(ν/g2)1/3 ≡ Ω̂ vs.
dimensionless fall heightH(g/ν2)1/3 ≡ Ĥ for Π1 = 7140. For small heightŝH < 0.07, coiling
occurs in the viscous (V ) regime, and the frequency decreases with height. The frequency then
increases in the range0.1 < Ĥ < 0.4, corresponding to the gravitational (G) regime. The
inertio-gravitational regime appears next (0.5 < Ĥ < 1.1), with multiple coiling states at a
fixed fall height corresponding to the resonant ‘viscous string’ modes discussed above. Ribe
et al. (2006) carried out a formal linear stability analysis of this regime which showed that the
dashed portions of the curve in fig. 5 are unstable to small perturbations, in agreement with
the fact that steady coiling states are never observed along these portions of the curve in the
laboratory (see fig. 2c.) Finally, for̂H > 1.2 the curve becomes smooth again as the inertial (I)
regime takes over. Thus liquid rope coiling, so simple to realize in any home kitchen, turns out
upon closer examination to exhibit surprisingly rich and complex behavior.
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Figure 5: Steady coiling frequency calculated numerically as a function of height for(ν5/gQ3)1/5 =
7140 and(νQ/gd4)1/4 = 3.67. States located on the dashed portions of the curve are unstable to small
perturbations. The inset images show the shape of the coiling rope at the four heights indicated by black
dots, corresponding to theV , G, IG, andI regimes.

References

Barnes, G. & Woodcock, R. 1958 Liquid rope-coil effect.Am. J. Physics26205-209

Habibi, M., Maleki, M., Golestanian, R., Ribe, N. M. & Bonn, D. 2006. Dynamics of liquid
rope coiling.Phys. Rev. E74066306

Mahadevan, L., Ryu, W. S. & Samuel, A. D. T. 2000. Correction: Fluid ’rope trick’ investigated.
Nature403502

Maleki, M., Habibi, M., Golestanian, R., Ribe, N. M. & Bonn, D. 2004. Liquid rope coiling on
a solid surface.Phys. Rev. Lett.93214502

Ribe, N. M. 2004 Coiling of viscous jets.Proc. R. Soc. Lond.A4603223-3239

Ribe, N. M., Huppert, H. E., Hallworth, M. A., Habibi, M. & Bonn, D. 2006 Multiple coexisting
states of liquid rope coiling.J. Fluid. Mech.555275-297

Ribe, N. M., Habibi, M. & Bonn, D. 2006 Stability of liquid rope coiling.Phys. Fluids18
084102

Taylor, G. I. 1969 Instability of jets, threads, and sheets of viscous fluid. InProc. 12th Intl.
Congr. Appl. Mech., pp. 382-388, Springer-Verlag, Berlin.

Tchavdarov, B., Yarin, A. L. & Radev, S. 1993 Buckling of thin liquid jets.J. Fluid. Mech.253
593-615

6


