
978-1-4244-2575-4/08/$20.00 c©2008 IEEE

DHB-KEY: An Efficient Key Distribution
Scheme for Wireless Sensor Networks

Tony Chung and Utz Roedig
Email: {{a.chung|u.roedig}@lancaster.ac.uk}

Infolab21, Lancaster University, UK

Abstract—Real-world deployments of wireless sensor
networks require secure communication. In many applica-
tion cases it is sufficient to provide message authentication
at the sink. To implement this requirement using symmetric
ciphers, keys shared between each sensor node and the
sink have to be established and kept fresh during network
operation. This paper presents a key distribution scheme
based on the well known Elliptic Curve Diffie-Hellman key
exchange mechanism that allows us to fulfil the previously
outlined requirements efficiently. The DHB-KEY scheme
requires only the distribution of a single sink-initiated
broadcast message to set individual keys on all sensor
nodes. Thus, DHB-KEY has a low complexity and preserves
scarce resources such as bandwidth and energy. In the
paper we present a protocol specification based on the
DHB-KEY scheme and its implementation for the well
known TinyOS platform. A physical intrusion detection
system in an office building is used to evaluate the protocol
implementation. The evaluation shows that DHB-KEY is
practical in real-world deployments.

I. INTRODUCTION AND MOTIVATION

Some sensor network applications require secure com-
munication. In many cases it is sufficient to secure
the end-to-end data transport between the sensor nodes
and the sink used for data analysis. In particular, the
sink must be able to verify that the received data was
generated by a specific node and not modified in transit;
in rare cases, data confidentiality is required as well. To
implement the necessary cryptographic methods, such as
Message Authentication Codes (MAC), keys have to be
negotiated between each node and the sink.

A unique key should be used for each sensor node
to facilitate a simple key management mechanism. Key
revocation might be necessary in case that a node is
deemed to have become untrustworthy. Maintenance
procedures might require node replacement or addition.
The use of symmetric keys is desirable as symmetric
cryptographic algorithms require lesser computational
effort compared to public key cryptography on the re-
source constrained sensor nodes. To make cryptanalysis
infeasible it is desirable to refresh keys regularly.

A key distribution mechanism has to take the specific
WSN communication properties into account. Obviously,
the key distribution mechanism should require as few
messages as possible as the distribution of messages is

energy costly. However, energy consumption is not the
sole reason for reducing message numbers. Available
network capacity should be available to transport sensor
data and not be (temporarily) consumed by key distribu-
tion messages. For example, if time critical sensor data
has to be transported to the sink the network should
not be congested at that time with key distribution
messages. Besides the necessary message number, the
network structure needs to be taken into account when
constructing a key distribution mechanism. Most sensor
networks are optimised for data transport from the sen-
sor nodes to the sink and consequently most network
resources are allocated for this traffic direction. Thus, it
is not feasible to construct a key distribution protocol that
requires bi-directional traffic flow between the sink and
all sensor nodes. Finally, a high number of packet losses
can be observed in wireless sensor networks. Therefore,
any key distribution mechanism must be able to deal
with frequent losses and it must be possible to integrate
recovery mechanisms that are not too resource hungry.

Existing key distribution mechanisms proposed for
wireless sensor networks do not match the outlined
requirements. Often keys are negotiated such that all
nodes can securely communicate with all other nodes in
the network [5]. We believe that for many scenarios this
is not required and introduces unnecessary complexity.
Other solutions require the exchange of many messages
between the sink and each node to negotiate keys [4].
Thus, a large portion of available resources in the net-
work have to be spent on key distribution rather than
application related tasks. Most importantly, existing key
distribution mechanisms are not aligned with network
properties observed in WSNs.

To overcome the outlined limitations, we propose
DHB-KEY (outlined in [1]), a key distribution mech-
anism for wireless sensor networks based on Elliptic
Curve Diffie-Hellman. The first part of DHB-KEY is
conducted before network deployment. The second part
is initiated periodically by the sink using a broadcast
message. As the first part is executed in a secure
environment, the man in the middle problem common
to Diffie-Hellman scenarios is avoided. The use of a
broadcast message to complete the second part allows

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lancaster E-Prints

https://core.ac.uk/display/1549711?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

us to minimise the communication overhead required to
perform a key exchange and to align the key exchange
protocol with the present network structure.

Our paper is organised as follows. In the next section
we discuss related work. Section III introduces a WSN
application scenario that benefits from the introduced
DHB-KEY mechanism and is used for evaluation in later
sections. Section IV details the DHB-KEY mechanism,
constituting the first contribution of this paper. Section V
details a protocol specification using DHB-KEY and its
implementation in TinyOS as a second contribution. In
Section VI we evaluate DHB-KEY analytically and by
studying a real-world WSN deployment. We finish with
a conclusion in Section VII.

II. RELATED WORK

Many existing security schemes work at the link-
layer, securing communication only between adjacent
nodes (for example, TinySec [3]). End-to-end security
thus relies on the security of multiple nodes along
the communication path. The main weakness is that a
compromised node can modify all messages that pass
through without detection. Also, a node’s key cannot
be revoked without potentially disconnecting a large
portion of the network, further complicating the problem.
Many cluster-based schemes are similarly limited (for
example, [12]) as they distribute authentication in a
similar manner. Some deployments further generalise by
using a single network key, leaving the entire network
vulnerable if it is compromised [5].

It would be desirable to use public key algorithms,
such as DSA, to provide end-to-end authentication di-
rectly. Unfortunately the restricted computational ca-
pability and power supply of wireless sensor nodes
is insufficient to support this [8], [3]. Many existing
methods therefore rely on full symmetric schemes (for
example, [8], [11], [12]). These solutions exhibit either
the insecurity outlined above or a high communication
overhead as keys are negotiated.

A simple method to establish keys on each node is
to do so at deployment [8]. Although this can safely es-
tablish the keys, network maintenance becomes difficult
and keys cannot be easily and securely refreshed during
deployment. Some schemes are intended for peer-to-
peer communication security do not extend to end-to-end
security or do so inefficiently. For example, probabilistic
key sharing [11] can be used to secure communication
between arbitrary nodes in the network but is not use-
ful to support scenarios in which there is a common
end-point (the sink). Multipath key establishment [4]
is another method used to securely establish keys by
sending portions over redundant pathways, thus requiring
an attacker to compromise multiple nodes to recover
the key. Although this scheme does work for end-to-

end security, it requires that the topology supports fully
redundant pathways, which is complex, and requires
greater communication overhead.

Use of the Diffie-Hellman protocol in sensor networks
has recently become feasible (see [10], [2]). However,
each node still has to negotiate keys individually with the
sink. As sensor networks need to be conservative with
communication and are generally optimised for node-
to-sink (not sink-to-node) communication, this is also
undesirable.

As shown, currently available key distribution
schemes for sensor networks are limited to specific
scenarios, are too complex or do not provide the required
level of security. Thus, many sensor network applications
are insecure because designers are compelled to use
inadequate or no security. The key distribution approach
proposed in this paper provides keys for end-to-end
security, is simple to execute and fits the communication
patterns observed in sensor networks.

III. APPLICATION SCENARIO

We are experimenting with a physical intrusion de-
tection system used to secure an office building. A
number of tamper resistant1 wireless sensors report their
observations to a sink for data analysis. In addition,
each node sends periodic heart-beat messages to indicate
correct operation. The sink generates an alarm if an
intrusion or system failure is detected. The system has
to distinguish two alarm types:
• Intrusion Alarm: The sink receives an intrusion

detection message. This alarm indicates a definite
breach of security2. The location of the intruder is
known.

• Failure Alarm: The sink does not receive a heart-
beat message. This alarm indicates a possible
breach of security as the alarm could be triggered
by an attacker or have a non-security related cause.
The exact location of the problem is unknown.

If an attacker needs at least a few minutes to leave a
building after entering a restricted area, a delay of many
seconds before reacting to a Failure alarm is reasonable.
Our experiments (see Section VI) show that a wireless
sensor system in a building experiences a fluctuating
link quality and message losses occur frequently. The
delay allows us to avoid reacting to failure alarms caused
by a temporarily unavailable communication link. The

1We assume that an attacker has only the ability to destroy a node
but not to tamper with it. In practice, security sensors monitor their
own security and are fitted with tamper alarms which disable the node
when triggered. For example, it can be arranged that the area monitored
by an infrared detector has to be crossed to reach the detector. A door
contact can be fitted such that the door has to be opened to reach the
sensor. Opening the case of a sensor node will erase its program and
render the node useless.

2Under the assumption that detectors have no detection errors.

network might recover during the delay period and the
failure alarm can be cancelled.

The message transport in the intrusion detection sys-
tem has to be secured cryptographically. In particular,
message authentication at the sink is required. The sink
must be able to verify that a message was created by
a trusted sensor node. Message confidentiality is not a
major concern as the content of messages is obvious
(messages contain sensor readings). An attacker will be
able to inject messages in the network as only the sink
is able to verify the message authentication code. If
nodes would silently discard injected messages in the
network we would not know about the attacker trying
to manipulate the system. Complete flooding of the
network by an attacker can be prevented by limiting the
forwarding rate of nodes.

To reduce the computational effort to secure a mes-
sage symmetric algorithms should be used. Hence, it
is necessary to establish a shared key between each
node and the sink. This key has to be replaced regularly
to avoid cryptanalysis. Thus, an efficient key exchange
mechanism is required.

Messages in the physical intrusion detection system
are flowing from all sensors towards the sink. Hence,
the network should be optimised to support efficient data
transport from nodes to the sink. The only data required
to travel from the sink to sensor nodes are messages
to update key material on the nodes. The number of
these messages should be reduced such that bandwidth
is available to transport messages from the sensors to the
sink. In particular, it has to be guaranteed that intrusion
messages from a sensor can travel quickly to the sink.

The DHB-KEY distribution mechanism can be used
to support efficiently the outlined application of a phys-
ical intrusion detection system for buildings. We imple-
mented this application scenario and used its deployment
to evaluate the proposed DHB-KEY key distribution
mechanism.

IV. DIFFIE-HELLMAN BROADCAST KEY EXCHANGE

This section describes the Diffie-Hellman3 Broadcast
(DHB) Key exchange mechanism. First, the well known
Diffie-Hellman (DH) method based on elliptic curve
cryptography is briefly summarised to define the syntax
of DH parameters in the context of this paper. Second,
the DHB-Key mechanism as modification of the standard
DH-Key exchange is outlined. Finally, the security of the
DHB-Key mechanism is discussed.

3The main characteristic of DHB-KEY is the use of broadcast. Other
algorithms, for example using hashes, may also exhibit compatible
behaviour but may not offer the security of a public key algorithm such
as Diffie-Hellman. For example, Diffie-Hellman offers greater security
in the event of sink compromise or node private key replacement.

Figure 1. DHB-Key phase 1.

A. Elliptic Curve Diffie-Hellman

The Elliptic Curve variation of Diffie-Hellman
(ECDH) provides similar security to normal Diffie-
Hellman with significantly shorter keys. Within ECDH
[2], a secret k between parties A and B is established.
This secret k may then be converted into cryptographic
keying material.

1) A and B agree ECDH parameters with curve base
G.

2) A generates private number a and public point
P = Ga.

3) B generates private number b and public point
Q = Gb.

4) P and Q are exchanged over an insecure channel.
5) A generates a secret ka = Qa.
6) B generates a secret kb = Pb.
7) The shared secret is: k = ka = kb = aQ = bP =

aGb.
A possible attacker only has access to P and Q (and
possibly G) which is insufficient to feasibly calculate
k. However, the key exchange is vulnerable to man-
in-middle attacks as P and Q are exchanged without
authentication.

B. DHB-KEY Exchange Mechanism

DHB-Key is a modification of the basic ECDH key
exchange mechanism using a static private number on
one side and a shared ephemeral private number on the
other side. The first half (Phase 1) of the ECDH key
exchange is undertaken before deployment and estab-
lishes static keypairs for all sensor nodes. The second
half (Phase 2) of the ECDH key exchange is executed
periodically using an ephemeral keypair on the sink to
establish new shared secrets on all nodes using a single
broadcast message.

1) Phase 1: The sensor network consists of N sensor
nodes and a sink. N private numbers an(∀0 ≤ n < N)
are generated and corresponding public points Pn are
calculated. Each sensor node sn is configured with its
an and a table on the sink is populated containing all
Pn (see Figure 1). Phase 1 is carried out once only in a
secure environment before network deployment:

1) ECDH parameters with curve base G are agreed.
2) All an and Pn = Gan are calculated by the sink.
3) Each an is stored on the corresponding node sn.
4) All Pn are tabled on the sink.

Figure 2. DHB-Key phase 2.

Because this is conducted before deployment, it is resis-
tant to man-in-middle attacks. An attacker cannot obtain
or modify any Pn and so will find it infeasible to imitate
either party later on.

2) Phase 2: The sink generates a new ephemeral
private number b and corresponding public point Q. The
public point Q is distributed in the network using a
single broadcast message (see Figure 2). All nodes sn

use this value Q to calculate a new individual shared
secret kn using their locally stored an. This process can
be repeated periodically to set keys on all nodes.

1) The sink creates b and Q = Gb.
2) The public point Q is broadcast to all nodes.
3) Each node sn recalculates the secret kn = anQ .
4) The sink recalculates all secrets kn = bPn.
5) The secrets are shared as kn = anQ = bPn =

anGbn.

C. DHB-KEY Security

DHB-KEY is different to basic ECDH in two im-
portant aspects: (1) the sink’s public point Q, derived
from its ephemeral private number b, is common to all
nodes in their production of shared secrets kn and (2)
the nodes private numbers an are not replaced in each
key negotiation round. It has to be analysed if these
differences represent a security risk.

Difference (1): Diffie-Hellman is used in other proto-
cols in a one-to-many communication relation. For ex-
ample, the Transport Layer Security (TLS) [6] protocol
commonly used to secure the communication between
web servers and Internet browsers can use DH key
exchange. A web server can include a public point Q
in a static certificate; all clients connecting to this server
use this public point and their private number to create
the shared secret kn = anQ. TLS is widely used and
considered to be safe. Thus, we conclude that this aspect
of DHB-KEY does not represent a security risk.

Difference (2): The usage of static private numbers
an on the nodes is similar to the Ephemeral-Static Mode
described in RFC2631 [7]. This RFC defining the usage
of DH in Internet protocols explicitly specifies a mode
of operation in which one DH side uses a static private

number and the other side uses a fresh private number
for each negotiation. TLS specifies as well this mode
of operation for key negotiation. Thus, we conclude that
this aspect of DHB-KEY does not represent a security
risk.

Other Security Aspects: An attacker might be able
to compromise a node and obtain the stored private
number an. From that point on the attacker is able to
impersonate the compromised node and retrieve previous
used keys. The problem of compromised nodes is not
specific to DHB-KEY. Communication channels cannot
be protected if endpoints are already compromised.
Compromise of an does not damage the trust of the
whole network, as that node remains unable to modify
messages it forwards.

The symmetric cipher scheme used after the ECDH
key exchange should offer equivalent or greater strength
than ECDH. Otherwise, an attacker could recover the kn

and possibly an by breaking the used symmetric cipher
instead of the DHB-KEY mechanism.

DHB-KEY does not authenticate the broadcasted pub-
lic point Q in phase 2 and this can be exploited by
an attacker for denial-of-service attacks. In particular,
an attacker can maliciously inject false public points Q′

which forces nodes to calculate invalid keys. Subsequent
messages are dropped by the sink as wrong keys are
used. Nevertheless, resources in the network are blocked
by the attacker. For application scenarios as described in
Section III this is not a problem. For other scenarios an
authenticated broadcast message might be necessary. It is
observed that existing broadcast authentication methods
(such as µTESLA and DSA) are also subject to denial-
of-service attacks[17].

V. IMPLEMENTATION

This section describes a combined routing and key
distribution protocol named SecureTDRoute that uses the
DHB-KEY mechanism and is tailored to the application
scenario described in Section III. We decided to couple
routing functionality and the DHB-KEY distribution
mechanism as this allows us to implement a very ef-
ficient recovery strategy for lost key broadcasts (see
Section VI). An implementation of SecureTDRoute for
the TinyOS sensor node operating system is discussed
as well in this section.

A. SecureTDRoute Routing Functionality

Sensor nodes in the network are organised in a tree
structure which is rooted at the sink. Sensor nodes are
statically deployed and each node is aware of its parent
node in the tree structure and its child nodes. Two types
of messages can be routed: (1) broadcasts from the sink
and (2) unicast messages to the sink. There are two types
of broadcast, BCKEY for key establishment and BCMSG

Figure 3. SecureTDRoute Packet Format

for application messages. There is one type of unicast
message, UCMSG. The packet structure for BCMSG and
UCMSG are shown in Figure 3. (BCKEY format is the
same as BCMSG.) The packet formats are intended to
be carried within a link-layer packet, such as TinyOS’s
ActiveMessage packets.

The 1byte length field indicates the length of the data
field in bytes. The 2bit type field shows the data type
contained in the packet (BCKEY, BCMSG or UCMSG).
The 2bit frag field is used when data does not fit in one
packet and fragmentation is necessary. The R bit is the
recovery flag used to control broadcast failure recovery
(explained later in detail). The 3bit appmux field is
used to multiplex data between different applications
running on the sensor node. The 2byte sender field shows
the sender (last hop) of the packet. The 2byte creator
field shows the original source of the packet and is
also used to identify the correct key when the MAC is
checked. The 2byte key ID field and the 4byte message
authentication header are used for security purposes and
are explained in the next paragraph.

Upon receiving a packet SecureTDRoute examines the
sender field. If the packet is not sent by the parent or
child nodes it is discarded. Thereafter the type field
is examined. BCKEY and BCMSG messages are re-
broadcasted and UCMSG messages are forwarded to
the parent node. BCKEY data is used internally by
SecureTDRoute to update key material. BCMSG data is
passed to the application layer.

B. SecureTDRoute Security Functionality

Before deployment, the sink calculates the an and Pn

for each node. The private number an is stored on each
node and the public point Pn is tabulated on the sink.
This constitutes phase 1. Periodically, the sink generates
a new private number b and broadcasts the public point
Q, with a unique key ID i as a BCKEY message. The
sink calculates and stores the new shared secrets kn and
corresponding keys Kn. As each node receives the public
point Q, the shared secret kn is calculated at each node
and the symmetric key Kn is derived (phase 2). Each
node stores as well the current key ID i received in the
BCKEY message.

Data sent by a node in a UCMSG message is secured
by a 4byte Message Authentication Code (MAC). The
MAC is computed over the all fields, except the MAC
field itself, the sender and the R bit. The sequence

number field is used to prevent replay attacks. The sink,
on receipt of the message, inspects the key id field to
select Kn and calculates the MAC. The two MACs are
then compared and the message is dropped if they do not
match. The sink might allow the usage of an old key as
some nodes might not have received the latest BCKEY
message for key updates.

C. Broadcast Failure Recovery
Packet losses are common in wireless sensor networks.

For UCMSG messages an acknowledgment on the link
layer can be used to detect a lost transmission and to ini-
tiate a re-transmission. For BCMSG broadcast messages
this is not an option. A recovery mechanism is necessary
to deal with lost broadcasts delivering important key
material. SecureTDRoute applies the following solution:
Each node inspects the key ID field when forwarding a
unicast message upstream. If the key ID is lower than the
locally stored key id it can be concluded that some node
downstream has not received the latest key update. The
node then creates a BCKEY message using locally stored
public point Q and sends this message downstream. The
recovery flag in the unicast message is set before the
node forwards this message upstream to prevent nodes
closer to the sink to initiate a repair broadcast as well.
The sink might still decide to accept the unicast message
with an old key if it is not deemed to be too old.

D. Implementation
SecureTDRoute was implemented for the MoteIV

Tmote Sky node using TinyOS 2.0. The implementation
fits into the existing TinyOS structure which allows
us to reuse existing application code. SecureTDRouteC
provides the standard TinyOS AMSend and Packet in-
terfaces normally provided for applications in TinyOS.
The key management is handled transparent to the ap-
plication.

To implement ECDH on nodes, an existing imple-
mentation called EccM [2] was used. EccM uses the
sect163k1 curve parameters, resulting in a 21byte key
size and a 42byte long public point Q. As a result, two
messages to broadcast the public point Q are required
as it was decided to comply with the TinyOS maximum
payload size of 28byte.

The critical bottleneck in ECDH is the time taken to
perform scalar point multiplication. Longer calculation
time consumes more energy and affects system respon-
siveness. An EccM key calculation time of 60s was
measured on the Tmote Sky nodes. Recent work [10]
shows that this calculation time can be reduced by 90%;
however, this optimisation was not yet implemented in
the prototype system. The calculation delay causes nodes
to continue using old keys for a short period while the
calculation completes. The sink therefore has to tolerate
use of old keys for a period after a refresh.

During the key calculation, no other task can be
carried out in TinyOS. This prevents communication and
disables a mote’s ability to report events and participate
in the network. We use PLScheduler[9], a TinyOS 2.x
extension for task pre-emption to counter this problem.
The elliptic curve calculation is performed in a “low”
task, which is automatically pre-empted by other tasks.
Thus key calculation can be performed as a low priority
background process.

E. SecureTDRoute Security

Our principle components are ECDH (sect163k1 pa-
rameters using binary fields at 163bit) for key exchange
and AES (128bit, using CBC-MAC mode with the result
truncated to 32bit) for message authentication. ECDH
and AES are ’unbroken’ to our knowledge, and thus
require an infeasible brute force attack. For ECDH, a
parameter set which avoids weak curves is used. The
CBC-MAC is secure as a fixed Interrupt Vector and
fixed-length messages are used [13].

VI. EVALUATION

The use of broadcast in DHB-KEY, rather than uni-
cast, allows for several major benefits. (1) Key material
can be feasibly cached within the network which reduces
communication overhead penalties in failure scenarios.
(2) Communication overhead is lower and better bal-
anced, allowing the network to remain operational for
longer. (3) The scheme aligns with WSN network prop-
erties. We make comparisons against the alternative of
a symmetric key distribution scheme (herein referred to
as the ’unicast scheme’) where each node must be sent
a separate message to establish a new key.

A. Key Distribution Message Overhead

Communication failures must be expected in wireless
sensor networks and broadcast key update messages can
be lost in transit. In the unicast scheme a different
key update message is send to each node. In DHB-
KEY a single message is broadcast to the whole net-
work. One approach to reduce the impact of key update
message losses is to retransmit cached messages within
the network itself. Message caching quickly becomes
infeasible in the unicast case as the necessary cache size
is impractical in most WSN platforms. For example if a
node is on the pathway to 100 nodes, it would need a
5KB cache if 50 byte messages were used. Nodes such
as the Tmote Sky ship with 10KB of RAM, much of
which is used by the application itself. In DHB-KEY the
caching is feasible, because only a single message need
be cached. This in-network caching therefore allows in-
network recovery.

We implemented the physical intrusion detection ap-
plication, in an office building, described in Section III.

For the first experiment (Experiment A) the DHB-KEY
protocol as specified in Section IV-B, including the
described broadcast failure recovery mechanism, was
used. For the second experiment (Experiment B), the
alternative unicast key distribution is used using binary
tree routing to allow unicast. In Experiment B, lost key
distribution messages are re-transmitted from the sink.
14 nodes were implementing, each with door open/close
contacts.

In case of perfect network conditions (no losses) 15
messages would be required in Experiment A to set keys
on all nodes while in Experiment B 26 messages would
be required (DHB-KEY requires 42% less messages).
Clearly, DHB-KEY has a benefit in terms of required
network resources. In the practical deployment where
network links experience losses we recorded on average
16.8 (σ = 2.22) messages in Experiment A and 38.6
(σ = 1.57) messages in Experiment B (DHB-KEY
requires 56% less messages in total). Thus, DHB-KEY is
especially beneficial in realistic network settings where
losses of key distribution messages must be compen-
sated.

B. Network Lifetime

DHB-KEY can be compared with the unicast scheme
by using the minimum number of messages that must
be forwarded by a critical node at each key update. We
use the term critical node to refer to the node closest
to the sink in the situation where that node is the only
node providing connectivity of the network to the sink.
This node is critical because its failure will result in the
disconnection of the entire network.

In DHB-KEY, this critical node is required to forward
a minimum of one broadcast message and is required to
compute its new key using DH which keeps the CPU
active for a considerable time consuming the energy
EDH . In the unicast case, the critical node is required
to forward a minimum of N − 1 messages which costs
(N − 1) · ETX energy but it does not have to spend
significant time to set its key. Depending on the exact
energy values EDH and ETX and the number of nodes
N in the network either DHB-KEY or the unicast
method will result in less energy cost on the critical node.

For our prototype implementation (see Section V)
the following calculation applies. The MoteIV Tmote
Sky with MSP430 MCU draws 1.9mA when busy and
the CC2420 radio requires 19mA when active. Thus,
each message costs 1.9mAs as we use the duty cycled
FrameComm Medium Access Control Layer [14] which
requires the radio to be active for 100ms to send a
message (1% duty cycle, 41byte message size). A single
ECDH key calculation with duration of 60s (see Sec-
tion V) costs 114mAs. The calculation is thus equivalent
to 60 messages. In this example, the DHB-KEY method

is beneficial in networks with N > 60. Such a network
will achieve a longer lifetime with DHB-KEY as the
critical node consumes less energy. ECDH optimisations
(for example [10]) will bring this number down further.

C. Network Properties

DHB-KEY is simple and requires less network fea-
tures than the alternative unicast key distribution scheme.
The network need only provide the capability to dis-
tribute a broadcast message from the sink to all sensor
nodes. It is not necessary to maintain efficient unicast
routes from the sink to each node at the time of key
distribution. Many sensor networks experience strong
fluctuation in link quality which can present difficulties
in maintenence of valid optimal routes to all nodes [15].
The DHB-KEY key update messages can be distributed
by broadcast and can thus be distributed in a network that
has no fixed routing structure. For example, the DHB-
KEY key update information can be piggy backed on a
broadcast message used to setup a network structure for
the following data transport from nodes to the sink.

Some sensor networks are optimised for asymmetric
data flow, as most data flows towards the sink. In
such networks it is common for very few resources to
be provided to support downward data flow. Available
network capacity is generally defined by the medium
access control protocol. For example, DMAC [16] ar-
ranges the network such that messages are transported
quickly towards the sink. For messages travelling in
the opposite direction a small bandwidth is allocated
and these messages incur a high latency. DHB-KEY is
aligned with this asymmetric property of wireless sensor
networks.

VII. CONCLUSION

The presented DHB-KEY scheme uses a single broad-
cast message to set individual keys on all nodes in the
network. As shown, DHB-KEY has three main benefits.
First, more network resources are available to application
related tasks as they are not needed for key management.
Second, energy consumption in the network is better
balanced as communication is traded for computation.
Third, the key exchange communication patterns match
common sensor network properties which allows us to
use DHB-KEY easily in practical deployments. We also
show that DHB-KEY can support efficient broadcast
failure recovery.

REFERENCES

[1] A. Chung and U. Roedig. “Poster Abstract: DHB-KEY - A
Diffie-Hellman Key Distribution Protocol for Wireless Sensor
Networks”, Adjunct Proceedings of the 5th IEEE European
Workshop on Wireless Sensor Networks (EWSN2008), Bologna,
Italy, January 2008.

[2] D. Malan, M. Welsh and M. Smith. “A Public Key Infrastruc-
ture for Key Distribution in TinyOS Based on Elliptic Curve
Cryptography”, Proceedings of IEEE Sensor and Ad Hoc Com-
munications and Networks (SECON04), Santa Clara, California,
October 2004.

[3] C.Karlof, N. Sastry and D.Wagner. “TinySec: A Link Layer Se-
curity Architecture for Wireless Sensor Networks”, Proceedings
of the 2nd International Conference on Embedded Networked
Sensor Systems, Baltimore, USA, November 2004.

[4] A. Wacker, M. Knoll, T. Heiber and K. Rothermel. “A New
Approach for Establishing Pairwise Keys for Securing Wireless
Sensor Networks”, Proceedings of the 3rd International Con-
ference on Embedded Networked Sensor Systems, San Diego,
California, 2005.

[5] I. Chatzigiannakis, E. Konstantinou, V. Liagkou, P. Spirakis.
“Design, Analysis and Performance Evaluation of Group Key
Establishment in Wireless Sensor Networks”, Electronic Notes
in Theoretical Computer Science (ENTCS), 2007.

[6] T. Dierks and C. Allen. “RFC 2246: The TLS Protocol Version
1.0”, 1999.

[7] E. Rescorla. “RCF 2631: The Diffie-Hellman Key Agreement
Method”, 1999.

[8] A. Perrig, R. Szewczyk, V. Wen, D. Culler and J.D. Tygar.
“SPINS: Security Protocols for Sensor Networks”, Proceedings
of Mobile Computing and Networking, Rome, Italy, 2001.

[9] C. Duffy, U. Roedig, J. Herbert and C. Sreenan. “Adding Preemp-
tion to TinyOS”, Proceedings of the 4th workshop on Embedded
networked sensors, Cork, Ireland, 2007.

[10] P. Szczechowiak, L. Oliveira, M. Scott, M. Collier and R. Dahab.
“NanoECC: Testing the Limits of Elliptic Curve Cryptography
in Sensor Networks”, European Conference on Wireless Sensor
Networks (EWSN’08), Bologna, Italy, 2008.

[11] L. Eschenauer and V. Gligor. “A Key Management Scheme for
Distributed Sensor Networks”, Proceedings of the 9th ACM con-
ference on Computer and communication security, Washington
DC, USA, 2002.

[12] Y. Zeng, J. Su, X. Yan, B. Zhao and Q. Huang. “LBKERS:
A New Efficient Key Management Scheme for Wireless Sensor
Networks”, The 3rd International Conference on Mobile Ad-hoc
and Sensor Networks (MSN 2007), Bejing, China, 2007.

[13] M. Bellare, J. Kilian and P. Rogaway. “The Security of the
Cipher Block Chaining Message Authentication Code”, Journal
of Computer and System Sciences, 2000.

[14] J. Benson, T. O’Donnovan, U. Roedig and C. Sreenan. “Op-
portunistic Aggregation over Duty Cycled Communications in
Wireless Sensor Networks”, Proceedings of the IPSN Track
on Sensor Platform, Tools and Design Methods for Networked
Embedded Systems (IPSN2008/SPOTS2008), St. Louis, USA,
2008.

[15] J. Benson, U. Roedig, T. O’Donovan and C. Sreenan. “Re-
liability Control for Aggregation in Wireless Sensor Net-
works”, Proceedings of the Second IEEE International Workshop
on Practical Issues in Building Sensor Network Applications
(SENSEAPP2007), Dublin, Ireland, October 2007.

[16] G. Lu, B. Krishnamachari and C. Raghavendra. “An Adaptive
Energy-Efficient and Low-Latency MAC for Data Gathering in
Sensor Networks”, Proceedings of the International Workshop on
Algorithms for Wireless, Mobile, Ad Hoc and Sensor Networks,
Santa Fe, USA, April 2004.

[17] P. Ning, A. Liu and W. Du. “Mitigating DoS Attacks against
broadcast Authentication in Wireless Sensor Networks”, ACM
Transactions on Sensor Networks (TOSN), January 2008.

